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1. Introduction

1.1. Let b, = Sp(2n, R)/U(n) be the Siegel upperhalf space of rank n. The quotient
space Sp(2n, Z)\, has three remarkable properties: (a) it is the moduli space of
principally polarized Abelian varieties, (b) it has the structure of a quasi-projective
complex algebraic variety which is defined over the rational numbers Q, and (c) it
has a natural compactification (the Baily—Borel Satake compactification) which is
defined over the rational numbers.

Now let C,, = GL(n, R)/O(n) be the symmetric cone of positive definite symmetric
matrices and let Z = GL(n, Z)\C,. One might ask whether similar statements hold
for Z. Is Z in some sense a moduli space for principally polarized real Abelian
varieties? Does it admit the structure of a real algebraic variety, possibly defined over
Q? If so, does it admit a compactification which is also defined over the rational
numbers? The answer to all these questions is ‘no’. In fact, Silhol [Si] constructs
the moduli space of real principally polarized Abelian varieties and he shows that
it is a (topological) ramified covering of Z. Moreover Silhol constructs a compactifi-
cation of this moduli space, analogous to the Baily—Borel compactification. However,
neither the moduli space nor this compactification has an algebraic structure.
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In this paper we show that all three statements (a), (b), and (c) above may be
recovered if we consider real Abelian varieties with an appropriate level structure.
To be precise, let N = 4m for some m > 1, let I',(N) be the principal congruence sub-
group of GL(n, Z) of level N, and let Z(N) = I',(N)\C,. Then (a) the moduli space
of real principally polarized Abelian varieties with level N structure consists of
finitely many copies of Z(/V). These various copies are indexed by a certain (nonAbelian
cohomology) set H'(C/R, '(N)). Morever, (b) this moduli space may be naturally
identified with the real points X of a quasi-projective algebraic variety X which is
defined over the rational numbers. See Theorems 4.2 and 6.6. Finally, (c) the variety
X has a compactification which is defined over Q.

1.2. In fact the variety X is just the moduli space I'(N)\)),, of Abelian varieties with
principal polarization and level N = 4m structure. (Here, I'(N) denotes the principal
congruence subgroup of Sp(2n, 7)) of level N.) The first observation is that there is an
involution 7 on Sp(2x, R) whose fixed point set is GL(n, R), which passes to an anti-
holomorphic involution on X. This implies that the set of real points of X consists
of finitely many arithmetic quotients of the symmetric cone C,. What is not so
obvious, however, is that these quotients are copies of a single arithmetic quotient
[ (N)\C, or that this set of real points may be realized as the moduli space of real
principally polarized Abelian varieites with level N structure. Indeed, these state-
ments are likely false for N # 0 (mod4). The key technical tool (which is needed
for both these facts) is the lemma of Comessatti and Silhol ([C, Si, Si2]) describing
certain conditions on the period matrix of a principally polarized Abelian variety
A which are necessary in order for 4 to admit a real structure.

1.3. Let V=V denote the Baily-Borel Satake compactification of Xc. It is
an algebraic variety defined over Q. Complex conjugation t: V- — V- is an anti-
holomorphic involution whose fixed point set is the set of real points V'g. This set
is compact and it contains Xg as an open set. One might ask whether Vg is a
compactification of Xp, that is, whether Vg = Xy, where X denotes the closure
of Xr in V. We have been able to prove this (Section 10) in the special case
N = 2% (that is, for the principal congruence subgroup I'(2X) of level 2¥) for k > 2,
and we suspect it is otherwise false unless n = I; (cf. Section 5). However, we
have been able to show (for general I'(4m)) that the complement Vi — X has a high
codimension. The variety V- has a stratification

Ve=V2uviu...uvn
such that each V/. is a union of arithmetic quotients I'\§,_, of finitely many copies of

the Siegel space of rank n — r. The largest stratum V2 is just X.. Denote by V} the
7-fixed points in V.. In Proposition 9.2 we show that

V(Z U VflR - /\_/TR C Vg.
Although the moduli space X consists of ﬁnitely many disjoint copies of the

locally symmetric space Z(N ), the compactification Xy is not a disjoint union: some
of these copies of Z(N) may become glued together along the boundary.
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1.4. The questions in the first paragraph, and others like them, were posed by
G. Shimura, J. Millson and M. Kuga [J] in the early 1970’s, in the context of
attempts to associate automorphic forms on groups of Hermitian type to auto-
morphic forms on groups of non-Hermitian type. One of many missing ingredients
in the theory of automorphic forms for groups of non-Hermitian type arises from the
fact that the associated locally symmetric space does not appear to have an algebraic
structure, or to be associated with elliptic curves or Abelian varieties. On the other
hand, suppose X is a moduli space for Abelian varieties with certain polarization,
endomorphism, and level structures, and suppose that X has a model defined over R.
In [Sh1], Shimura showed that the set of real points X does not necessarily give a
moduli space for real Abelian varieties (with the corresponding PEL structures).

These questions were partially investigated by A. Adler [A], H. Jaffee [J], S. Kudla
[K], M. Kuga, J. Millson, K.-Y. Shih [Shh], and G. Shimura [Sh1, Sh3, Sh4]. Kudla,
for example, enumerated the possible real forms and determined the number of con-
nected components of the set of real points of certain compact arithmetic quotients
I'\h" of a product of upper half planes. Related results concerning products §),' of
Siegel upper half-spaces appear in [Sh3]. Since 1975 however, this line of investiga-
tion appears to have been abandoned. Indeed, it is unlikely that this work could have
progressed much further without (some analog of) the lemma of Comessatti and
Silhol. We believe Theorems 4.2 and 6.6, and the related results in [GT], are but
two examples of a much more general phenomenon involving arithmetic quotients
of symmetric cones associated to (formally real) Jordan algebras.

2. Non-Abelian Cohomology

2.1. Let G be a reductive algebraic group defined over Q, let K be a maximal
compact subgroup of G = G(R), and let I' € G(QQ) be an arithmetic subgroup.
Set D = G/K and X = I'\G/K with projection n: D — X. Suppose 7: G — G is an
involution which preserves K and I". Then 7 passes to an involution on X and we
denote by X7 the fixed point set. Let (1) be the group {1, 7} and let H'((t),T) be
the first non-Abelian cohomology set. For any y € I' let f;: (t) — I" be the mapping
f;(1) =1 and f,(t) = y. Then f, is a 1-cocycle iff yt(y) = 1, in which case its cohomo-
logy class is denoted [ f,]. A cocycle f, is a coboundary iff there exists # € I' so that
vy =1(h)h~'. To every such 1-cocycle f, we associate the ‘“y-twisted’ involutions
79: D — D by x> t(yx) and t9: " — I by y' — t(yy’y~!). Let D™ be the fixed point
set in D of the involution 7y and let I'* be the fixed group in I" of the involution ty.

To describe X* it is necessary to understand the various D™ : if Z € D, then
n(Z) € X iff there exists y € I' such that Z € D™. For completeness, we recall the
proof of the following theorem ([Rol, Ro2, RoS]) of Rohlfs.

THEOREM 2.2. Suppose T is torsion free. Then the association

f, > X(ty) = (DY) = L\DY
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determines a one to one correspondence between the cohomology set H'((t), ') and the
connected components of the fixed point set X*.

Proof 2.3. The twisted involution 7y: D — D acts by isometries so ([H] Chapter /
Section 13.5) the fixed point set D™ is nonempty. If x, x’ € D™ then the unique
geodesic connecting them is also fixed by 7y, so D™ is connected. Its image in X is a
connected component X(ty) of X* which depends only on the cohomology class of ,.
It is easy to check that f; and f,, are cohomologous iff X(ty) N X(t)') # ¢. O

2.4. In general, the cohomology set H'((r), ') may be difficult to compute, the
connected component X(ty) may be difficult to describe, and distinct components
may fail to be isomorphic. We will introduce additional hypotheses which will
allow us to address these three issues. Let [y C G(Q) be a 7 stable arithmetic sub-
group which contains I'. Let 0: G — G be the Cartan involution corresponding to
K. Consider the following possible hypotheses (cf. Remark 2.7, Theorem 4.2 and
Proposition 4.6).

(1) G is Zariski connected, 7:G — G is defined over R, its fixed point set
G* = G'(R) is Zariski connected, and 0 preserves G,

(2) H'((r), K) is trivial,

(3) H'((r),T) —» H'({x), Ty) is trivial,

(4) T’y contains I' as a normal subgroup,

(5) 1 acts trivially on I'\I'y, and

(6) I is torsion free.

We remark that if I'y satisfies conditions (3) and (4) then there is an arithmetic group
G with I' ¢ G c I'y which satisfies conditions (3), (4), and (5), namely

G=G(I Ty ={aely t(a)a' eT}. (2.4.1)

LEMMA 2.5. Suppose I C Ty C G(Q) are arithmetic subgroups. Then the following
statements hold.

(a) Under hypothesis (1) above, G is reductive, 0 restricts to a Cartan involution of
G*, and K" is a maximal compact subgroup of G*.
(b) Under hypothesis (2) above, D* = G*/K".
(c) Under hypothesis (3) above, for each cohomology class [ f,] € H'({x),T) there
exists h € Ty such that y = t(h)h™", in which case,
D7 =hD" and T ="T"=h'"h7".
(d) Under hypotheses (3), (4), and (5) this association f,+—h determines a one to one
correspondence
H'((x),T) = T\Tp/T. (2.5.1)
(e) Under hypotheses (3), (4), (5), and (6) the fixed point set X" is the disjoint union of
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isomorphic copies

x*= [] 'Tr\wD°
hel\[o/T¢

of the quotient T"\D".

Proof 2.6. Part (a) is proven in [Sa] Ch. I Theorem 4.2 and Corollary 4.5 (pages
15 and 17). Now consider part (b). Clearly, G'/K* C D7 so it suffices to show that
G"* acts transitively on D*. Let x =gK € D*. Then t(g)K = gK so the element
k = g '1(g) lies in K. Moreover, f; is a cocycle, so by (2) there exists u € K with
k =ut(u)™' =g '1(g). Then gu=1(gu) € G* and x = guK. Part (c) is straight-
forward. Part (d) follows from the long exact sequence

HOIY —— HOTy) —— HYI\Iy) —— HY(I) —— |

rt —_— r.f) e [ F()

associated to the sequence 1 - I' — I'g — I'\I'y — 1. Part (e) follows from Rohlfs’
theorem and parts (c) and (d) however it is also easy to verify directly. First check
that X* = n(Uhd—U hD%). If he T,y then t(h)h~' € T by (5), which implies that
n(hD") C X7. On the other hand, if x € D and n(x) € X~ then there exists y € I" such
that 7(x) = yx. By (6), f, is a cocycle, so by (3) there exists & € I'y such that
y=1(h)h~", hence x € hD®. To see that the union (2.5.1) is disjoint, suppose
n(hD*) N (W' D7) # ¢. Then there exists x, x’ € D and y € I" such that yhx = I'x/,

hence t(yh)x = t(#')x’. This gives
x=t(h 'y WX =y T ) T X
For any u € 'y, (5) implies that t(u)u~! € T, which is torsion free. Take u = h~'y~ /.

Then t(u) =uso u e I'y and ' = yhu € ThI'§. O

Remark 2.7. If G is semisimple, connected and simply connected and if 7: G — G
is defined over R then, according to a theorem of Rasevskii ([Ral, Ra2]) and
Steinberg [St], the complex group G(C)* = G*(C) is connected, so its group of real
points G* is Zariski connected.

3. Symplectic Group
3.1. The symplectic group G = Sp(2n, R) may be realized as the group of 2n by 2n

real matrices
A B\|4D-'CB=1
Sp2n, R) = .
o ) {(C D) AC,'BD symmetric

<A B)‘A’D—B’C:I
|\ C D )| 4'B, C'D symmetric
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IfJ=(_ 10 f)”) is the standard symplectic form on R*" then g € Sp(2n, R) iff ‘gJg = J.

The inverse of such a symplectic matrix is

-1 ¢ 1
(é g) =(_l,)c MB> G.1.1)

Identify GL(n, R) — Sp(2n, R) with its image under the embedding

A 0
Ar—><0 54_1>

A Cartan involution 0 of Sp(2n, R) is given by 0g = JgJ~!, that is,

(e )=(5% )

Its fixed point set is the unitary group K = U(n) which is embedded in the symplectic
group by

A+iB— < —AB j)
The symplectic group acts transitively on the Siegel upper halfspace
0, ={Z=X+iY e My,(C)|'Z=Z and Y > 0}
by fractional linear transformations: if g = ({ 2) then
gZ = (AZ + B)(CZ+ D)™ ".
Then Stabg(if) = U(n), and 0, = G/K.

3.2 Let I_ = (") € GL(2n, R). Consider the involution t: Sp(2n, R) — Sp(2n, R)
which is defined by ©(g) = I_gI_, that is,

f<é’ g):<_AC _DB> (3.2.1)

The following properties of t are easily verified by direct calculation:

(1) 7 is an involution of G, i.e. (gh™") = t(g)(x(h))~".
(2) 1(g) =g & g€ GL(n, R)

(3) 170 = 07 so 1(U(n)) = U(n)

(4) If C= A+ iB € U(n) then 1(C) = C = A — iB.

It follows that 7 passes to an involution (which we denote by the same letter)
7.0, — b, on the Siegel space such that

g - Z) =1(g)-1(Z)
for all g € Sp(2n, R) and for all Z € §),. In fact 1:§, — 0, is the antiholomorphic
involution given by 7(Z) = —Z. Its fixed point set is the orbit

iC, = GL(1, R) - il C Mypen(C) (3.2.2)
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of the general linear group. Here, C,, = GL(n, R)/O(n) denotes the cone of positive
definite symmetric real matrices. (See also Proposition 4.6.)

NOTATION 3.3. Fory € G and Z € 1), we will usually write y = t(y) and Z=12).
For any y € Sp(2n, R), define the locus of y-real points

by ={Zeb,1yZ=-2} (3.3.1)

as in Section 2.1. If ' C Sp(2n, R) is an arithmetic subgroup such that tI" = I', define
the set §" of I-real points to be the union Uer 0,7

LEMMA 3.4. Let g € Sp(2n, R) and let 3 be the set of points in V), which are fixed
under the action of g. Then b8 N iC, is a proper real algebraic subvariety of iC, unless
g ==+l GL(n, R).

Proof 3.5. Suppose (48)-iY =iY. Then AY = YD and B= —YCY. These are

algebraic equations for Y. Suppose every Y € C, is a solution. Taking Y = ¢/ (with
t>0)givesd=Dand B=—1>*C.So B=C=0and AY = YA forall Y € C,, which
implies that A4 is a scalar matrix and that D = "4~ So the scalar is +1. O

4. The Variety I'(4m)\},

4.1. We shall be concerned with the following arithmetic groups:

o T'(1) =Sp(2n, 7)
o I(N) = {y e T(1)] y = I(mod N)}
_ A B A, D =1 (mod?2)
* @ = {(C D) © F’B,CEO (mod2m)}
o I',(1)=GL(n, 7)
o I'\(N)={yel'u(l)]y=Imod N)}

(The analogous construction of I',,,(2) does not yield a group unless m is even.)
Throughout the remainder of the paper we will be interested in the case N = 4m
and m > 1. The main result in this section is the following.

THEOREM 4.2. For all m > 1, the mapping H'((t), T(4m)) — H'((1), T2,,(2)) is
trivial.

4.3. Let X = T'(N)\},,. Then X has the structure of a quasi-projective complex alge-
braic variety. The involution 7(Z) = —Z passes to an anti-holomorphic involution
on X and defines a real structure on X. (It is a theorem of Shimura [Sh2] that the
Baily—Borel compactification V of X even admits the structure of an algebraic variety
defined over the rational numbers. See Section 8.) Let S=07" be the set of all
I'(4m)-real points in §j,,. Denote by I'(4m)\S the image of S in X = I'(4m)\),,. Note
that I'(4m) is normal in I'(2) and, in the notation of (2.4.1),
Tan(2) = G (4m), T()).
So Lemma 2.5 gives the following:
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COROLLARY 4.4. The set Xg of real points of X is precisely T'(4m)\S. It consists of
the disjoint union

Xg = [ [*T(4m)\giC, (4.4.1)
4

of finitely many copies of T o((4m)\C,, indexed by elements
g € D@m)\I'2,(2)/T4(2) = H'((x), T(4m)). (4.42)

4.5. The following tower of groups contains I'(4m):

IMm(2) C I'(2) C Sp(2n, Z) C Sp(2n, R).

We will show that the image of H'((t), I'(4m)) in the cohomology of each of these is
trivial, starting with the rightmost.

PROPOSITION 4.6. With respect to the above action (3.2.1), the (non-Abelian)
cohomology sets H'((t), U(n)) and H'((), Sp(2n, R)) are trivial.

Proof 4.7. Let g = (“,%) € U(n) and suppose f; is a 1-cocycle, that is, gg = I.
Then A% + B> = and AB = BA. Comparing with (3.1.1) gives 4 = 4 and ‘B = B.
Such commuting symmetric matrices may be simultaneously diagonalized by an
orthogonal matrix 4 € O(n). In other words, h(4 4+ iB)h~! = A € U(n) is a diagonal
matrix. Choose a square root, y = \/X € U(n) (by choosing a square root of each
diagonal entry) and set 6 = A~ wh. Since 4 = h and ji = p~', we find

007 =h (" h = h ' ah = hm'Ah = A+ iB

so f; is a coboundary, hence H'(U(n)) =0. From this we may also conclude:
if yeSp(2n, R) and if £, is a 1-cocycle then

f, is a coboundary iff 0§, # ¢. 4.7.1)
For, suppose Z € ),”. Write Z = h(il) for some / € Sp(2n, R). Then };‘lzh(z'l) =

h™'wZ = h='Z = 1(il) = il hence o = h~'yh € U(n). Moreover, ag = h~'yjh =1 so
by the preceding paragraph there exists & € U(n) with o= 00"'. Therefore
y = 1(hd)(hd) L.
At this point we remark that if y = (3 5) € Sp(2n, R) and if yJ = I, then
A='D, C='C, B='B, A>—BC=1, CA="AC, and AB=B'A. (4.7.2)
Next we consider two special cases. Let y = (é g) € Sp(2n, R) and suppose yy = I.
Suppose either (1) A = D =0 and C = —B~! is diagonal, or (2) C =0. Then f; is a
coboundary. For in case (1), let B =diag(b;, b2, ...,b,) and let Z =iY where

Y = diag(|by|, |ba], ..., |ba]). Theny-Z = —BZ 'B=—Z = 1(Z) so f; is a cobound-
ary by (4.7.1). In case (2), the cocycle f, is equivalent to f,, where
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(1 147'B
=0 1)

using (4.7.2). Then A = I so A is GL(n, R)-conjugate to a diagonal matrix A (with
eigenvalues £1). Therefore f, is equivalent to the 1-cocycle defined by the element
A 0
(0 A~

Now consider the case of a general 1-cocycle f,; where 7" = (é/ g) By (4.7.2), C' is
symmetric so there exists kK € O(n) so that C = kC"'k = (%‘ 00) where C| € M, (R) is

diagonal and nonsingular. Let /| = (’6 ?). Then f is cohomologous to f, where

~ A B
"/Zhwhll=<c D)

and (4.7.2) holds. Write 4 = (ﬁl jj) where 4 € M,(R) and A4 € M—pyx-r) (R),

and similarly for B and D. Then CA ='AC implies that 4, = A3 = 0.
Set hy, = ((’) ;) where

X = Cfl fAl 0
- 0 0)

Then 42 — BC = [ implies that f, is cohomologous to f, where

and

1) € U(n). It follows that £, is cohomologically trivial.

0 0|-Ci' 0

i = A—xC|—Ax+B+xC,—xA\ _| 0 A,| 0 B,
E=MY =\ —oxr A “lc ol 0o o
0 0‘ 0 ‘A,

Since gg¢ = I use case (1) and (2) above to find Z, € b), and Z,,_, € b),_, so that

0 —Cfl _ Ay By _ 5
<C1 0 )Z,. = -7, and ( 0 ’A4>Z”" =—Z,

Set Z = (g z,,,?)- Then gZ = —Z hence the corresponding cocycle is cohomologi-

cally trivial. ]

LEMMA 4.8. Let g € Sp(2n, 7). Fix m > 1.

(1) If g € T(m) then gg~' € T(2m).
(2) If g € T'(2m) then gg € T'(4m).
(3) If gg! € T'(4m) then g = Bu for some P € I'y,(2) and for some u € GL(n, 7).

Proof 4.9. Let g = (3 5). Since § = g — (3..*5) we have

. —2B'C 2B'4
3g 1:1—( Jys _ZC,A>. 4.9.1)
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This gives part (1). If g = I+ 2mg’ then g+ g is even, and gg = I+ 2m(g + g') +
4m>g'g which proves part (2). Now suppose that gg—' € I'(4m) so that B'C =
B'A=C'D=0mod2m). Then

B = B('AD — 'CB) = (B '4)D — (B 'C)B = 0 (mod 2m)
'C=('AD — 'CB) 'C = 'A(D 'C) — 'C(B 'C) = 0 (mod 2m).

Moreover, since C ‘B=0 (mod(2m)) and A'D—-B'C=1 we see that 4'D =
I (mod 2). Hence A is invertible (mod2). But reduction (mod?2) is a surjective
mapping GL(n, 7Z) — GL(n, 7/(2)) hence there exists U € GL(n, 7Z) so that U=
A (mod2) from which it also follows that U~'= ‘D (mod2). Let u=

(g,U(il). Then

(AU BW
p=gu ' = <CU1 K tU) € Ton(2). 0

The following proposition is a consequence of the theorem of Silhol [Si] (Theorem
1.4) and Comessatti, and will be proven in Section 7.

PROPOSITION 4.10. Let y € I'(2) and suppose that Z € ), is not fixed by any ele-
ment of Sp(2n,7Z) other than =£I. Suppose that Z =vZ. Then there exists
h € Sp(2n, 7)) such that y = hh™"'.

4.11. PROOF OF THEOREM 4.2.

Let y € I'(4m) and suppose f, is a cocycle. Its image in H'((t), Sp(2n, R)) is a
coboundary so there exists 4 € Sp(2n, R) with 7= hh~'. This implies that
" = hiC, is a copy of the cone of positive definite matrices. By Lemma 3.4 there
exist points Z € ),” which are not fixed by any element of Sp(2n, Z) other than
47 and in fact the set of such points is the complement of a countable union of
proper (real) algebraic subvarieties of §)’. Applying Proposition 4.10, we conclude
that y = hi=! for some h € Sp(2n, 7). By Lemma 4.8 (3) we may write & = fu for
some f§ € I'5,,(2) and some u € GL(n, Z). Then hh! = Bﬁ_l =y which proves that

£, is trivial in H'((z), T2,(2)). O

5. Upper Half-plane

For the upper half-plane ), it is possible to do a little better since the group I'(2)/ £ 7
acts freely.

LEMMA 5.1. A point Z € Yy, is T(2)-real if and only if gZ is T'(2)-real, for every

g € SL(2, 7).
Proof 5.2. Suppose ©(Z) = yZ for some y € I'(2). Then
1(g2) = 1(9)1(2) = (v(@)g ' Ngvg )gZ € T(2) - T(2) - g Z. O
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LEMMA 5.3. If a point y € by, is T'(2)-real, then there exists € SL(2, 7)) and there
exists Y€ C; = Ry so that y = f-iY.

Proof'5.4. Say y = yy for some y € I'(2). We consider two cases: (a) when y is not
fixed by any element of SL,(Z) other than &7 and (b) when y is fixed by some other
nontrivial element of SL;(7Z).

In case (a), the result is just Proposition 4.10. Now consider case (b). There are two
classes of elements which are fixed by nontrivial subgroups of SL,(Z). These are the
translates (by elements of SL,(7)) of i and the translates of @ = e**/3. In the first
case, y = f - i (for some f§ € SLy(7)) and the conclusion follows. In the second case,
the stabilizer of w is the subgroup

st D )

Suppose y = go (for some g € SL,(7)). We claim that y is not I'(2)-real. Suppose
otherwise. Then y = yy gives @ = y’w where

Y =8g=(E"9g g eT(Q)

by Lemma 4.8. But @ = —@ = jo where j = (Y ). So /!y’ stabilizes w or 7’ = js for

some s € S. However none of these matrices js lies in I'(2), which is a contradiction.
This completes the proof of Lemma 5.3. O

The group I'(2) does not induce any identifications on the cone iC,. However, iC

is preserved by the subgroup S’ = {%/, v} where v = ((1) _(1)) So we obtain

THEOREM 5.5. The set of real points of X = T'(2)\D; consists of the union of 3 copies
of the cone C; =2 Ry,

Xr = U p-iC. O
Ber@)\SLa7)/S'

We remark that a fundamental domain for Xz in §; is the union of the half
lines with real part 0 and 1 and the semicircle of radius 1/2 centered at 1/2. In the
Baily—Borel compactification of X these three half lines are joined end to end, to
form a single circle which passes through the three distinct cusps oo, 0, 1.

6. Moduli Space Interpretation

6.1. Recall [La] that a symplectic form Q on C" is compatible with the complex struc-
ture if Q(iu, iv) = Q(u, v) for all u, v € C". A compatible form Q is positive if the sym-
metric form R(u, v) = Q(iu, v) is positive definite. If Q is compatible and positive then
it is the imaginary part of a unique positive definite Hermitian form A = R+ iQ. Let
L c C" be a lattice and let H = R + iQ be a positive definite Hermitian form on C”.
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A basis of L is symplectic if the matrix for Q with respect to this basis is (1)1 é) The
lattice L is symplectic if it admits a symplectic basis.

A principally polarized Abelian variety is a pair (4 = C"/L, H = R + iQ) where H
is a positive definite Hermitian form on C" and where L C C" is a symplectic lattice
relative to Q = Im(H ). A real structure on (A4, H) is a complex anti-linear involution
k: C" — C" such that k(L) = L. A real structure x on (A4, H) is compatible with the
polarization H if Q(ku, kv) = —Q(u, v) for all u,v € C". In this case (following [Si])
we refer to the triple (4, H, ) as a real principally polarized Abelian variety. 1f
(A, H', k') is another such, then an isomorphism between them is a complex linear
mapping ¢: C" — C" such that
(@) ¢(L) =1L,

(b) ¢.(H)=H,
(©) ¢,(x) =, thatis, px¢ ™' = «'.

Let (4 = C"/L, H= R + iQ) be a principally polarized Abelian variety. A level N
structure on A is a choice of basis {U;, V;} (with 1 < i, j < n) for the N-torsion points

of 4, which is symplectic, in the sense that there exists a symplectic basis {;, v;} for L
such that

U; E% and V; E% (mod L)
(for 1 <i,j < n). For a given leven N structure, such a choice {u;, v;} determines a
mapping

FR'eR"— C" (6.1.1)
such that F(Z" @ Z") = L, by F(e;) = u; and F( fj) = v; where {e;, f;} (with 1 <i,j
< n) is the standard basis of R" @ R". The choice {u;, v;} (or equivalently, the map-
ping F) will be referred to as a /ift of the level N structure. It is well defined modulo
the principal congruence subgroup I'(V), that is, if F": R" @ R” — C" is another lift
of the level structure, then F' o F~! € I'(N).

A level N-structure {U;, V;} is compatible with a real structure « if for some (and
hence for any) lift {u;, v;} of the level structure,

K(%) = —% (mod L) and K(%’]) = —i—% (mod L)

for all 1 < i,j < n. In other words, the following diagram commutes (mod L).

L
. (6.1.2)
L

Y2z —

=

Larerny o

z2- 2=

where (cf. Section 3.2) I_ = (BI (})
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DEFINITION 6.2. A real principally polarized Abelian variety with level N struc-
ture is a quadruple A = (4 = C"/L, H= R+ iQ, k,{U;, V;}) where (4, H, k) is a real
principally polarized Abelian variety and where {U;, V;} is a level N-structure which
is compatible with k. An isomorphism

A= (A H kUL V) = (A H K UL V) = A (6.2.1)

is a complex linear mapping ¢: C" — C" such that (a), (b), and (c) of Section 6.1
hold, and such that

(d) ¢(%) =% (mod L) and $(%) =% (mod L) for 1 <i,j<n

for some (and hence for any) lift {u;, v;} and {u}, v_;} of the level structures.

6.3. Fix N> 1. Each Z € ]), determines a principally polarized Abelian variety
(A, H7) with level N structure as follows. Let Qg be the standard symplectic form
on R" @ R" with matrix (31({) (with respect to the standard basis of R” & R”"). Let
F;:R"@® R" — C”" be the real linear mapping with matrix (Z, I'), that is,

X
F =7Zx+y.
Z(y) y

Then Qz = (Fz),(Qo) is a compatible, positive symplectic form and Lz = Fz
(Z"®Z") is a symplectic lattice with symplectic basis Fz(standard basis). The Hermi-
tian form corresponding to Q is

Hy(u, v) = Qz(iu, v) + iQ7(u, v) = u(Im(Z))~'v  for u,v e C".

Then the pair (4, = C"/Lz, H;) is a principally polarized Abelian variety. If z;, z,
are the standard coordinates on C" then, with respect to the above symplectic basis
of L, the differential forms dz;,dz; have period matrix (Z,1). If {e,..., ey,
f1, ... fa} denote the standard basis elements of R" @ R" then the collection
{Fz(e;/N), Fz( fi/N)} (mod L) is a level N structure on (4z, Hz), which we refer
to as the standard level N structure.

Let Z,Q €),. Suppose y:(Adq =C"/Lqg, Hq) - (Az =C"/Lz, Hz) is an iso-
morphism of the corresponding principally polarized Abelian varieties, that is,
Y(Lo) = Lz and y,(Hq) = Hz. Set h="(F;'yFo) = (%}). Then: h e Sp(2n, Z.),
Q=h-Z, and Yy(M)="'(CZ+ D)M for all M € C". Since h-Z is symmetric, the
following diagram commutes:

(1) rer — M
Y Fr.z

¢ ¢ W l (6.3.1)

fh(;) R'OR — " (CZ+D)M
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Let Z € |y, with Z =1(Z) = —Z. Then the following diagram commutes:

() wer — ' M

| | | (6.3.2)

(1) RerR — ' M

y Fyz)

6.4. The points in f),fm) give rise to Abelian varieties with a real structure, as fol-
lows. Suppose Z € 0),,7 = (£ ) € Sp(2n, Z) and suppose that y - Z = ©(Z). Define
k(y, Z):C" = C" by M+—"(CZ + D)M. (6.4.1)

Then x(y, Z) is a real structure on (4Az, Hz) which is compatible with the polari-
zation Hz, and the following diagram (which is the composition of the two preceding
diagrams) commutes:

() RrRer — M
J Fy

| ! J Vo2 (6.4.2)

tay t X >N n ~n ¢ v
yl,(},) R'®R" — " (CZ+ D)

PROPOSITION 6.5. Let Z € Y, and y € Sp(2n, R) and suppose that Z=v-Z. Then
vy € I(N) iff the real structure x(y,Z) on (Az, Hz) is compatible with the standard
level N structure, and in this case the quadruple

(AZs HZv K(V’ Z)7 {FZ(ei/N)9 FZ(/(}/N)})

is a real principally polarized abelian variety with (compatible) level N structure.

The proof follows immediately from the diagrams (6.4.2) and (6.1.2). We remark
that if N> 3, and if Ze€ f)nfr(m then there is a unique y € ['(N) such that
Z= y - Z so we may unambiguously denote x(y, Z ) simply by 2. In this case, denote
by A the resulting real Abelian variety with principal polarization and (compatible)
level N structure. The proof of the following theorem will appear in Section 7.

THEOREM 6.6. Fix N =4m with m = 1. The association Z — Ay determines a

one to one correspondence between the points of Xr and the set of isomorphism classes
of real principally polarized Abelian varieties with level N structure.

7. The Comessatti Lemma

Recall the following theorem of Silhol [Si] Theorem 1.4., (also [Si2]) and Comessatti [C].
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THEOREM 7.1. Let (A, H, k) be a real principally polarized Abelian variety. Then
there exists Z = X +iY € ), so that 2X is integral, and there exists an isomorphism of
real principally polarized Abelian varieties,

(4, H,x) = (Az, Hz, 0)

where (M) = M is complex conjugation.
For the purposes of this paper we will need a slight restatement of this result.

LEMMA 7.2. (A) Let Z €0y, and suppose that Z =7 - Z for some y € Sp(2n, 7.).
Then Z is equivalent under Sp(2n,7) to an element X +iY € 1), such that 2X is
integral.

(B) Let (A, H, x) be a real principally polarized Abelian variety. Then there exists
v € Sp(2n, 7.) and there exists Z = X +iY € ), such that Z= y - Z and 2X is integral;
and there exists an isomorphism of real principally polarized Abelian varieties

(Av H, K) = (Az, HZv K(% Z))

Proof 7.3. For part (B), Theorem 7.1 provides Z = X+ iY € ), so that 2X is
integral. Take y = (/77¥). Then Z=—-Z=7-Z and «(y, Z)(M) = M = (M) by
(6.4.2).

For part (A), given Z and 7y, apply part (B) to the real Abelian variety
(Az, Hz, k(y, Z)) to obtain an isomorphic real Abelian variety (Az:, Hz/, k(y', Z'))
such that Z/ = X' 4+ iY’ with 2X" integral. Then (44, Hz) and (Az, Hz/) are iso-
morphic principally polarized Abelian varieties so there exists g € Sp(2n, /) with
Z' =g Z ]

7.4. PROOF OF PROPOSITION 4.10.

By Comessatti’s lemma, Z is equivalent (via some / € Sp(2n, 7)) to some element
X+iY e}y, with 2X € M,,,(7). We claim, in this case, that X is integral. Trans-
lation by X is given by the symplectic matrix

I X
n=(s 1)

so we may write Z = (X +iY) = hTxiY. Then tZ = t(hTx)iY = yZ, so the follow-
ing element y~'t(hTy)(hTx)~" fixes Z. By our assumption on Z, this implies that

y = +I(hTy)(hTyx)™" (7.4.1)
or,

+T oy = h"yh = (K" h)(h'yh) € T(2).T(2)
(using Lemma 4.8 and the fact that I'(2) is normal in Sp(2n, Z)). So 2X is ‘even’,

hence X is integral. If the plus sign occurs in (7.4.1) then y = t(hTx)(hTx)"". If the
minus sign occurs, set @ = ((1) _0'). Then y = t(hTyw)(hTyw) . O

In the next proposition we strengthen these results to include level structures.
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PROPOSITION 7.5. Suppose N = 3. Suppose A is a real Abelian variety with prin-
cipal polarization and level N structure. Then there exists Z € 1),, there exists y €
I'(N) such that v-Z =1(Z), and there exists an isomorphism ¢: Ay, — A of real
principally polarized Abelian varieties with level structures. If N = 4m (and m > 1) the
cohomology class | f;] € H'((z), ['(4m)) is uniquely determined by the isomorphism
class of A.

Proof 7.6. Write A= (4 =C"/L,H= R+i0Q,k,{U;, V;}). By Lemma 7.2, there
exists Z’ €0),, there exists 7y € Sp(2n, 7) with 7' -Z' =1(Z’), and there exists
¢': C" — (" such that ¢’ induces an isomorphism (4, H, k) = (A7, Hz, (7', Z")),
that is:

(@) ¢'(Lz) =L

(b) ¢ (Hz)=H

© ¢.(k(y, Z") = x.

The isomorphism ¢’ must be modified because it does not necessarily take the stan-
dard level N structure on (4., Hz/) to the given level N structure on (4, H). Choose
alift {u;, v;} (1 <i,j < n) of the level N structure on (4, H) and let F: R* @ R? — C?
be the resulting mapping (6.1.1). Define

o=l — F' o ¢/ o Fy € Sp(2n, 7)) (7.6.1)
Z=g-7 (7.6.2)
y=1e)g ' =1_glyg". (7.6.3)

If g = (27) define y: C" — C" by (M) = '(CZ + D)M. We claim that y € T(N),
that Z =y - Z and that the mapping
p=¢ oy:C" = C"

induces an isomorphism Az = A between principally polarized real Abelian varieties
with (compatible) level N structures.

The matrix g is defined so that the bottom square in the following diagram
commutes; by (6.3.1) the top square also commutes. The mapping ¢ is the composition
down the right-hand column.

Rn @ Rn g \Cjn
g} ‘L‘/’
RigR & (7.6.4)

lg,1¢ id”
R"eR" — "
F
Clearly, Z=17- Z, ¢.(Lz)=L and ¢, (Hz) = H. Now let us check that

¢.(k(y, Z)) = k. (7.6.5)
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By Section 7.6 (c) it suffices to check that yix(y, Z W' = (7', Z'). But this follows
from direct calculation using «(y, Z)= Fzy'I_F;', x(y,Z')=Fz"y''I_F,},
W = Fz'gF;!' and (7.6.3).

By (7.6.4), F = ¢ o F;. Therefore ¢ preserves the level structures. Since the given
level structure on (A4, H) is compatible with x, equation (7.6.5) guarantees that the
standard level N structure on (44, H) is compatible with k(y, Z). It follows from
Proposition 6.5 that y € I'(V). In summary, we have shown that (4, Hz, k(y, Z),
{Fz(ei/N), Fz( fj/N)}) is a real principally polarized Abelian variety with (compati-
ble) level N structure, and that the isomorphism ¢ preserves both the real structure
and the level structure.

Finally, an isomorphism ¢: A — A’ (6.2.1) between real principally polarized
Abelian varieties with level N = 4m structures determines a cohomological equiva-
lence between the corresponding 1-cocycles as follows. Choose Z,Z’ € §), and
y,7 € I (4m) for A and A’ respectively, as above, and set

g="(F;'opoFy).

Then g € I'(4m) by Section 6.2(d). Since ¢xp~' = i/, diagrams 6.3.1 and 6.4.2 give
lg[“/[]—tg71 — t /[_

or y = g 'yg. Hence [ f;] = [ f,] in H'((z), [(4m)). O

7.7. PROOF OF THEOREM 6.6.

Let Z denote the moduli space of isomorphism classes of real Abelian varieties with
principal polarization and level N structure. Let S =bnrr(N) denote the set of
I'(N)-real points in §), and let T'(N)\S denote its image in X = ['(N)\),. Let
®: S — 7 be the association

Zw (Az, Hz, k7, {Fz(ei/N), Fz( fi/N)}).
Here, k,: C" — C" is the real structure given by (6.4.2), that is, k(M) = (CZ + D)M
where y = (4 5) € I'(N) is the unique element such that y - Z = —Z. Then Proposi-
tion 7.5 says that @ is surjective. If Z,Z’ € S and if Z' =y - Z for some y € I'(N)
then by (6.3.1) the real Abelian variety (Az, Hz, kz, {Fz(ei/N), Fz( fi/N)}) is
isomorphic to (Az, Hz,kz,{Fz(e;/N), Fz( fi/N)}). Therefore ® passes to a
mapping ['(N)\S — Z.

On the other hand, if Z, Q € S and if there is an isomorphism ¥: Aq — A then by
(6.3.1) there exists & € Sp(2n, 7)) such that Q = i - Z. Since the mapping y also pre-
serves the level structures, it follows also from (6.3.1) that 4 € T'(N). Hence the map-
ping I'(N)\S — Z is also injective. By Corollary 4.4, the quotient ['(NV)\S is precisely
the variety Xy of real points in X. O

8. Baily—Borel Compactification

Let f_)n denote the Satake partial compactification of ), which is obtained by attach-
ing all rational boundary components, with the Satake topology. The group
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Sp(2n, Q) acts on f_)n, the involution 7: §),, — [, extends to Bn, and 7(gx) = 7(g)7(x)
for any g € Sp(2n, Q) and every x € f)n. Denote by 7: f)n — F(4m)\f_)n = V the projec-
tion to the Baily—Borel compactification of X. The involution 7 passes to complex
conjugation t: V' — ¥V, whose fixed points we denote by Vg. Clearly Xr C Vg.
Define Xy to be the closure of Xy in Vg.

In [Sh2], Shimura shows that the I'(V)-automorphic forms on [), are generated by
those automorphic forms with rational Fourier coefficients. It follows that:

THEOREM 8.1. There exists a natural rational structure on the Baily—Borel
compactification V of X which is compatible with the real structure defined by 7.

The Baily—Borel compactification V' is stratified by finitely many strata of the form
n(F) where F C I_),, is a rational boundary component. Each such F is isomorphic to
some Siegel space [, in which case we say the stratum n(F') is a boundary stratum of
rank k. Let " denote the union of all boundary strata of rank n — r. In Proposition 9.2
we will prove that

VeUVL C Xg C Vr (8.1.1)

where V', = V"N k.
As in Section 3.3, if Fis a rational boundary component of fj,, which is preserved
by the involution 7, and if y € I'(4m), we define the set of y-real points of F to be

F7 ={x e F|t(x) = yx}.

Then n(F™) C Vr. A T'(4m)-real boundary pair (F,7y) (of rank ¢) consists of a
rational boundary component F (of rank ¢) and an element y € I'(4m) such that
F7 # ¢. (Hence F=7yF.) We say two real boundary pairs (F,y) and (F}, y;) are
equivalent if the resulting locus of real points n(F™) = n(F|"") coincide. If (F,7)
is a real boundary pair and if g € ['(4m) then (gF,gyg™") is an equivalent real
boundary pair.

8.2. STANDARD BOUNDARY COMPONENTS

Fix an integer ¢ with 1 < ¢ < n. The Siegel upper halfspace ), is attached to §), as a
limit of matrices in M,,,(C) by

(Z 0
ZH}E&(O iY)'

See (3.2.2). Here, Y € C,_, is a positive definite symmetric matrix of order n — ¢, and
the limit is taken as ¥ — oo, meaning that all the eigenvalues of Y converge to co.
Denote this mapping by ¢: b, — b,. Its image F, = ¢(§,) C ), is called the standard
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boundary component of (maximal) rank g. The normalizer in Sp(2n, Z) of F, is the
parabolic subgroup

0
8 (8.2.1)
-

being the ‘Hermitian’ and ‘linear’ factors respectively, where (ﬁ g) € Sp(2¢, R) and
T € GL,_4(R). The subgroup U(P,)G, is normal in P, and we denote by

vi P, — Gy =2 Sp(2g, R)

the projection to the quotient. Then v commutes with the involution r.
The boundary component F, is preserved by 1. The set

Ff = §(iC,) = ($(iY)| ¥ > 0)

of I-real points in F} is just the set of t-fixed points in F, and it may be canonically
identified with the cone of positive definite matrices of order g. Denote by il, its
canonical basepoint. The boundary component F, is attached to f), so that this cone
¢(iC,) is contained in the closure of the cone iC,.

PROPOSITION 8.3. Let (F,y) be a I'(4m)-real boundary pair of rank q. Then there
exists a € Sp(2n, Z) so that a(F,;) = F and

alya= <’g ,ABI> € ker(v). (8.3.1)
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Moreover, we may take B =0, that is, there exists y € I'(4m) and g € Sp(2n, 7.) so
that F©' = F7, g(F,) = F, and so that

.y 4 0
g leg= (0 54_1> € ker(v). (8.3.2)

Proof 8.4. Choose b € Sp(2n, Z) so that bF, = F. Then
w=b"9b=b"'b-b""9b € T(2).

Since it also preserves the standard boundary component F,, we have: w € P,,.

The Hermitian part v(w) € Sp(2n, 7Z) acts on the standard boundary component
F,=~1,. By Lemma 4.8, v(W)v(w) € I'(4) which is torsion-free. By assumption, the
set of v(w)-real points F, ;"(”’) is nonempty. Choose a point x € F, ;V(“’) whose stabilizer
in Sp(2¢q, 7) consists of +I: by Lemma 3.4 such points exist and are even dense in
F;"(”’). Then, by Proposition 4.10 there exists & € Sp(2¢, 7)) such that i1h~! = v(w)
and F ;"(”‘) = h(iCq).~Let us identify the element /& with its image in Sp(2n, Z) as in
(8.2.1) and set v = h~'wh. Then v(v) = 1. The following diagram may help to sort
out these various transformations.

o

h b
— F —

t

— F —
h b

—

v

S hurlle

Then the element a = bh € Sp(2n, 7Z) has the desired properties, that is, a- F, = F
and v(v) = 1 where v = @ 'ya € T'(2).

Now let us prove the ‘moreover’ part of Proposition 8.3. By Lemma 4.8, both yy~
and 7y are in I'(8m). Then jy = awa~' e ['(8m), hence v e I['(8m). Calculating
vv = I (mod 8m) gives

1

AB = B4~ (mod 8m) and 4> = I (mod 8m). (8.4.1)

Yaa='ya e T'(2) the matrix A is integral and B is even, so

w1 —347'B
—\o I

is integral. Since v € ker(v) we see that 4 = (*?) and B = (*¥) from which it follows
that x € U(P,) C ker(v). Set g = ax and set «' = X~ 'vx. Direct computation with the
matrices for x and v gives

. (A B
“=\lo y)

Since v =a~
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where B'=1B—147'B4~!1. Using (8.4.1) gives B’ =0 (mod4m). The following
diagram may help to explain these transformations.

F, - F, % F

A b

r, — F, — F
X a

Now decompose ' = uu, where

A 0 I A7'B
u_<0 Ml)andu2_<0 I )eker(v).

Set 7' = gug~'. We will verify that g and }’ satisfy the conclusions of Lemma 8.3.
First note that u, € I'(4m) since B’ = 0 (mod 4m). Then 7’ € I'(4m) because

y=ava' =gug”" = (gug " )gug™") = (qurg™") € T(4m).

We have already verified that gF, = F and that u = g~'7’g has the desired form.
Since uy acts trivially on F, we see that y € F" iff

F=yy=gug 'y =gung 'y =yy
iff y € F¥. Hence F7' = F". O
8.5. SOME NEARBY BOUNDARY COMPONENTS

Fix r with ¢ < r < n and set s = n — r. Define

I, 0]0 0

o 0—15’0 0
=10 07 0
0 0|0 —I,

Then j, = Jj-1. Although j, ¢ P,, its square J* preserves F, and in fact it acts as the
identity on F,. Let E,, = j,(F;) =j '(F,) and let Q,, be its normalizing maximal
parabolic subgroup: it is j.-conjugate to P,. (If r =n then j, is the identity and
E, . = F,;). The involution 7 preserves the boundary component E,, and the set of
T-fixed points

E;, ={xekE,|X=x}=jF

is contained in the closure of V), = iC, as follows. Although j, does not preserve the
cone iC,, it does preserve the sub-cone S, , C iC, of elements

lY1 0 0
0 Y, 0 |eb,
0 0 iYs
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where Y, € Cy, Y» € C._,, and Y3 € C,. Moreover, F, M is contained in the closure of
Sy.r. Therefore

E;, =jiF; CJjrSyr =Sy, CiCy. (8.5.1)

PROPOSITION 8.6. Let (F,y) be a I'(4m)-real boundary pair of rank ¢q. Let
g € Sp(2n, 7). Suppose that g(F,) = F and that u = g~'yg € ker(v). Suppose also that
there exists r with ¢ < r < n so that

.]7;174.]'1' =]ru]l € F(4m)

Define o = 1(gj.)(gj,)"". Then v € T'(4m) and

FT",' — F‘Cw C ‘L'l/).

n

Consequently the resulting set n(F™) of real points is contained in the closure Xz.
Proof 8.7. Calculate

o = t(gj)gi) ™" = (g (gj)") € T(dm)

(using the fact that j, =j') which proves the first statement. Since u € P, acts
trivially on F,, the same is true of Ju. Hence, x € F* if and only if

%= wx =1(gj); (g'x) = (g, frug x) = 1(gj)t(g)  yx = yx

which holds if and only if x € F™. The following diagram may help in placing these

elements,
E, - F, 5 F
O
E,, F, — F
& Jr 4 &g

We claim that F*™ = gj,(E; ). In fact, x € E/ , if and only if X = x which holds iff
‘E(g]l)i = T(gjr)x = T(gjr)(gjr)_l(gjr)x = w(gjr)x

which holds iff (gj,)x € F™. Similarly, gj(5,) = 5,”. Hence
F* =gj(E;,) C gjb, =16,"

using (8.5.1). O
9. Corank One Strata

9.1. In this section we specialize to the case ¢ = n — 1, that is, we consider only
the boundary strata of maximal rank. As in Section 8, F,,_; denotes the standard
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boundary component of corank 1, P,_; denotes its normalizing parabolic sub-
group and G, and G, refer to the Hermitian and linear factors (8.2.1) of the Levi
quotient L(P,_;).

THEOREM 9.2. Let F be a proper rational boundary component of 1), with (maximal)
rank n—1, let y € T'(4m), and suppose that F7' # ¢. Then F* is contained in the
closure of the set §"“™ of T'(4m)-real points of ,.

Proof 9.3. By Proposition 8.3, there exists ' € I'(4m) and g € Sp(2n, 7) so that
gF,_1 = F, F? = F7 and so that

y 4 0
u=g 1Vg=<0 ,A_1>€ker(V)'

This implies that 4 = (7). Note that iiu = g~'Jyg € I'(8m) by Lemma 4.8. Hence
a =0 (mod4m).

If the plus sign occurs then this says that u e I'(4m). Let w =gg~'. Then
Proposition 8.6 (with ¢ =n — 1 and r = n) implies that F?" C §,*.

If the minus sign occurs then

I 010 O

. . 0O 110 O

Jn U1 = 0 _ra J 0 € F(4m)
—a 0|0 1

so we may apply Proposition 8.6 (with ¢ =r =n — 1) to conclude that F* c
where ® = t(gju-1)(gju-1)"- -

10. The Principal Congruence Group I'(2¥)

10.1. Throughout this section we let I' = I'(25) c Sp(2n, 7) be the principal
congruence subgroup of level 2% with k > 2. As in Section 8, let X = X =T'\},
and let ¥V =V-=T\D, be its Baily-Borel compactification with projection
i En — V. Let X be the closure of Xi in V. In this section we will prove that
Xr = V. The proof of the following lemma will appear in Section 10.7.

LEMMA 10.2. Let A € GL(n, 7). Suppose that
A =1 (mod?2) and A% = I (mod 2.

Then there exists p € GL(n, 7)) so that

+1

+1

plAp = (mod 2X). (10.2.1)

+1
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1,0
ko k

Moreover if the matrix of A with respect to the standard basis of 7" is (
possible to choose p to be of the form p = (14' 0).

* ok

) then it is

LEMMA 10.3. Let (F,y) be a real boundary pair of rank q. Then there exists r = ¢,
there exists y' € T(2¥) and there exists g € Sp(2n, 7.) such that F¥' = F*/, gk =7r,
& 'y'g € ker(v), and so that

I 0]0 0
0 —1,/0 O

~—1_7 — s k

gve =455 70 (mod 2%) (10.3.1)
0 0|0 —I,

where s =n —r.
Proof 10.4. By Proposition 8.3 there exists € I'(2F) and there exists
a € Sp(2n, 7)) so that F¥ = F7', aF, = F, and

u=a"a= (f)l 1A0_1 ) € ker(v).

Then 7'y = au’a™' € T(2**!") by Lemma 4.8, hence 4> = I (mod 2*!). Moreover,
AeTl(2) and 4 = (i/ 2) Let p € GL(n, 7) be the change of basis provided by
Lemma 10.2. Then p~'Ap= (") and (after re-ordering the coordinates if
necessary), p~'Ap = ((I)‘/ _93) (mod 2¥) for some r > gq. Set h = (1(; f;f,) € ker(v). Set
g =ah.

A oF S F

—
N
—

to = B F
Then i~ 'uh = g~'9/g € ker(v) and g~'y'g has the desired form (10.3.1). O

THEOREM 10.5. Let (F,y) be a real boundary pair. Then there exists y, € T'(2¥) so
that the set F*" = F™ of y-real points is contained in the closure ).

Proof 10.6. Set g = rank(F). By Lemma 10.3, there exists y, € I'(2¥) and there
exists g € Sp(2n, 7)) so that F¥ = F71, so that g(F,_;) = F and so that u =g 'y,g
lies in ker(v) and has the form (10.3.1), for some r > ¢. Therefore j,uj, = I (mod 2¥)
so Proposition 8.6 may be applied. O

10.7. PROOF OF LEMMA 10.2.

The lemma is equivalent to the following statement. Suppose M is a free Z-module
of rank n. Let a: M — M be an automorphism such that (¢« — )M C 2M and
(o2 = I)M C 21 M, that is, « = I (mod 2) and o> = I (mod 2¥*1). Then there exists
a basis x1, X2, ..., x, of M so that a(x;) = £x; € 2XM fori=1,2,...,n.
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This statement will be proven by induction on the rank of M. The case of rank 1 is
obvious, so suppose that M has rank n. We will show that there exists a basis
{x1, X2, ..., x,} of M so that a(x;) = £x; (mod 2%). If ker(a — I) is not trivial or if
ker(x 4 7) is not trivial then any primitive x within this kernel may be extended to
a basis. Therefore we may assume that both (¢« — )M and (o 4+ )M have maximal
rank.

By elementary divisor theory there exists a basis xi, X2, ..., x, of M and integers
di,d>,...,d, so that di|d>|...|d, and so that dixi,d>x;,...,d,x, is a basis of
(v — I)M. Similarly there exists another basis yi, ys,...,y, of M and integers
erlea]...le, so that e;yy, exya, ..., e,y 1s a basis for the submodule (¢ + )M C M.

We claim that either a(x;) = —x; (mod 2X) or a(y;) = y; (mod 2%). First note that
(o + Idyx; =0 (mod 2*1) since dijx; € (w—I)M. If d; is odd this implies
axy + x; = 0 (mod 281, If d,/2 is odd, it implies that ax; + x; = 0 (mod 2¥). Simi-
larly, if e; is odd or if e;/2 is odd then ay; —y; =0 (mod2¥). However,
(a0 — )M + (o + )M = 2M so the highest power of 2 which divides ged(d, e1) is
2!. Therefore one of these four cases must occur, which proves the claim.

By switching the x’s with the )’s if necessary, we arrive at a basis xj, x2, ..., X, of
M such that a(x;)=4x; (mod2¥). Write M =M, ® M, where M, =7x
and M, =}, , 7x;. With respect to this decomposition, « has the matrix (“11 “‘2)

o21 022

where o} = +1 (mod 2¥), and where 0y: M, — M,. We claim that oy, = I (mod 2)
and o3, = I (mod 2**1). Since o = I (mod 2) we have

{8)- ()= (2 e
ny 0oy ny

hence o1, = 0 (mod 2) and oy, = I (mod 2). Also,

A(5)= () = (5 moazty

hence o) = 0 (mod 2%). Similarly,

of 0 _ * _( 0 k+1
* (m2> - (oczloqzmz +a%2mg> = <m2) (mod 2577).

But o = 0 (mod 2) and ) = 0 (mod 2%) so the first term in this sum is congruent to
0 (mod 25*1), hence a3,my = my (mod 2K*1) as claimed.

Therefore we may apply induction to the pair (M>, a,) to obtain a basis, which we
again denote by x, x3, ..., x, such that ax(x;) = £x; (mod 2%) for j > 2. Hence, for
j =2, there are integers a; and a sign ¢; = £1 so that «(x;) = a;x; + ¢;x; (mod 2%).
Each q; is even since o = I (mod 2). Define a new basis

y’:{x/‘ 1 if =6
g g ifg=—a.
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We claim this basis has the desired property: o(x}) = £x; (mod 2%). First suppose
¢ =+ei. Then o?(x;) = 2aj;x1 +x;. Since o =1 (mod2¢*!) we see that
a; = 0 (mod 2"). Hence a(x}) = x; (mod 2*) as desired. If ¢;¢; = —1 then

1
() = qoux)) + Eajoc(xl)

1
= G(@x1 + ) + 5 g3 (mod 2°)

1
= X+ 5 64x (mod 2)

1 /
= ¢(gx; + iajxl) = ¢x;.
This completes the construction of the desired basis.

To prove the ‘moreover’ part of the lemma, let M’ = "7 | Ze; be the submodule
of M generated by the first ¢ standard basis vectors. Apply the lemma to the quotient
module «: M/M' — M/M'. Choose any lift x,41,...,x, of the resulting basis of
M/M' to M and define x| = ¢, x; = e3,..., X, = ¢,. With respect to this basis,

q
OC()Cj) = 6]')Cj + Za,-jxj fOT 1> q

Jj=1
where ¢; = 1 and gy is even. Set
, Xi if € = 1
N { —xi+ X g if g =1

Then a(x}) = ¢;x; (mod 2¥) and the change of basis matrix has the desired form. []
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