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Abstract. We develop results for bifurcation from the principal eigenvalue for
certain operators based on the p-Laplacian and containing a superlinear nonlinearity
with a critical Sobolev exponent. The main result concerns an asymptotic estimate of
the rate at which the solution branch departs from the eigenspace. The method can
also be applied for nonpotential operators.
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1. Introduction. In this paper we investigate the nature of solutions bifurcating
from the principal eigenvalue for an operator equation containing the p-Laplacian and
its associated critical Sobolev exponent.

Let � be a bounded domain in �N with smooth boundary. We seek positive
solutions in the Sobolev space W 1,p

0 (�) to the operator equation:

Nλ(u) ≡ J(u) − λS(u) − Fλ(u) = 0, (1.1)

where the operators J, S and Fλ are defined through the duality pairing in W 1,p
0 (�)

denoted (·, ·):

(J(u), v) =
∫

�

|∇u|p−2∇u · ∇v dx, (1.2)

(S(u), v) =
∫

�

|u|p−2uv dx, (1.3)

(Fλ(u), v) =
∫

�

g(x, λ)|u|p∗−2uv dx, (1.4)

where 1 < p < N and the critical Sobolev exponent p∗ = pN
N − p .

The operators J, S and Fλ are inspired from the weak formulation of a quasilinear
elliptic differential equation containing a Sobolev critical nonlinearity. Some sample
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quasilinear differential equations are later presented which can be described by the
operator equation (1.1).

A vast number of publications have considered bifurcation problems in the general
form of (1.1) when J, S, F are various operators. The pioneering work of Krasnoselski
[12] showed the existence of bifurcating solutions in Hilbert spaces when the problem is
formulated with a potential. Rabinowitz [16] extended the results in Banach spaces to
show that the bifurcation is a global phenomenon. Dancer [4] showed an asymptotic
behaviour of the branch near the bifurcation point. More recently, Chiappinelli [3]
produced an asymptotic description of the bifurcating branch, depending on the
exponent in the nonlinearity. However these results all demand complete continuity of
the nonlinear term Fλ(·). Marino [14] was successful in removing some compactness
conditions from the operator.

In this paper, we formulate the problem in a Banach space, and substitute the
stringent demand of complete continuity with the local (S+) condition. We derive
local asymptotic estimates of Chiappinelli-type [3] which describe the rate at which
the solution approaches the eigenspace as λ tends to the principal eigenvalue. Our
results also indicate the direction of bifurcation depending upon the interaction of the
nonlinearity with the principal eigenfunction.

The estimates by Chiappinelli [3] are produced by explicitly specifying a recipe
for solutions in a neighbourhood of the bifurcation point through a Lusternik-
Schnirelmann minimax description. In our approach, the problem (1.1) is formulated
directly as an operator equation, and for our working does not require the production
of a potential. Our results remain valid for semilinear elliptic equations by substituting
p = 2.

As part of our solution method, the simplicity and isolatedness of the bifurcating
eigenvalue is utilised, as is the positivity of the associated eigenfunction. Consequently,
the results are restricted to bifurcation from the principal eigenvalue.

The linearisation of the p-Laplacian operator around the principal eigenvalue is
used as a major tool in this paper. This technique is pioneered in [7], which treats a
bifurcation from infinity to develop analogues to the Fredholm alternative. We use one
of the main theorems from there.

The approach in this paper is an alternative to the variational method. For
example, [1] analyses similar problems through geometric methods and arrives at
existence results. However, the present approach yields further information concerning
the solution.

2. Preliminaries. Assume that � ⊂ �N is a bounded domain with smooth
boundary. Let 1 < p < N. Define p∗ = pN

N − p , the critical Sobolev exponent. Define
the usual spaces W 1,p

0 (�), Lq(�) with norms ‖·‖1,p and ‖·‖q.
The Sobolev imbedding theorems dictate that W 1,p

0 (�) ↪→ Lq(�), compactly if
1 < q < p∗ and continuously if q = p∗. The optimal coefficient in the critical imbedding
is denoted S∗,

S∗ = inf
u∈W 1,p

0 (�),‖u‖p∗ =1

∫
�

|∇u|pdx.

Denote strong convergence by “→”, weak convergence by “⇀” and weak
convergence in measure by “⇀∗”.
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By a nontrivial solution to (1.1), we mean a pair (λ, u) ∈ � × W 1,p
0 (�) satisfying

(1.1), with u 	≡ 0. The trivial solution is (λ, 0), for any λ ∈ �.
A point (λ0, 0) ∈ � × W 1,p

0 (�) is said to be a bifurcation point of (1.1) if there
exists a sequence of nontrivial solutions {(λn, un)}∞n=1, with λn → λ0 and un → 0 in
W 1,p

0 (�).
Let C be a set in � × W 1,p

0 (�) consisting of nontrivial solutions to (1.1) which is
connected with respect to the topology induced by the norm:

‖(λ, u)‖ = (|λ|2 + ‖u‖2
1,p

) 1
2 .

Then C is called a continuum of nontrivial solutions of (1.1). If (λ0, 0) ∈ C, where the
closure is taken with respect to the above topology, then we say that C bifurcates from
(λ0, 0).

Let λ1 be the principal eigenvalue of the p-Laplacian subject to Dirichlet boundary
conditions on �. It is well known that λ1 > 0 is an isolated eigenvalue with the Rayleigh-
Ritz characterisation:

λ1 = inf
u∈W 1,p

0 (�),u	≡0

∫
�

|∇u|pdx∫
�

|u|pdx
.

It is also known that λ1 is simple, the corresponding normalised eigenfunction φ1(x)
can be taken positive in � and that the derivative with respect to the external normal
∂φ1/∂ν < 0 on ∂� provided that the boundary is sufficiently smooth. The lower bound
of the rest of the spectrum of the p-Laplacian is given by its second eigenvalue λ2 > λ1,
which also admits a variational characterisation.

For the remainder of this paper, we define convenient numbers λ and λ satisfying
0 < λ < λ1 < λ < λ2, in order to derive local results around λ1.

We make the following assumptions on the coefficient g:

(G∞) g(x, λ) is continuous over � × [λ, λ], and |g(x, λ)| < g∞ for all (x, λ) ∈ � × [λ, λ].
(G0)

∫
�

g(x, λ1)|φ1(x)|p∗
dx 	= 0.

3. Main result. Our main result is as follows:

THEOREM 3.1. Equation (1.1) admits a continuum C of solutions (λ, u) in � ×
W 1,p

0 (�) bifurcating from (λ1, 0), and satisfying the asymptotic estimate:

λ − λ1

‖u‖p∗−p
1,p

= −
∫

�

g(x, λ1)|φ1(x)|p∗
dx + o(1), (3.5)

as ‖u‖1,p → 0.

4. Proof of the main result. We shall prove Theorem 3.1 in three stages. First we
verify that there is a continuum C of nontrivial solutions of (1.1) which bifurcates from
(λ1, 0). Second we prove an L∞ estimate of nontrivial solutions. Third we establish the
asymptotic estimate (3.5).
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4.1. Stage 1 of proof. In the first stage we verify that (λ1, 0) is a bifurcation point.
The underlying technique is to show that the degree of the operator changes magnitude
as λ passes from below λ1 to above.

We show that on a certain ball centred at the origin, with radius ρ0, B0(ρ0) ⊂
W 1,p

0 (�), the topological degree

deg(Nλ, D, 0)

is well defined for all open, bounded, nonempty sets D ⊂ B0(ρ0), such that Nλ(u) 	= 0
for u ∈ ∂D. Here the degree is understood in the sense of Browder and Petryshin [2] or
Skrypnik [17].

For this purpose we must prove that there exists a neighbourhood such that Nλ

satisfies an appropriate compactness condition, such as the (S+) condition from [2].

DEFINITION 4.1. Let X be a reflexive Banach space and X∗ its dual. The operator
Nλ : X �→ X∗ is said to satisfy the local (S+) condition on D ⊂ X if any sequence {un} ⊂
D, with un ⇀ u0 weakly in X and lim supn→∞(Nλ(un), un − u0) ≤ 0 satisfies un → u0

strongly in X.

To prove the (S+) condition for Nλ on B0(ρ0), we take advantage of the
Concentration-Compactness Principle (CCP) of P. L. Lions [13]. The form below
is taken from [9] and the Brézis-Lieb Lemma is applied to change the notation slightly.

LEMMA 4.2. Let {un} ⊂ W 1,p
0 (�) with ‖un‖1,p ≤ 1, un ⇀ u0 weakly in W 1,p

0 (�). Then
there exist measures µ and ν on � such that:

|∇un|p ⇀∗ |∇u0|p + µ

|un|p∗
⇀∗ |u0|p∗ + ν

both weakly in the space of measures on � with ν(�) ≤ S∗(µ(�))
p∗
p .

COROLLARY 4.3. If µ = 0 in Lemma 4.2, then un → u0 strongly both in W 1,p
0 (�) and

Lp∗
(�).

Corollary 4.3 is an easy consequence of the fact that weak convergence in
conjunction with convergence of the norms implies strong convergence in any
uniformly convex Banach space.

LEMMA 4.4. Let ρ0 < min
{

1, (S∗g∞p)
− N−p

p2

}
and λ ∈ [λ, λ]. Then Nλ satisfies the

(S+) condition on B0(ρ0).

Proof. Let {un} be a sequence in B0(ρ0) ⊂ W 1,p
0 (�) with un ⇀ u0 weakly in W 1,p

0 (�).
Then un ⇀ u0 weakly in Lp∗

(�) and un → u0 in Lp(�). We suppose that un satisfies

lim sup
n→∞

(Nλ(un), un − u0) ≤ 0

that is,

lim sup
n→∞

[∫
�

|∇un|p−2∇un · ∇(un − u0) dx − λ

∫
�

|un|p−2un(un − u0) dx

−
∫

�

g(x, λ)|un|p∗−2un(un − u0) dx
]

≤ 0. (4.6)
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Let f (un) = |un|p∗−2un. Then f (un) is bounded in Lp∗ ′
(�) = L

pN
pN−N+p (�) and hence

f (un) ⇀ f (u0) weakly up to a subsequence.
Since g(·, λ)u0 ∈ Lp∗

(�) by (G∞), it follows that∫
�

g(x, λ)|un|p∗−2unu0dx →
∫

�

g(x, λ)|u0|p∗
dx.

Using a similar argument,∫
�

|un|p−2un(un − u0) dx =
∫

�

|un|pdx −
∫

�

|u0|pdx + o(1),

but by strong convergence of un in Lp(�), this vanishes as n → ∞.
Thus, (4.6) becomes

lim sup
n→∞

[∫
�

|∇un|pdx −
∫

�

|∇un|p−2∇un · ∇u0dx

−
∫

�

g(x, λ)|un|p∗
dx +

∫
�

g(x, λ)|u0|p∗
dx

]
≤ 0.

By Hölder’s inequality,

∣∣∣∣
∫

�

|∇un|p−2∇un · ∇u0dx
∣∣∣∣ ≤

(∫
�

|∇un|pdx
) p−1

p
(∫

�

|∇u0|pdx
) 1

p

.

Now, using the CCP, we have∫
�

|∇un|pdx →
∫

�

|∇u0|pdx + µ(�)

and ∫
�

g(x, λ)|un|p∗
dx →

∫
�

g(x, λ)|u0|p∗
dx +

∫
�

g(x, λ)dν.

We may estimate
∫
�

g(x, λ)dν ≤ g∞
∫
�

dν = g∞ν(�). Thus, (4.6) now becomes

0 ≥
∫

�

|∇u0|pdx + µ(�) − lim sup
n→∞

(∫
�

|∇un|pdx
) p−1

p
(∫

�

|∇u0|pdx
) 1

p

− g∞ν(�)

≥
∫

�

|∇u0|pdx + µ(�) −
(∫

�

|∇u0|pdx + µ(�)
) p−1

p
(∫

�

|∇u0|pdx
) 1

p

− S∗g∞µ(�)
p∗
p .

(4.7)

For brevity, let
∫
�

|∇u0|pdx = ap and denote µ(�) and ν(�) by µ and ν,
respectively. Then we can write (4.7) as

h(µ) = ap + µ − (ap + µ)
p−1

p a − S∗g∞µ
p∗
p ≤ 0. (4.8)

We have ap + µ ≤ lim supn→∞ ‖un‖p
1,p ≤ ρ

p
0 < 1. Hence µ < 1. Thus, expression (4.8)

is equivalent to finding µ ∈ [0, 1) satisfying h(µ) ≤ 0.

It can easily be checked that (ap + µ)
p−1

p a ≤ ap + p−1
p µ for 0 ≤ µ, ap < 1 and p > 1.
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Hence

h̃(µ) = ap + µ − ap − p − 1
p

µ − S∗g∞µ
p∗
p = 1

p
µ − S∗g∞µ

p∗
p ≤ h(µ).

But if h̃(µ) ≤ 0, then it follows directly that µ = 0 or

µ ≥ (S∗g∞p)−
N−p

p (4.9)

and µ satisfying h(µ) ≤ 0 must be bounded by the same constant. Since the assumptions
of the theorem demand that ‖un‖1,p < ρ0, it must follow that µ < ρ

p
0 < (S∗g∞p)−

N−p
p

but this contradicts (4.9). Hence, µ(�) = 0 and due to Lemma 4.2 it follows that also
ν(�) = 0, no concentration takes place and un → u0 in W 1,p

0 (�).
In fact, this argument is valid only to verify strong convergence of a subsequence.

The fact that the full sequence must converge strongly is easily proved by contradiction.
Suppose that for some subsequence {unk}∞k=1 ⊂ {un}∞n=1 it holds that unk ⇀ u0 weakly in
W 1,p

0 (�) and

lim sup
k→∞

(Nλ(unk ), unk − u0) ≤ 0,

but unk 	→ u0 in W 1,p
0 (�). Then we have ‖unk − u0‖1,p ≥ δ with some δ > 0 for a

subsequence again labelled unk . Proceeding as above, we can prove that there is a
strongly convergent subsequence of unk , yielding a contradiction. This completes the
proof. �

In particular, it follows from Lemma 4.4 that the degree, deg(Nλ, B0(ρ), 0) is well
defined for any 0 < ρ < ρ0 whenever 0 	∈ Nλ(∂B0(ρ)).

Let

Ñλ(u) = J(u) − λS(u).

Clearly, for λ 	= λ1, λ ∈ [λ, λ], the degree deg(Ñλ, B0(ρ), 0) is well defined. Moreover, it
follows from Drábek, Kufner and Nicolosi [6] (pp. 149–152) that for any 0 < δ < λ − λ1

we have

deg(Ñλ1−δ, B0(ρ), 0) = 1, and deg(Ñλ1+δ, B0(ρ), 0) = −1. (4.10)

The assumption (G0) implies that

lim
‖u‖1,p→0

‖Fλ(u)‖−1,p′

‖u‖p−1
1,p

= 0 (4.11)

uniformly for all λ ∈ [λ, λ]. Then (4.10), (4.11) and the homotopy invariance property
of the degree yield that for any 0 < δ < λ − λ1 there exists ρ > 0 such that

deg(Nλ1−δ, B0(ρ), 0) = 1, and deg(Nλ1+δ, B0(ρ), 0) = −1.

In other words, the index of the isolated zero of Nλ changes by magnitude 2
when λ crosses λ1. Following literally the proof of Theorem 1.3 and Corollary 1.12 in
Rabinowitz [16] we then have:
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PROPOSITION 4.5. Equation (1.1) admits a continuum C of nontrivial solutions
(λ, u) ⊂ � × W 1,p

0 (�) bifurcating from (λ1, 0). The continuum meets the boundary of
[λ, λ] × B0(ρ0).

4.2. Stage 2 of proof. The next stage of the proof is to obtain an L∞ bound
for nontrivial solutions from Proposition 4.5. In order to utilise the main bifurcation
theorem from [7] we must verify that nontrivial solutions (λ, u) ∈ C are uniformly
bounded in L∞(�) provided that ‖u‖1,p is sufficiently small.

To achieve this, we implement Moser iterations [15], and follow a style of proof
from Proposition 1.2 in Guedda and Veron [10]. Adaptations are made to suit the
particular structures assumed in (1.1).

LEMMA 4.6. There exists 0 < ρ1 < ρ0 such that for any t ∈ [1,∞) and for any
(λ, u) ∈ C with ‖u‖1,p ≤ ρ1, and λ ≤ λ ≤ λ, there exists a constant c(t) > 0 depending on
t, |�|, N, p and g∞ such that ‖u‖t ≤ c(t).

Proof. Consider all solutions to (1.1) which lie in [λ, λ] × B0(ρ0). Suppose that
(λ̃, ũ) is such a solution. It must follow then that ũ is a solution of the following
problem (in the unknown function u(x) ∈ W 1,p

0 (�)):

−∇ · (|∇u|p−2∇u) + Kũ(x)|u|p−2u = fũ(x), (4.12)

where

Kũ(x) = −sgn(ũ)
λ̃|ũ|p−2ũ + g(x, λ)|ũ|p∗−2ũ

1 + |ũ|p−1
,

fũ(x) = sgn(ũ)Kũ(x).

Under the assumption (G∞) it holds that there exist constants C′ and D′ depending
on λ and g∞ such that

|Kũ(x)| ≤ C′|ũ|p∗−p + D′. (4.13)

Following the ideas in [10] (pp. 882–883), define h, φ ∈ C1 for k > 0 and t ≥ p by:

h(r) =
{

sgn(r)|r|t/p, if |r| ≤ k

sgn(r) t
p k

t
p −1|r| +

(
1 − t

p

)
k

t
p , if |r| > k

and φ(r) = ∫ r
0 |h′(s)|pds. Then φ(u) ∈ W 1,p

0 (�) and testing (4.12) with φ(u), we obtain:

∫
�

|∇h(u)|pdx +
∫

�

Kũφ(u)|u|p−2udx =
∫

�

fũφ(u) dx,

giving

∣∣∣∣
∫

�

|∇h(u)|pdx
∣∣∣∣ ≤

∣∣∣∣
∫

�

Kũφ(u)|u|p−2udx
∣∣∣∣ +

∣∣∣∣
∫

�

fũφ(u) dx
∣∣∣∣ . (4.14)
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The first term in (4.14) can be estimated with the Sobolev inequality to give

∫
�

|∇h(u)|pdx ≥ S∗
(∫

�

|h(u)|p∗
dx

) p
p∗

.

The second term in (4.14) can be approximated using (4.13) along with Hölder’s
inequality to give∫

�

Kũφ(u)|u|p−2udx

≤ C′
(∫

�

|ũ|p∗
dx

) p
N

(∫
�

||u|p−1φ(u)| N
N−p dx

) N−p
N

+ D′
∫

�

|φ(u)|u|p−1|dx.

From the definition of h and φ, there exits C independent of k such that

||r|p−1φ(r)| ≤ C|h(r)|p, |φ(r)| ≤ C|h(r)|p(t+1−p)/t. (4.15)

Thus, using the first inequality in (4.15), we can write

∫
�

Kũφ(u)|u|p−2udx ≤ CC′
(∫

�

|ũ|p∗
dx

) p
N

(∫
�

|h(u)|p∗
dx

) p
p∗

+ CD′
∫

�

|h(u)|pdx.

(4.16)

Since ‖ũ‖
p

p∗
p∗ ≤ S∗‖ũ‖1,p, we choose ρ1 sufficiently small that for all ‖v‖1,p ≤ ρ1,

CC′
(∫

�

|v|p∗
dx

) p
N

≤ S∗

2
.

By Hölder’s inequality and the second inequality in (4.15), the third term in (4.14) can
be estimated by

∫
�

fũφ(u) dx ≤ C‖ fũ‖ N
p

(∫
�

|h(u)|p∗(t+1−p)/tdx
) p

p∗

≤ C‖ fũ‖ N
p
|�|p(p−1)/(p∗t)

(∫
�

|h(u)|p∗
dx

)(t+1−p)p/(tp∗)

.

Combining these estimates, (4.14) becomes

S∗

2

(∫
�

|h(u)|p∗
dx

) p
p∗

≤ D′C
∫

�

|h(u)|pdx + C‖ fũ‖ N
p
|�|p(p−1)/(p∗t)

(∫
�

|h(u)|p∗
dx

)(t+1−p)p/(tp∗)

.

Assuming that u ∈ Lt(�), and taking passage to the limit as k → ∞, we have

S∗

2
‖u‖t

tN
N−p

≤ D′C‖u‖t
t + C‖ fũ‖ N

p
|�|p(p−1)/(p∗t)‖u‖t+1−p

tN
N−p
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and with Young’s inequality, for any δ > 0,

S∗

2
‖u‖t

tN
N−p

≤ D′C‖u‖t
t + p − 1

t

(
C|�|p(p−1)/(p∗t)‖ fũ‖ N

p
δ
) t

p−1 + 1
δt/(t+1−p)

t + 1 − p
t

‖u‖t
tN

N−p
.

With appropriate choice of δ > 0, we have that

‖u‖ tN
N−p

≤ α‖u‖t + β ′‖ fũ‖
1

p−1
N
p

where α and β ′ depend on t, N, p, |�|. Further, ‖ fũ‖ N
p

≤ C′‖ũ‖
p
N
p∗ + D′|�| p

N , and since
we consider only small solutions, a uniform bound is imposed on ‖ũ‖p∗ . Consequently,
we have

‖u‖ tN
N−p

≤ α‖u‖t + β

where α, β depend on t, N, p, |�| and g∞.
The procedure outlined above now iterates to establish that ‖u‖t ≤ c(t) for any t > 1.

Indeed, we may commence with t = p∗, as u is uniformly bounded in W 1,2
0 (�), and

hence also in Lp∗
(�). Repeating the argument gives a bound for ‖u‖tl , for tl = ( N

N−p )lp,
and any positive integer l. �

We remark that the main departure of Lemma 4.6 from the original proposition
1.2 in [10] is to eliminate the dependence of c(t) on K by using knowledge of the specific
form of Kũ, and the restriction to small ũ in W 1,p

0 (�).

LEMMA 4.7. There exists c = c(ρ1) > 0 such that for any (λ, u) ∈ C with ‖u‖1,p ≤ ρ1

and λ ≤ λ ≤ λ, we have ‖u‖∞ ≤ c.

Proof. If (λ̃, ũ) is a solution of (1.1), then ũ must solve (in the unknown function
u(x)):

−∇ · (|∇u|p−2∇u) = Gũ(x)

where

Gũ(x) = λ̃|ũ|p−2ũ + g(x, λ̃)|ũ|p∗−2ũ.

From the previous lemma for any solution of (1.1) with ‖ũ‖1,p ≤ ρ1, we have ‖Gũ(x)‖s ≤
C(s) for an arbitrary s > N

p . The proof now follows directly by implementing Moser
iterations [15] similarly to Proposition 1.3 of [10]. Since the dependence of C(s) on ũ is
only through ‖ũ‖1,p, the bound ‖u‖∞ ≤ c holds for all solutions with ‖u‖1,p ≤ ρ1. �

REMARK 4.8. Corollary 1.1 from [10] actually goes further, and verifies some
regularity of the solution. For some α ∈ (0, 1) we have that u ∈ C1,α(�) for any (λ, u) ∈
C, ‖u‖1,p ≤ ρ1.

4.3. Stage 3 of proof. Next we apply an asymptotic estimate from Theorem 4.1
in Drábek, Girg, Takác and Ulm [7]. In fact, only part of the estimate is required, and
it is presented explicitly here for the convenience of the reader. We will occasionally
use the subspace (W 1,p

0 )T = {v ∈ W 1,p
0 (�) :

∫
�

vφ1dx = 0}.
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LEMMA 4.9. Let {αn}∞n=1 ⊂ �, { f̃ n}∞n=1 ⊂ L∞(�), {ũn}∞n=1 ⊂ W 1,p
0 (�) be sequences

such that
1. λ1 + αn < λ for all n ∈ �,
2. f̃ n ⇀∗ f̃ weakly-star in L∞(�),
3. ‖ũn‖1,p → ∞ as n → ∞,
4. assume that for all n ∈ � and ψ ∈ W 1,p

0 (�),∫
�

|∇ũn|p−2∇ũn · ∇ψdx = (λ1 + αn)
∫

�

|ũn|p−2ũnψdx +
∫

�

f̃ nψdx. (4.17)

Then αn → 0 and, writing ũn = t−1
n (φ1 + vT

n ), with tn ∈ �, tn 	= 0 and vT
n ∈ (W 1,p

0 )T , we
have tn → 0, vT

n → 0 in C1,α(�), α ∈ (0, 1) and

αn = −|tn|p−2tn

∫
�

f̃ nφ1dx + o(|tn|p−1) (4.18)

as n → ∞.

We confirm that the expression of the present operator Nλ can be adapted to satisfy
the criteria imposed by Lemma 4.9. Let (λn, un) ∈ C, ‖un‖1,p → 0, and decompose λn

and un as follows: λn = λ1 + αn, un = τn(φ1 + vT
n ), τn ∈ �, vT

n ∈ (W 1,p
0 )T .

Since any solution u has a counterpart solution −u, we may assume without loss
of generality that τn > 0. Then τn → 0 and

τ p−1
n

∫
�

∣∣∇φ1 + ∇vT
n

∣∣p−2(∇φ1 + ∇vT
n

) · ∇ψdx

= (λ1 + αn)τ p−1
n

∫
�

∣∣φ1 + vT
n

∣∣p−2(
φ1 + vT

n

)
ψdx

+τ p∗−1
n

∫
�

g(x, λ1 + αn)
∣∣φ1 + vT

n

∣∣p∗−2(
φ1 + vT

n

)
ψdx. (4.19)

It is straightforward to verify that (4.19) is identical to (4.17), where ũn = t−1
n (φ1 +

vT
n ), tn = τ

p∗−p
p−1

n , f̃ n = g(x, λ1 + αn)|φ1 + vT
n |p∗−2(φ1 + vT

n ).
By (G∞), Lemma 4.7 and rescaling argument, we have that { f̃ n}∞n=1 is a bounded

sequence in L∞(�). Passing to a subsequence, we can assume that f̃ n ⇀∗ f̃ weakly-
star in L∞(�). We also have ‖ũn‖1,p → ∞. It follows from Lemma 4.9 that vT

n → 0 in
C1,α(�) and so (4.18) holds. In our notation,

f̃ (x) = g(x, λ1)|φ1(x)|p∗−2φ1(x)

by (G0) and the uniform convergence vT
n → 0 in �. Then (4.18) is equivalent to

αn

|tn|p−2tn
= −

∫
�

g(x, λ1)|φ1(x)|p∗
dx + o(1).

That is, in terms of τn and λn,

λn − λ1

τ
p∗−p
n

= −
∫

�

g(x, λ1)|φ1(x)|p∗
dx + o(1) (4.20)

as n → ∞.
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Figure 1 Stylised bifurcation diagram for (1.1)

A similar argument to that used in the proof of Lemma 4.4 implies that (4.20)
holds true for any (λn, un) ∈ C, and not only for a subsequence.

Since ‖un‖1,p = τn + o(τn) as n → ∞, due to the uniform convergence of vT
n → 0

in �, expression (3.5) follows from (4.20). We also have that un(x) > 0 in � if n is
sufficiently large. This completes the proof of Theorem 3.1. �

5. Concluding remarks and examples. The problem (1.1) is inspired by differential
equations containing the p-Laplacian. Weak positive solutions to the differential
equation,

−�pu − λup − g(x, λ)|u|p∗−2u = 0,

on � ⊂ �N with homogeneous Dirichlet boundary conditions correspond with
solutions to (1.1). Solutions bifurcate from (λ1, 0) and branch to the left or right
depending on the sign of

∫
�

g(x, λ1)|φ1(x)|p∗
dx. The evidence in [8] found that,

depending on the sign of
∫
�

g(x, λ1)|φ1(x)|p∗
dx, there may be two solutions in a right

neighbourhood of λ1, or one solution in a left neighbourhood of λ1 and none in a
right neighbourhood. For g ≡ 1, Azorero and Alonso [1] use the variational approach
to find that at each 0 < λ < λ1, there is a nontrivial solution to the problem. They find
estimates of the associated energy functional depending on λ which are consistent with
our derived magnitudes of ‖u‖1,p. With p = 2, asymptotic estimates of the bifurcation
branch are consistent with the Chiappinelli estimates [3].

Accumulated evidence of this type of problem now points to behaviour of the
solution according to the stylised bifurcation diagram of Figure 1.
Curve 1 (resp. 2) represents the bifurcation branch if

∫
�

g(x, λ1)|φ1(x)|p∗
dx > 0 (resp.

< 0). Region A is described by the asymptotic estimate from Theorem 3.1. The reflected
solution demonstrates that there are positive and negative solutions by symmetry.
Region C represents solutions which concentrate as λ → 0 at peaks of g in accordance
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with [11]. Region D describes the nonexistence of positive solutions for λ < 0 by
Pohozaev’s nonexistence result.

In accordance with Corollary 1.12 of [16], global bifurcation results may fail when
compactness is lost. In our case, a critical exponent yields only a local (S+) compactness
condition (as weakly convergent sequences with certain magnitudes may concentrate
to atoms of measure). This behaviour is consistent with a continuum of solutions
which evaporates at Region C when there is a failure of compactness. Although there
are strong resemblances between the local (S+) and the familiar local Palais-Smale
conditions, and they are verified using similar techniques, a relationship between the
two does not seem to be directly expressible.

The mechanics of our result can be extended to nonvariational problems also. The
functional-differential equation:

−�pu − λup − g(x, λ, ‖u‖1,p)up∗−1 = 0

with Dirichlet boundary conditions, is expressed in weak form by (1.1), where

(Fλ(u), v) =
∫

�

g(x, λ, ‖u‖1,p)|u|p∗−2uv dx.

Assume that g(x, λ, s) is continuous on � × [λ, λ] × [0,∞) and bounded in magnitude
by g∞.

The main result (1.1) remains valid with the obvious changes in notation.
Condition (G0) becomes

∫
�

g(x, λ, s)|φ1(x)|p∗
dx 	= 0 for λ ∈ [λ, λ] and 0 ≤ s < s0, for

some s0.
The proof of Lemma 4.4 proceeds as before, but noting that {un} is bounded in

W 1,p
0 (�), it follows that a subsequence ‖un‖1,p converges to, say, ξ0. Now, g(x, λ, ‖un‖1,p)

converges uniformly over �, yielding∫
�

g(x, λ, ‖un‖1,p)|un|p∗
dx =

∫
�

g(x, λ, ξ0)|un|p∗
dx + o(1), and∫

�

g(x, λ, ‖un‖1,p)|un|p∗−2unu0dx =
∫

�

g(x, λ, ξ0)|un|p∗−2unu0dx + o(1).

The remainder of the proof follows the previous argument, confirming that un → u0

in W 1,p
0 (�), and establishing that ξ0 = ‖u0‖1,p.
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