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Abstract. Let / i ^O be an ultradistribution of Beurling type with compact support
in the space %'W(UN). We investigate the range of the convolution operator TM on the
space of non-quasianalytic functions of Beurling type %M(RN) associated with a weight a>,
in the case the operator is not surjective. It is proved that the range of TM always contains
the space of real-analytic functions, and that it contains a smaller space of Beurling type
%r(^

N) f°r a weight cr ̂  a) if and only if the convolution operator is surjective on the
smaller class.

Introduction. The problem of characterizing the surjectivity of convolution opera-
tors and, in particular, of partial differential operators, has interested several authors.
Malgrange [20,21] and Ehrenpreis [7,8] gave necessary and sufficient conditions on the
open subset Q of RA' for the surjectivity of a partial differential operator with constant
coefficients on the spaces 3)'(D.) or 2'F(Q,) (distributions with a finite order). For a
distribution /x e W(UN), /u#0, Ehrenpreis [9] gave a criterion for the surjectivity of the
convolution operator TfL:C°(RN)-*Cc(MN), / - » M * / , in terms of the behavior of the
Fourier transform of /x. Also see Hdrmander [15]. Extensions of the Ehrenpreis results to
some other spaces of functions or distributions were obtained by different authors. See for
instance [5], [6], [10], [12], [24], [25] and the references given in [26]. In particular, the
surjective convolution operators on non-quasianalytic classes of Beurling type were
characterized by Meise, Taylor and Vogt [24] (see also [4]).

In the present note we investigate the range of the non-surjective convolution
operators on the non-quasianalytic classes of Beurling type <^W(UN). The problem we are
interested in here can be stated as follows. Fix a weight function w and an
ultradistribution fj. e ^(R*1) such that the associated convolution operator
7M: <^ai(U

N) —» ^W(UN) is not surjective. We want to analyze which classes of (real-analytic
or) non-quasianalytic functions are still contained in the range of 7*M. It turns out that the
class of real-analytic functions is always contained in the range of TM (Theorem 1). This is
an extension of a classical result of Hormander (e.g. [18, 16.4.5]). The study of the
non-quasianalytic classes yields the following result. For two weights w < cr (i.e.
%a.{nN) c %w(nN)) and fji E %l(MN), the range of the operator 7; contains %r(R") if and
only if the operator is surjective in the smaller class. As a consequence, whenever it is
possible to solve the equation fx *g = / in ^(UN) for every / e %a(U

N) it is also possible
to solve the same equation in %a(U

N) for every / E ^(R") . This is Theorem 2.
The proof of our main results is based on some (rather elementary) functional

analytic lemmas which permit us, using Fourier-Laplace transforms, to reduce our
original problem to the continuity of a division operator between two different algebras of
entire functions.

The surjectivity of a convolution operator 7M on ^a,(U
N) is equivalent to 71'M$IU(R/V)

being a (DFS)-space. However we provide examples of non-invertible distributions
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/x G ^'(UN) such that T'^'iM") is bornological, answering in the negative a question of
Ehrenpreis ([9]). Our results can be applied in particular to Gevrey classes.

Our approach to the non-quasianalytic classes of Beurling type is as in [3]. We refer
to [28, Chapter 8] and [11] for information concerning Frechet-Schwartz and (DFS) (i.e.
strong duals of Frechet-Schwartz) spaces.

In the rest of the article the convolution operator T^ is associated with an
ultradistribution fi ¥= 0.

Preliminaries.

DEFINITION. A continuous increasing function w:[0, ^[-^[O, <»[ is called a weight if it
satisfies:

(a) there exists K > 1 with w(2f) < K(w(t) + 1) for all / > 0,

(y) log(l + t2) = O{w(t)) as t tends to =*,
(5) (p:t^> w(e') is convex.

In the examples we will also consider the following property on a weight:
(a ') w(0) = 0 and w(s + t) < w(s) + w(t).

For each weight w we have lim = 0. The Young conjugate <p*:[0, oc[—»R of <p is

defined by

(p*(s):= sup{st - cp(r):f >0}.

DEFINITION. The space of ultradifferentiable functions of Beurling type ^(IRN)
associated to a weight w is the Frechet-Schwartz space of all functions / e C=C(R'V) such
that for each ^ c R ' * compact and each m eN:

/V m (/ ) :=sup sup |/<«>(x

EXAMPLES (see for instance [23], [24]). The following functions w:[0, °°[—»[0,»[
(after a suitable change on [0, A] for some A >0) are the weight functions:

(1) <u(r) = (log(l + t)Y, s > 1. For 5 = 1 we get g J R " ) = ^ ( K ^ ) .
(2) w ( 0 = exp((log(l + 0 ) 0 ) , 0 < a < l .
(3) cu(/) = r"(log(l + t))$, 0 < a < l , 0 s / 3 < l .
(4) (o(t) = tlls, s > 1. In this case g J R " ) = T(s)(UN) is the Geurey 5pace of order s.
For /j. e ^ ( R * ) the convolution operator Tll:%Q1(n

N)-*%JRN) is defined by
7M(<p)(j:) := (ju, * (p)(x) = (fJLy, cp(x - y)), which is a continuous linear operator with trans-
pose map T'li:Vu(Ve')^> %'w(nN), 7'M(v):= /I* v, where £(?) := M(<p) and <p(x):= <p(-^).

If w is a weight we put p(z) '.= <o(\z\) + |Im z\, z e CN. Given a continuous function p
on C^, we let Ap denote the (DFS)-space of entire functions

Ap:=\fe H(CN): there is m s N with sup \f(z)\ exp(-mp(z)) < *
^ zeC*
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In particular for p(z):=\z\, Ap is the space Exp(CA') of entire functions of
exponential type (see [16]).

It is well known that the Fourier-Laplace transform F:^-*fi,, £L(z) := (p.x,e'Hx-z>),
is an algebra isomorphism between the convolution algebra (^'U(UN), *) and Ap, which is
even a topological isomorphism when we endow ^ ( R v ) with the strong topology. We
will identify, via Fourier-Laplace transform, the transpose map T'M with the multiplication
operator FT'^F~} :Ap—>Ap,f—>jlf. Sometimes we will also identify ^'W(UN) with Ap.

We let E^ denote the set of all linear combinations of exponential solutions of the
equation fx *u = 0, that is, solutions of the form u(x) = P(x)e'<XiS\ where £ e CA' and P is
a polynomial.

Our first result describes the closure of the image of the transpose of an arbitrary
convolution operator and it will be used several times in the article. The case N = 1 is a
consequence of [19, 6.13].

PROPOSITION 1. Let /A, V e %'„($"), / i ^O . The following conditions are equivalent:
0) vsTJxW))
(2) v is orthogonal to £M

(3) / : = v//i is an entire function on CN.

Proof. First observe that T'^l(U )) is the orthogonal of ker 7*M. Accordingly, (1)
implies (2) is immediate, and (2) implies (3) can be obtained as in [17, Lemma 7.37] (also
see [18, Lemma 16.4.2]). To complete the proof of (3) implies (1) we assume that
/ : = v//i is an entire function.

We first prove that / is of exponential type. In fact, the Paley-Wiener theorem
implies that i>, and /x are in Exp(CA/). Let Ia denote the ideal in the local ring Oa which is
generated by the germ [/!]„ of jx at a. Since the principal ideal / generated by /I in
Exp(C") is slowly decreasing in the sense of Berenstein and Taylor ([1]), we can apply
[1, 5.4(ii)] (see also [22, Theorem 12]) to conclude that

/ = Ilnc: = {g e Exp(CA'): [g]a e /„ for all a e C"}.

It follows from the hypothesis that tf e l,oc. Consequently 0 e / and / e Exp(CN).
The Fourier-Laplace transform F:H(CN)'^Exp(C"), F(L)(z):= </,„,, e-'<z-w>>, is an

isomorphism ([16, 4.5.3]). Accordingly we can find L e H{CN)' with F(L) =/ . From this it
follows that (v,g\n) = (L,n*g) for every g e H(C"), where fi*g denotes the entire
function (ju. *g)(z):= (fJLy,g(z - y)).

To conclude we fix u e <L(RN) satisfying /i * u = 0 and we prove that (v, u) = 0. To
do this take a compact set A^cC" such that \{L,g)\ SCsup \g(z)\ for every g e H(CN)

T>N\and some positive constant C. Fix x e 2W(UN) such that ^ = 1 on a convex neighbourhood
N

of B(0, R) + supp n + supp v, with R > 0 satisfying R > S + — and K a B(0, 8). We put

£,(z):= I - exp(-j(z,z)), v: = xu, and we define

Vj(z):= f v(x)Ej(z - x) dx, zsC\ j
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(compare with [17, 9.1.2]). An easy calculation yields

(v, M> = <v, v) = lim(v, vj |R.v) = lim(L, i* * vj) = 0,
j i

the last identity being a consequence of the fact that /x * u, converges to 0 uniformly
on K. •

COROLLARY. Let CJ be a weight and it e ^((RN), /x #0 . The set £M, of all exponential
solutions of the equation /x * u = 0, is dense in Ker T^ (with the topology induced by

REMARK 1. Assume N = l. Let w be a weight and let fx e ^i(U), /XT^O. Then
is sequentially dense in T'^

Proof In fact, we put p(z) = wQz\) + |Im z\ and we identify, via Fourier-Laplace
transform, %'W(M) with Ap, T'^ with the multiplication operator AP^>AP, / ^ / x / , and
T'^UU)) with the principal ideal / generated by £ in Ap. We apply [19, 6.13] to get
thatp is stable ([19, Definition 6.3]). Now we deduce from the proof of [19, 6.6, 6.7] that /
is sequentially dense in 7. •

Real-analytic functions. Let K be a compact set in KA> and let (Vn) be a fundamental
(decreasing) sequence of open neighbourhoods of K in Cv. Then A(K):= ind Hx(Vn) is

the space of germs of holomorphic functions on K. Given two compact sets K) c K2 in
IR", it follows from [17, 9.1.2] that the restriction map A(K2)-^A(K]) has dense range.
The space of real-analytic functions is defined by A(W):= pro] A(K) and it is a

(reduced) projective limit of complete (LB)-spaces. We collect in the next proposition
some of the known properties of i4(RA') which will be needed later.

PROPOSITION 2. Let w be a weight and /x e ^ ( K N ) , (i ¥=0. Then:
(1) A(UN) is contained in ^OJ(U

N) and the inclusion A(UN)^> ^(UN) is continuous.
(2) The convolution operator TfL:A(UN)^> A(UN) is well-defined and continuous.
(3) An entire function f e H(CN) is the Fourier-Laplace transform of some func-

tional L e (^(R"))1 if and only if

3A>0 V e > 0 3C 6 >0: | / (z ) |<C e exp( ,4 | Imz | + e|z|).

We only make some remarks about the proofs. Concerning property (1) observe that,
given a compact set K a UN and an open set V in CN, K c V, there is C > 0 such that for
every / e/^R*1) with holomorphic and bounded extension to V (denoted also by / ) we
have

Since co(t) = o(t) as t tends to infinity, for each m e N there is Bm > 0 with

!) =£ Bm exp(m<p*(^)) < Bm sup |/(z)|.
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For a proof of (3) see [18, 15.1.5], while (2) is a consequence of [17, 9.1.2].

REMARKS 2. (a) Property (1) implies that the restriction map H(CN)^> ^ (R" ) is a
continuous linear map, since it has closed graph.

(b) It follows from (3) that we can define an (LF) topology in the dual of A(UN)
which is finer than the weak topology o-(A(UN)',A(UN)).

The next lemma will be applied for £ : = %,(RN), T := T^ and F:=/1(IRV).

LEMMA 1. Let E be a Frechet-Schwartz space and let F be a locally convex space such
that there is a continuous inclusion j:F-*E with dense range. Assume F' admits an (LF)
topology T finer than the weak topology a(F', F). Let T e L(E, E) be a continuous linear
operator such that T(F) a F. If

Vw e TE'E" 3\v e F':(v, Tf) = (j'u,f), (*)

then F is contained in T(E).

Proof. We denote by G the space T'E'E'k<^E'h, always endowed with the induced
topology. It is well known that G is (also) a (DFS)-space. First define R:G-*F' by
Ru:=v, where v e F' is the unique element given by (*). Certainly R is well-defined,
linear and satisfies RV =; ' on £ ' . Moreover R:G—*(F', r) has closed graph, hence it is
continuous. To complete the proof we take feF and we define <J>:G—»C by
<S>(u):= (f,Ru). Clearly <J> is continuous on G. By the Hahn-Banach theorem (and the
reflexivity of £), there is g e E such that the restriction of g to T'E' coincides with $. This
implies Tg = jf. Indeed, for each u e E' we have

(Tg, u) = (g, T'u) = <t>(T'u)=f(RT'u) =f(fu) = (;/, u). •

To prepare the proof of the next theorem, we recall that if fi e ^ (R*) there is a
compact set K in UN such that, for some m sN and C >0, |(/i,/)| ^ CPKm(f) for every
/ e gJR"). Accordingly </*,/> = 0 for every / e ® ^ ) with s u p p / n # = 0. The
smallest compact set K in UN with the above property is called the support of (x. The
classical theorem of supports remains true for arbitrary /x, v e ^ ( R " ) , i.e.,

conv(supp(/x * v)) = conv(supp /A) + conv(supp v).

THEOREM 1. For every fi e ^ (R^) , /A T^O, the space of real-analytic fiinctions A(UN)
is contained in the range of the convolution operator 7^: ̂ (M")-* ^(IR^).

Proof. We check condition (*) in Lemma 1. In view of Proposition 1, it is enough to
show that, given v e ^i(UN) such that / := v/£ is an entire function on C^, the function/
belongs to /^(R*)'. To see that, since the theorem of supports holds, we can adapt the
proof of [18, 16.4.3] (also see [18, 16.2.1 and 16.3.1]) to get

3i4>0 Ve>0 3Ct>0:\f(z)\^Ctexp(A\lmz\ + e\z\).

The conclusion follows from Proposition 2(3) and Lemma 1.

Non-quasianalytic functions.

LEMMA 2. Let E and F be Frechet-Schwartz spaces such that there is a continuous
inclusion j.F^E with dense range. Let T s L(E,E) be such that T(E) is dense in E,
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T(F) <= F and the restriction S of T to F belongs to L(F, F) and such that it has also dense
range. If we have E'h = ind(Gn, ||.||n) and F'h = ind(Hk, \.\k), the following conditions are
equivalent:

(1) F is contained in T(E)
(2) j'(T'y_hl'E' ^E'h^F'h is continuous
(3) VM e r £ l £ i 3\v e F':S'v = j'u.

These three equivalent conditions imply
(4) V/i 3k, C> 0 VM E E': \j'u\k ^ C || T'u \\n.

If T'E' is bornological for the topology induced by E'h, then (4) and (1) are
equivalent.

Proof. First observe that T', S' and / are injective. The equivalence of (1) and (2) is a
particular case of Proposition 2.1 in [2]. To prove (2) implies (3) consider the unique
continuous linear extension R:T'E'El*-* F{, of j'{T')'\ Given ueT'E'Eh put v: =
Ru BF'. Then S'v=j'u, which proves condition (3). The uniqueness follows from the
injectivity of S'. Since (3) implies condition (*) in Lemma 1, (3) implies (1).

To complete the proof it is enough to observe that (4) means exactly that the linear
map j'(T')']; T'E' c £̂ —> /> maps bounded sets into bounded sets. •

In general (4) does not imply (1), as was shown in [2, 2.12].
To state our main result, if o> ̂  a are two weights, we put p(z) := (o(\z\) + |Im z\,

q(z):= o-(\z\) + |Im z\, z e C". We identify, via Fourier-Laplace transform, TW(UN) = Ap

and ^ ( R " ) = Aq.
In the applications of Lemma 2, E := f J R " ) , F := %,r(U

N), T := 7M for fi e %l(MN).
In this case,

(1) is equivalent to %a(U
N) c T^JUN)).

(3) is equivalent to the following condition:

if u e Ap satisfies f:=u/ji. e H(CN) then / e Aq.

This follows from Proposition 1.
(4) means that for every B cAp such that T'^(B) is bounded in Ap, it follows that B

is bounded in Aq.

THEOREM 2. The following conditions are equivalent for /i e ^'a,(U
N), fi # 0:

(1) %,r(U") is contained in T^JUN)),
(2) lfueAp satisfies f := u/fi e H{CN), then f e Aq,
(3) Vn 3 * , C > 0 V / e / l p :

sup |/(z)| exp(-A: |Im z | - ka(\z\)) s Csup |A(z)/(z)| exp(-w |Im z| - /iw(|z|)),

(4) pi « slowly decreasing for a, i.e., there is C > 0 such that for each x e UN, \x\ > C,
there exists £ e CN wM |JC — ^| < Ccr(x) anJ |/x(^)| > )

(5) 7;: %T(^N)-> %r(^N) is surjective,
(6) U E / 4 , a«rf / := M/M e //(C^) /m/?/>' / e Aq

Proof. Theorem 1 ensures that the hypotheses of Lemma 2 are satisfied. The
equivalence of (1) and (2) and of (5) and (6) follow from Lemma 2 by our remarks
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above. It is also a direct consequence of this lemma that (2) implies (3), using the
Fourier-Laplace transform. We show that (3) implies (4). The proof is based on ideas of
[25]. Condition (3) means that the division operator

maps bounded sets into bounded sets. We write q\(z):= o-(|Re z\) + |Im z\, z eCN, and
we suppose that (4) is not satisfied. Accordingly we can find a sequence (xj) in UN with
lim \XJ\ = oc and such that for each j eN and each £ e CN with |f - Xj\ ^ Cja(Xj), we have
/—*
|/I(£)| <exp(-C/g , (£)) , for C^2K, where K>0 is the positive constant satisfying
a(2t) < Ka(t) for all / > 0 large enough.

For each j eN and R > 0 we consider the function hjR: CN —> U, which equals |lm z | if
\z ~ Xj\ > R and with

hjR(Z):= sup|w(z):w is plurisubharmonic on fl(jty, R), lim sup u(w) < |Im ^|

for every £ with |£ - Xj\ = R \

for \z-Xj\<R. By [27], hjR is plurisubharmonic and continuous on CN and satisfies
7.R

Put Rj-. = jo-(Xj), hj\= hjM and define <fj as the function <py(z) := hjR+](z) + 1. Clearly
cpj is also plurisubharmonic.

As in [26, 1.8] we can apply [16, 4.4.4] to find fj e H(CN) with

\fj(xj)\ > exp( inf <Pj(w) - CN log(l +

and

\fj(z)\^CNexp{ sup <pj(co) + CN log(l

where CN is a positive constant which only depends on N.
For £ e C" with |£ - Xj\ >Rj + 2 we have

sup <Pj(<o) = sup |Im io\ + 1 ^ |Im ^| + 2

and
|^.(^)| < CN exp(|Im f | + 2 + CN log(l + |£|2)),

which implies fj e Ap. In fact it is even the Fourier-Laplace transform of some
distribution with compact support.

We show that (/x/J) is bounded in Ap but (fj) is not bounded in Aq. This contradicts

(3). Since lim —^ = 0, there is ;0 e N such that, for ; >/0, /?; + 2 < 2/?y < ^ - . If y >;0

and ^ E C " satisfies |£ - jcy-| < Rj + 2, we get

<T(XJ) < cr(2 |Re f |) <
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and

sup <pj(w) =£ 2ja(xj) + 5 < IKjqM) + 5.
|w-f|El

This implies, for j^j0 and |£ - Xj\ < Rj + 2,

|JJ(f )| ^ CN exp(2Kjq,(t) + 5 + CN log(l + |£|2)).

If y >; 0 and |^ - Xj\ < Rj + 2 < Cfl,, we have

lM(^(f) | S CA. ezp(2Kjqi(£) - C;9l(£) + 5 + CN log(l + |£|2))

< C/v exp(5 + CN log(l + |£|2)).

For ^ E C" with |̂  - x,\ >Rj + 2 we get

\fcZ)fj(£)\ ^ lM(f )l Cw exp(|Im f | + 2 + CN log(l + |£|2)).

Since ft s Ap and log(l + |£|2) = O(a>(\£;\)) as |£| tends to infinity we conclude

lM(f )//(£)l s DCW exp(D + (K + m)«(|f |) + (m + 1) |Im f |)

for some constant D > 0 and some k e N. Thus there is L s N with

sup sup |A(f)j5(f)l exp(-L/>(f)) < oc.

On the other hand, it is easy to show that sup hj((o) ^ ipj(z) for all \z - Xj\ s Rj + 1,
hence inf <pj(z) S:/I;(JC;), which yields

| Z J T | S 1

tj(xj) - CN log(l + |x/)) > e x p ( ^ ^ - CN log(l + \xj\2))
^ 7T v / V '

This implies sup \fj(xj)\ exp(-sq(Xj)) = <* for all J E N .

Since (5) clearly implies (1), we complete the proof indicating how to show that (4)
implies (5). Let u eAq satisfy that f:=u/ji is an entire function on CN. Since u and /I
belong to Aq there is A > 0 such that

Fix x e RN, |JC| > C, and put r := Ccr(x). We apply [15, 3.2] to get

sup |u(f)l)( sup

sup
*-fl<>

from where it follows, on account of (4), that \f(x)\ ^ D exp(Da(x)) for all x E UN and
some D > 0 . Since / E Exp(Cv) (see the proof of Proposition 1), we can apply the
Phragmen-Lindelof principle as in [23, 2.2] to conclude that / E Aq.
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In particular, restricting to the Gevrey classes we get the following result.

THEOREM 3. Let \<t<s. The following conditions are equivalent for /x e F ' ^R^) ' ,
pi 5*0:

(1) T{I)(UN) is contained in 7M(r(J)(RA')),
(2) 7M: P'\UN) -* P'\UN) is surjective.

REMARK 3. If /x E ^(IR^) one can also define the convolution operator
S M : @ ; ( R " ) ^ S ; ( R N ) , S M ( v ) : = M * v with </x * v,f) = <v, £* /> for f e 2V(UN). The
equivalent conditions of Theorem 2 are also equivalent to

(7) 5M has a fundamental solution in %[r.
(See for instance [12] and [11, 6.4]).

It follows from the remark above that a surjective convolution operator on a Beurling
class %J$lN) is also surjective on a smaller class %r(U

N), w^v.

EXAMPLE. There are weights w < a and /JL E %'(nN) such that 7^: ^ ( R " ) -* %,T{UN) is
surjective but 7M: %w(nN)^> ^ ( R " ) is not surjective.

In fact, let us consider two weights w £ a satisfying properties (a ' ) , (/3), (y), (8).
Assume there is some function m:[0, °°[—>[0, =c[ such that w(r) = o(m{t)) and m{t) =
o(cr{t)) as t tends to infinity. We apply [13, Theorem 4'] to find /x, E T(U) such that /X] is
slowly decreasing with respect to a and there is a sequence (tk) of zeros of /Tf with order

o(Tk,fi^)>m(tk). Since lim *' ' = <* we conclude that /A, is not slowly decreasing
,-.» o>(tk)

with respect to w ([14, Theorem 5]). Finally we define /A e ^'(UN) by fi.(z) =
,Z = (zu.--,zN)eCN. D

Ehrenpreis [9, 6.2] constructed a distribution /x E W(R) such that the convolution
operator TM is not surjective on every non-quasianalytic class %W(M).

Ehrenpreis proved in [9, 2.4] that T'^Cg'(MN)) is bornological (with the topology
induced by %'(MN)) for every invertible distribution (i e ^'(1^^) ('-e- slowly decreasing
with respect to w(t) = log(l +1)) and asked whether the hypothesis on the invertibility of
/JL can be removed or not. Since every sequentially dense subspace of a (DFS)-space is
bornological ([2, 2.4]), it follows from our Remark 1 (and the known fact that a closed
subspace of a (DFS)-space is also a (DFS)-space) that, in case N = 1, T'^'(U)) is
bornological for every distribution /x s ^ ' (^) -

PROPOSITION 3. Let w be a weight and /x e ^ ( R * ) , M ^ 0. Assume fi is slowly
decreasing for some weight cr, a^co. Then T'tL('S'llt(U

N)) is bornological. In particular there
are non-invertible distributions /x e %'(MN) such that FM(g'(IRA')) is bornological.

Proof. We only have to prove that T'^i(UN)) is sequentially dense in T^W)).
To do this, fix v e T'pCgKU")) and apply Proposition 1 and Theorem 2 to find
v, e %'W(UN) such that 0//x = v .̂ Hence v = (L * v, in f ^ ^ ) - W e t a k e a sequence
(((>„) c S ^ R " ) which is a regularising sequence in %U(UN) and apply our hypothesis to
find gn E g J R " ) satisfying^*gn = <£„. Then it is easy to get v*gn e ^ ( R ^ ) , v*4>n =

and v = ^
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