A GENERALIZATION OF AN ADDITION THEOREM FOR SOLVABLE GROUPS

THOMAS YUSTER AND BRUCE PETERSON

The "sets" in this paper are actually multi-sets. That is, we allow an element to occur several times in a set and distinguish between the number of elements in a set and the number of distinct elements in the set. On the few occasions when we need to avoid repetition we will use the term "ordinary set."

Definition. Let G be a group and let S a set of elements of G. An r-sum in S is an ordered subset of S of cardinality r; the result of that r-sum is the product of its elements in the designated order.

Definition. If S is a set, $r(x, S)$ denotes the number of times x appears in S and $[x, S]$ is a set consisting of $r(x, S)$ copies of x. An n-set or n-subset is a set consisting of n elements. Hence $[x, S]$ is an $r(x, S)$-subset of S.

The following result due to Cauchy [1] will be used throughout the paper.

Proposition 1. Let A and B be ordinary subsets of \mathbf{Z}_{n} (the integers mod n) with $|\mathbf{A}|=a$ and $|B|=b$. If n is prime then either

$$
A+B=Z_{n} \text { or }|A+B| \geqq(a+b-1) \text {. }
$$

In this paper, we will generalize the following result. It was originally proved for abelian groups by Erdös, Ginsburg and Ziv [2] and was later generalized to solvable groups. It is a direct consequence of Proposition 1.

Proposition 2. Let G be a solvable group of order n and let S be a $(2 n-$ $1)$-subset of G. Then S contains an n-sum of result 1 .

This result does not hold if $2 n-1$ is replaced by $2 n-2$ since a subset of \mathbf{Z}_{n} consisting of $n-10$'s and $n-1$ l's contains no n-sum of result 1 . Our main theorem is the following generalization of Proposition 2.

Theorem 1. Let G be a solvable group of order n and $S a(2 n-2)$-subset of G which contains no n-sum of result 1 . Then:

1. There are exactly two distinct elements x and y in S,
2. $r(x, S)=r(y, S)=n-1$, and
3. G is cyclic.

Lemma 1. Let G be a counter-example to Theorem 1 with $|G|$ minimal, and let $K \triangleleft G$ with $1<|K|<|G|$. Let $|G|=a b$ and $|K|=b$, and let $S \mathscr{I}$ be the image of S in G / K. Then:

1. Any set of c a-sums of S with results in K can be extended to a set of $2 b$ -2 a-sums of S with results in K.
2. Any set of $2 b-2 a$-sums of S with results in K contains exactly two distinct results, with each result occurring exactly $b-1$ times. There is no set of $2 b-1$ a-sums of S with results in K.
3. Both K and G / K are cyclic.
4. There are exactly two distinct elements x and y in $S \mathscr{I}$, and

$$
r(x, S \mathscr{I}) \equiv r(y, S \mathscr{F}) \equiv-1(\bmod a) .
$$

Proof. 1. We have $|G / K|=a$, so if T is an r-subset of G with $r \geqq 2 a-$ 1, and $T \mathscr{F}$ is its image in $G / K, T \mathscr{F}$ contains an a-sum of result 1 and thus T contains an a-sum with result in K. Thus if we have $c a$-sums in S with results in K, there are

$$
(2 a b-2)-c a=(2 b-c) a-2
$$

other elements in S. If $c<2 b-2$, then

$$
(2 b-c) a-2>2 a-2,
$$

so we can obtain another a-sum with result in K.
2. Suppose that S contains $2 b-1 a$-sums with results in K. Let T be the set of these results. Then Proposition 2 implies that there is a b-sum in T of result 1. Hence there is an n-sum in S of result 1. Thus we may assume that there are at most $2 b-2 a$-sums in S with results in K. Now suppose that S contains $2 b-2 a$-sums with results in K. Let T be the set of these results. Since $K<G$, minimality assures that there is a b-sum of result 1 in T unless there are exactly two elements in T and each appears exactly b 1 times.
3. Suppose that K is not cyclic. By part 1, we can find $2 b-2 a$-sums of S with results in K. Let T be the set of these results. Since $K<G$ and K is not cyclic, T contains a b-sum of result 1 , and S contains an n-sum of result 1 . Thus K is cyclic.

Now suppose that G / K is not cyclic. Since $|G / K|<|G|$, if T is any subset of S with $|T| \geqq 2 a-2$, then T contains an a-sum with result in K. By part 1 , we can find $2 b-2 a$-sums of S with results in K. There are

$$
(2 a b-2)-(2 b-2) a=2 a-2
$$

other elements in S and thus another a-sum with result in K. This contradicts part 2 , and hence G / K is cyclic.
4. It is clear that $S \mathscr{I}$ must contain at least two distinct elements, for otherwise any a-subset of S would be an a-sum with result in K, and there
would be $2 b-1 a$-sums of S with results in K, contradicting part 2. Suppose first that $S \mathscr{\mathscr { I }}$ contains exactly two distinct elements x and y. After forming all the a-sums of result 1 we can from $[x, S \mathscr{I}]$, at most $a-1$ elements remain. Doing the same thing in [$y, S \mathscr{I}]$, again at most $a-1$ elements remain. If $r(x, S \mathscr{I})$ or $r(y, S \mathscr{I})$ is not congruent to $-1(\bmod a)$, then there must be fewer than $2 a-2$ elements left over which means we must have used at least

$$
(2 a b-2)-(2 a-3)=(2 b-2) a+1
$$

elements to form a-sums. Since the number of elements used must be divisible by a, we must have formed at least $2 b-1 a$-sums of result 1 . Thus in S, there are at least $2 b-1 a$-sums with results in K. This contradicts part 2 . Thus if there are exactly two distinct elements x and y in $S \mathscr{I}$, then

$$
r(x, S \mathscr{\mathscr { I }}) \equiv r(y, S \mathscr{I}) \equiv-1(\bmod a) .
$$

Now suppose that $S \mathscr{\mathscr { I }}$ contains at least three distinct elements x, y, and z. Then clearly $a>2$. Let

$$
T \mathscr{I}=S \mathscr{I}-\{x, y, z\} .
$$

Then $|T \mathscr{F}|=2 a b-5$. Suppose first that $a>3$. If we have formed c a-sums in $T \mathscr{I}$ of result 1, there are

$$
(2 a b-5)-c a=(2 b-c) a-5 \geqq(2 b-c-1) a-1
$$

elements left. Hence we can form $2 b-2 a$-sums in $T \mathscr{I}$ of result 1 . There are $2 a-2$ elements of $S \mathscr{I}$ which have not been used, and at least three of these are distinct. Since $|G / H|<|G|$, we can form another a-sum of result 1 . Hence there are $2 b-1 a$-sums of S with results in K. This contradicts part 2 , so we may assume that $a=3$.

Now part 1 implies that we can form $2 b-23$-sums with result 1 in $S \mathscr{F}$. There is a set consisting of exactly 4 elements of $S \mathscr{I}$ which were not used to form these 3 -sums. If one of x, y, or z appears 3 times in this set, or each element appears at least once, we can form another a-sum of result 1 , since $|G / K|=3$ and hence $x+y+z=1$. Thus we may assume that the set of remaining elements is $T=\{x, x, y, y\}$. Since z is in $S \mathscr{F}$, we must have formed a 3 -sum of the form $\{x, y, z\}$ or of the form $\{z, z, z\}$.

In the first case, we can combine the 3 -sum with T and form $\{x, x, x\}$ and $\{y, y, y\}$, both of which have result 1 . In the second case, we can combine the 3 -sum with T and form two 3 -sums of the form $\{x, y, z\}$, both of which have result 1 . Thus in either case we have produced $2 b-1$ 3 -sums of $S \mathscr{I}$ of result 1. This contradiction establishes part 4 and completes the proof.

Lemma 2. Let G be a group of order n and let S be a $(2 n-2)$-subset of G such that S contains no n-sum of result 1 . Then S generates G.

Proof. Suppose not. Let $H=\langle S\rangle$. Then $|H|=a$ where $a b=n$ with a $<n$. In any $(2 a-1)$-subset of H there is an a-sum of result l. Now

$$
|S|=2 n-2=2 a b-2 \geqq 2 a b-b=b(2 a-1),
$$

so we can find b-sums of result 1 in S. But then S contains an n-sum of result 1 .

Lemma 3. Let G be a group of order $n=a b$, and let T be a set of elements of G such that T contains no n-sum of result 1 . Suppose that $T=T_{1} \cup T_{2}$ $\cup \ldots \cup T_{r}$ and for each i with $1 \leqq i \leqq r$, every a-subset of T_{i} is an a-sum of result. 1. Then

$$
|T| \leqq a(b-1)+r(a-1) .
$$

Proof. For each i, we form as many a-sums in T_{i} as possible. Suppose after running through all of the T_{i} 's, we have formed $c a$-sums. All of these a-sums have result 1 , so we can form an n-sum of result 1 unless $c \leqq b-$ 1. If, after removing the elements to form these a-sums, there is a T_{i} with at least a elements remaining, we can form another a-sum of result 1 . Thus no T_{i} has more than $a-1$ elements remaining. We have used at most $a(b-1)$ elements of T to form a-sums and there are at most $r(a-1)$ elements remaining. Therefore

$$
|T| \leqq a(b-1)+r(a-1) .
$$

Proof of Theorem 1. We will use additive notation here when we are working with abelian groups. Assume that G is a counter-example of minimal order and let S be a $(2 n-2)$-subset of G containing no n-sum of result 1 . We observe that if G is abelian and x is an element of G, then $S+$ x is also a $(2 n-2)$-set containing no n-sum of result 0 . Clearly then we may replace S by $S+x$ and assume that

$$
r(0, S) \geqq r(y, S) \text { for all } y \text { in } S
$$

The proof proceeds in a series of steps.
Step 1. If G is abelian and S contains exactly 3 distinct elements x, y, and z, then it is not the case that $x=0$ and $y=-z$.

Proof. If not, we may assume that

$$
r(0, S) \geqq r(y, S) \geqq r(-y, S) .
$$

Choose T a subset of $[y, S]$ with $|T|=r(-y, S)$. Then in the set $T \cup$ $[-y, S]$, there is a $2 i$-sum of result 0 for $1 \leqq i \leqq|T|$. Since $r(0, S)>0, S$ contains an n-sum of result 0 unless

$$
r(0, S)+2 r(-y, S) \leqq n-1,
$$

and since $r(y, S) \leqq n-1$,

$$
r(0, S)+r(y, S)+2 r(-y, S) \leqq 2 n-2
$$

But $r(-y, S)>0$, so

$$
|S|=r(0, S)+r(y, S)+r(-y, S)<2 n-2
$$

This is a contradiction.
Step 2. If G is abelian, then n is not prime.
Proof. Suppose that n is prime. We observe that S must contain at least three distinct elements. We have that $r(0, S) \leqq n-1$ and since we may assume that $r(0, S) \geqq r(x, S)$ for all x in $G-\{0\}$, it follows that $r(x, S)$ $\leqq n-2$ for all x in $G-\{0\}$. Choose g, a non-zero element of S. Step 1 implies that there is an element h in S which is not 0 or g or $-g$. Let $T_{1}=$ $\{0, g\}$ and $T_{2}=\{0, h\}$. No element of $S-\left(T_{1} \cup T_{2}\right)$ appears more than $n-2$ times, so we can partition $S-\left(T_{1} \cup T_{2}\right)$ into $n-2$ non-empty ordinary subsets of G. Call these subsets T_{3}, \ldots, T_{n}, and let

$$
A=T_{1}+T_{2}+\ldots+T_{n}
$$

Clearly $\left|T_{1}+T_{2}\right|=4$. Proposition 1 applied $n-2$ times implies that $A=$ G which contradicts the non-existence of an n-sum of result 0 .

Step 3. G is not isomorphic to $Z_{a} \times Z_{b}$ where $1<a<b$.
Proof. Suppose that G is isomorphic to $Z_{a} \times Z_{b}$. Clearly $b \geqq 3$. By applying Lemma 1 to $Z_{a} \triangleleft G$ and $Z_{b} \triangleleft G$, we can assume there are exactly at most four distinct elements in S and, by replacing S by $S+u$ for the appropriate u and observing that S still must generate G, that these elements are $w=(0,0), x=(1,0), y=(0,1)$, and $z=(1,1)$. We may also assume that $r(w, S)$ is at least as large as each of $r(x, S), r(y, S)$, and $r(z$, S). Applying Lemma 3 to $[w, S] \cup[x, S]$ we conclude that

$$
r(w, S)+r(x, S) \leqq a(b-1)+2(a-1)=a b+a-2,
$$

and hence that

$$
r(y, S)+r(z, S) \geqq(2 n-2)-(a b+a-2)=a(b-1) \geqq 2 a .
$$

If $r(y, S)>0$, we can form an a-sum in $[y, S] \cup[z, S]$ of result $(0, a)$ and still have an element $y=(0,1)$ left over. If $b=3$ then $a=2$ and $|S|$ $=10$, and thus

$$
r(w, S) \geqq 3=2 a-1
$$

If $b>3$ then

$$
|S|=2 n-2 \geqq 8 a-2
$$

so $r(w, S) \geqq 2 a$. In either case, we can form an a-sum of result $(0,1)$ and another of result $(0,0)$ in $[w, S] \cup\{y\}$. This contradicts Lemma 1 , and
thus $r(y, S)=0$. Therefore $r(z, S) \geqq 2 a$. Thus if $r(x, S)>0$, we can form two a-sums in $[z, S] \cup[x, S]$, one of result $(0, a)$ and one of result $(0$, $a-1)$. But there is an a-sum of result $(0,0)$ in $[w, S]$, which again contradicts Lemma 1. Hence $r(x, S)=0$ and the assertion follows.

Step 4. G is not cyclic of prime power order.
Proof. Suppose that G is cyclic of order p^{a}, and let $H=\langle x\rangle$ be its unique subgroup of order p. We apply Lemma 1 to G / H. We conclude that S can be partitioned in two subsets S_{1} and S_{2} with S_{1} contained in H and S_{2} contained in the coset $H+g$. Lemma 2 implies that g is a generator of G and that

$$
\left|S_{1}\right| \equiv\left|S_{2}\right| \equiv-1\left(\bmod p^{a-1}\right) .
$$

We may assume that $\left|S_{1}\right| \geqq\left|S_{2}\right|$, and thus that $\left|S_{1}\right| \geqq p^{a}-1$. Now any ($2 p$ - 1)-subset of S_{1} contains a p-sum of result 0 . Thus if

$$
\left|S_{1}\right| \geqq p^{a}+p-1
$$

we can find a p^{a}-sum of result 0 . We conclude that

$$
\left|S_{1}\right|<p^{a}+p-1
$$

and hence

$$
\left|S_{1}\right|=\left|S_{2}\right|=p^{a}-1
$$

Every element of S_{1} can be written in the form $u_{i}=c_{i} x$ and every element of S_{2} can be written in the form $v_{i}=g+d_{i} x$ for $1 \leqq i \leqq p^{a}-1$, where c_{i} and d_{i} are integers with $0 \leqq c_{i}, d_{i} \leqq p-1$. Since S is not a counter-example if all the c_{i} 's are identical and all the d_{i} 's are identical, we may assume that not all of the c_{i} 's are identical. Hence there is a (p^{a-1})-sum in S_{1} of result other than 0 . Since S_{1} is contained in H, any ($2 p-1$)-subset of S_{1} contains a p-sum of result 0 . It follows that any $\left(p^{a-1}+p-1\right)$-subset of S_{1} contains a $\left(p^{a-1}\right)$-sum of result 0 . Thus, besides the $\left(p^{a-1}\right)$-sum of result different from 0 , we can find $p-2$ other (p^{a-1})-sums in S_{1}, all of result 0 .

Now look at $S_{2}-g$. This set consists of elements of H, so, just as above, it must contain $p-1\left(p^{a-1}\right)$-sums of result 0 . Hence S_{2} contains $p-1\left(p^{a-1}\right)$-sums of result $p^{a-1} g$. Since Lemma 2 implies that g generates G, we know that $p^{a-1} g$ is an element of H but is not 0 . We now have $2 p-2\left(p^{a-1}\right)$-sums in H but exactly $p-2$ of these have result 0 . This contradicts Lemma 1 , even when $p=2$.

Step 5. G is not elementary abelian of rank 2.
Proof. If G is elementary abelian of rank 2, then G is isomorphic to Z_{p} $\times Z_{p}$. By applying Lemma 1 to each factor in the product, we conclude that there are at most 4 distinct elements in S. We can take these elements
to be $w=(0,0), x=(1,0), y=(0,1)$, and $z=(1,1)$. Any p-subset of $[z$, $S]$ is a p-sum of result $(0,0)$, and the same is true for the sets $[w, S],[x, S]$, and $[y, S$]. Thus Lemma 3 implies that

$$
|S| \leqq p(p-1)+4(p-1)=p^{2}+3 p-4
$$

But $|S|=2 p^{2}-2$ so $2 p^{2}-2 \leqq p^{2}+3 p-4$ and hence $p(p-3)+2 \leqq$ 0 . Thus $p=2,|G|=4$ and $|S|=6$. There cannot be two different 2 -sums of result $(0,0)$ in S, so at most one element in S can appear more than once. Since that element cannot appear as many as 4 times all of w, x, y and z must appear in S. This is impossible because

$$
x+y+z+w=(0,0)
$$

Step 6. G is not abelian.
Proof. Suppose the contrary and let P be a Sylow- p subgroup of G with $|P|>1$. Lemma 1 implies that G / P is cyclic. If Q is a Sylow- q subgroup of G with $q \neq p$ we conclude that Q is cyclic and, by applying Lemma 1 to G / Q, that P is cyclic. Thus either G is cyclic or G is a p-group. Steps 2,3 , and 4 imply that G is not cyclic, so G must be a non-cyclic abelian p-group. If H, the Frattini subgroup of G, is non-trivial, then G / H must be cyclic. But then G is cyclic, which is a contradiction. Therefore H is trivial and thus G is elementary abelian. Step 5 implies that the rank of G is at least 3. If K is any subgroup of G with $|K|=p$, then G / K is not cyclic. This is a contradiction.

Step 7. Final contradiction.
Proof. Step 6 implies that G is a solvable, non-abelian group. Choose H $\boxtimes G$ so that $|G / H|$ is prime. Observe that G / H is cyclic. Lemma 1 implies that H is cyclic. Let $|G / H|=a$ and $|H|=b$. If there are $a b+b-1$ elements of S in H, we can form $a b$-sums of result 1 and hence an n-sum of result 1 , so we may assume that there are at least

$$
(2 a b-2)-(a b+a-2)=a(b-1)
$$

elements in S but not in H. Let T be the set of those elements.
Now G is non-abelian, so $b>2$, and thus $|T| \geqq 2 a$. Now $|G / H|=a$, so it follows that T contains an a-sum with result in H. Using Lemma 1, we extend this a-sum to a set of $2 b-2 a$-sums of S with results in H. Let Z be the set of results of these a-sums. At least one of these a-sums consists entirely of elements of $G-H$. Let $U=\left\{u_{1}, \ldots, u_{a}\right\}$ be this a-sum. Since G / H is abelian, any rearrangement of the elements of U also has result in H. Rearrangement cannot change the result of U without contradicting Lemma 1 . Thus the elements of U, indeed of any a-sum with result in H, may be rearranged without affecting the result. Let h be the result of U. We may assume that $h=x y=y x$ where x is an element of $G-H$. Clearly x commutes with h.

Lemma 1 implies that there are exactly two distinct elements of Z. Let $k \neq h$ be the other element that appears in Z. Lemma 1 implies that

$$
r(h, Z)=r(k, Z)=b-1,
$$

and Lemma 2 implies that $\langle h, k\rangle=H$. Let

$$
Y=Z-\{h, k\} .
$$

The results of realizable $(b-2)$-sums of Y are of the form

$$
h^{r} k^{b-r-2} \quad \text { for } 0 \leqq r \leqq b-2
$$

If these results are not all distinct, then it must be the case that $h^{s}=k^{s}$ for some s with $1 \leqq s \leqq b-2$. Then $h^{s} k^{b-s}=1$ is a realizable result of a b-sum in Z. We conclude that there are $b-1$ distinct results of $(b-$ 2)-sums in Y. If $(h k)^{-1}$ is one of these results then we can form a b-sum of result 1 in Z. Thus we conclude that all of the elements of H except $(h k)^{-1}$ are realizable as results of $(b-2)$-sums in Y.

Now if we can rearrange the elements in an a-sum of result of h and an a-sum of result k to obtain a $2 a$-sum with result in H different from $h k$, then this result will have an inverse which is realizable as a $(b-2)$-sum in Y. Then we can combine these two sums and form an n-sum of result 1 . Since this is impossible we may assume that no such rearrangement exists. But $h=x y$ and G / H is abelian, so $x k y$ is in H. Therefore

$$
h k=k h=k x y=x k y \quad \text { and } \quad x k=k x .
$$

But $|G / H|$ is prime and $\langle h, k\rangle=H$, so $\langle x, h, k\rangle=G$. Now h and k commute, and it follows that G is abelian. This final contradiction establishes the theorem.

We remark that it is now easy to classify all solvable groups G of order n and $(2 n-2)$-subsets S of G such that S contains no n-sum of result 1 .

Corollary. Let G be a solvable group of order n and let S be a $2 n-$ 2)-subset of G. Then S contains no n-sum of result 1 if and only if both of the following conditions hold:

1. G is cyclic, and
2. S can be written as $S=T+x$ (G is abelian) where x is an arbitrary element of G and T consists of $n-10$'s and $n-1 g$'s with $\langle g\rangle=G$.

References

1. A. L. Cauchy, Recherches sur les nombres, Journal Ecole Polytechnique 9 (1813), 99-123.
2. Erdös, Ginsburg and Ziv, Theorem in additive number theory, Bull. Res. Coun. Israel 10 (1961), 41-43.

Middlebury College,
Middlebury, Vermont.

