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Particle loading affects the dynamics of buoyant plumes, since the difference between
particle and fluid densities is much greater than that in the fluid alone. In stratified
environments, plume rise is density limited; after initial overshoot, the plume reaches
a terminal level and spreads radially. Particles dropping from this horizontal intrusion
may be re-entrained. This recycling of dense matter reduces plume buoyancy and
intrusion height and, for sufficient load, can lead to plume collapse. Entrainment-based
formulae yield a steady-state plume rise. We identify a new conserved quantity for
such plumes. Integrating paths of particles dropping from the intrusion yields the
fraction re-entrained. A simple mathematical model predicts from buoyancy ratio at
source (P = negative particle buoyancy divided by positive fluid buoyancy) whether
a particle-laden plume will collapse. Under this model, for small settling velocity, a
particle-laden plume will not collapse if P< 0.368. Above this, collapse depends also
on the amount of particle-free ambient fluid entrained in the overshoot region. For
pure plumes, experimental evidence suggests that this is small. For forced plumes,
more substantial overshoot and entrainment is shown to increase the critical ratio. An
extension, based on successive recycling, estimates time to collapse. To investigate
further we develop a simple computational model, coupling a ‘top-hat’ plume model,
an analytical formula for radially decaying concentrations in the intrusion and an
axisymmetric finite-volume solution for time-dependent settling and entrainment. The
model can predict the impact of particle load on final rise, as well as the occurrence
and time scales of plume collapse.

Key words: atmospheric flows, particle/fluid flow, plumes/thermals

1. Introduction
Turbulent buoyant plumes transporting relatively dense particles can be found in

natural and engineered environments, including volcanoes, black smokers rising from
deep-sea vents, dredging operations, effluent from marine outfalls and particles from
combustion in fires or engines. Where plumes rise from a source of buoyancy through
a stratified ambient fluid (common in oceanic and atmospheric environments) the
rising plume entrains ambient fluid and eventually reaches a point where the plume
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FIGURE 1. (Colour online) Schematic of particle-laden buoyant plume in a stratified
ambient fluid.

density is equal to the local ambient density and the plume fluid spreads horizontally
as a radial intrusion (Morton, Taylor & Turner 1956; Carrazzo & Jellinek 2012;
Richards, Aubourg & Sutherland 2014; Mirajkar & Balasubramanian 2017). If the
plume contains dense particles then these will drop out from the intrusion and begin
to fall through the ambient fluid (Sparks, Carey & Sigurdsson 1991). If the particles
fall close enough to the rising plume, they may be re-entrained, increasing the flux
of particles within the plume and reducing its buoyancy (Carey, Sigurdsson & Sparks
1988; Veitch & Woods 2000; Zarrebini & Cardoso 2000) – see figure 1.

Most theoretical work on this problem has considered extremely small particle
concentrations, where the dense particles have a negligible effect on the overall
buoyancy of the plume. Many laboratory studies have used water as a working
fluid, where the relative density of solid particles is not very large. However, in
air, even small volume concentrations of particles can make substantial differences
to the buoyancy of a plume. This is because the difference between particle and
fluid densities may be several orders of magnitude higher than the relative density
difference between plume and ambient fluid, which is often only a few per cent.
If the particle concentration is sufficiently high, the resulting negative buoyancy
contribution may overcome the initial plume buoyancy, causing the plume to collapse
once sufficient particles have been re-entrained.

Many previous laboratory studies have considered plume rise and particle fallout
in an unstratified, depth-limited surrounding medium, where the horizontal layer is a
gravity current spreading radially along the free surface (Carey et al. 1988; Sparks
et al. 1991; Ernst et al. 1996; Veitch & Woods 2000; Zarrebini & Cardoso 2000).
Others have considered the injection of a negatively buoyant ‘turbulent fountain’
(Carrazzo & Jellinek 2012), where the particle load is such that the overall density
exceeds its surroundings, but is initially propelled upward by source momentum.
However, our paper will focus on initially buoyant, homogeneous or particle-laden
plumes whose height of rise is limited by ambient density stratification. This is more
challenging to produce in the laboratory, but experimental work on particle-laden
plume development in a stratified medium has been performed by Mirajkar, Tirodkar
& Balasubramanian (2015) and Sutherland & Hong (2016).

Carey et al. (1988) injected particle-laden fresh water into uniform salty water. They
described the ‘veil of sedimenting particles’ around the plume margins, concluding
that re-entrained particles had a significant effect on the plume dynamics through
their influence on plume buoyancy. They identified four types of plume collapse
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behaviour: dilute downward-moving gravity flows along plume margins; instability
leading to an asymmetrical bent-over collapse; low-collapsing fountain; and collapse
of umbrella region. Using a similar experimental configuration, Sparks et al. (1991)
investigated the concentration distribution in the free-surface gravity current and
subsequent deposition pattern formed by fallout when a particle-laden fresh-water
plume reached the surface of a uniformly saline tank. They determined that, for
lighter sediment carried all the way to the free surface, the concentration in the
gravity current and subsequent deposition distribution on the floor was consistent with
an exponentially decaying radial concentration distribution and a critical radius within
which sedimenting particles are drawn back into the rising plume. They also noted
that this simple theory did not apply for heavier particles, for which the critical radius
was less than the plume-to-gravity-current ‘corner’, where particles fell out from the
plume margins during its rise phase. Ernst et al. (1996) examined the re-entrainment
of these heavier particles for both momentum-dominated jets and buoyancy-dominated
plumes, modelling fallout rate as a function of the settling velocity and local spreading
rate of the plume and re-entrainment using an empirical ‘re-entrainment’ coefficient.
Their modelling and subsequent comparison with measured data emphasised the
important role of re-entrainment in amplifying near-field deposition. Veitch & Woods
(2000) continued the ‘fallout-from-umbrella-cloud’ model of Sparks et al. (1991), but
this time considered the role of the non-depositing fraction that was re-entrained into
the plume, reducing its overall buoyancy and contributing to an oscillatory collapse
mechanism. Cardoso & Zarrebini (2001a) observed that, for particles falling out of
a surface layer into uniform-density fluid, the resulting unstable density distribution
in the ambient fluid can under some circumstances – low settling velocity and
high source concentration – drive convection. This is much less likely to occur in
our scenario, as the background fluid is stably density stratified and the horizontal
intrusion, forming at its natural neutral layer, is more dilute than one obliged to
spread at a free surface.

Whilst most laboratory studies have used a single particle size, Cardoso &
Zarrebini (2001b) used polydisperse particulate. Their model, validated by laboratory
measurements of deposition fluxes, integrated paths of settling particles in a velocity
field determined by plume entrainment, and determined the radial distribution of
deposition.

For circumstances where plume rise is limited by the ambient density profile (e.g. in
the atmosphere), rather than a free-surface rigid lid (as in most laboratory tank-based
studies), there is initial overshoot of the final intrusion height, because the plume
reaches the neutral-density level with non-zero momentum. This region plays a role
in determining the final height of the intrusion because the plume continues to entrain
particulate-free fluid. The quantity and density of fluid entrained here dictates the
level at which final plume density will match that of the surrounds and form an
intrusion. Once the intrusion has formed, however, the sedimentation behaviour below
it is similar to that for a free-surface gravity current.

In a stationary stratified medium, plume- or jet-like behaviour of injected material is
associated with the parameter (M0/B0)N, where M0 and B0 are initial momentum and
buoyancy flux, respectively, and N is the buoyancy frequency. (These quantities will
be formally defined in § 2.) Typically, values less than 0.1 are classified as plumes,
and values greater than 2 are classified as jets; injections with intermediate values are
variously described as ‘buoyant jet’ or ‘forced plume’. We examine experimental data
for the maximum rise height, Zmax, and final intrusion height, ZT .

Mirajkar et al. (2015) and Sutherland & Hong (2016) both considered the injection
of water with varying particle content into linearly stratified tanks. Mirajkar et al.
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conducted all their experiments at a single value, (M0/B0)N = 0.87, whilst Sutherland
and Hong used values between 1.31 and 2.17; thus, these emissions correspond to
forced plumes. Mirajkar et al. fitted their data with an empirical expression for the
maximum rise:

Zmax =

{
4.4− 450

C0Ws

(B0N)1/4

}
(B0/N3)1/4, (1.1)

where Ws is settling velocity, indicating the reduction in maximum height with particle
concentration. The maximum height for particle-free plumes, 4.4(B0/N3)1/4, is larger
than that cited by Morton et al. (1956), where the constant is 3.79. The difference
arises from the fact that Mirajkar et al.’s experiments used buoyant jets rather than
pure plumes. Sutherland & Hong (2016) proposed an empirical fit to their data for
the intrusion height of the form

ZT/HP = f (M0N/B0), (1.2)

where HP= (M3
0/B

2
0)

1/4 is a characteristic height above the source at which buoyancy
effects begin to dominate over momentum. They also measured particle deposition
from the intrusion layer as a function of radius, noting the effect of sedimenting
particles being drawn back toward the plume by entrainment, and developed a particle
trajectory model for recycling.

Carrazzo & Jellinek (2012) injected particle-laden jets into a two-layer salinity-
stratified tank. Higher-velocity jets penetrated the interface between salt and fresh
water (to an initial height dependent on their momentum and the ambient density
step) and then fell back to spread as an ‘umbrella cloud’ along the interface. Different
particle loading and source Froude numbers provoked various sedimentation regimes,
from stable plume (but with particle cloud instabilities in the umbrella cloud) to total
collapse. In contrast to the other experiments noted above, Carrazzo and Jellinek used
negatively buoyant sources; for large particles this led to complete collapse of the
turbulent fountain, subsequently spreading as a bed gravity current. This is a rather
different mechanism from that envisaged in the present paper.

In this paper we model the development of particle concentration in a plume
over time, following it to the point of either steady intrusion height or plume
collapse. There are two levels of modelling: an integral plume model with discrete
particle-recycling events in § 2, and a more advanced numerical model in § 3. In
§ 2 we first recap integral models for homogeneous plumes. Past formulations have
used various different forms for some terms (e.g. including or not a factor of π
in some fluxes, including or not the entrainment coefficient in the non-dimensional
scaling, and using top-hat or Gaussian-plume profiles). This leads to some confusion,
so here we restate all the key equations and results in a coherent form. We also
identify an invariant in the case of linear stratification that appears not to have been
noticed hitherto in the literature. We then develop a model of particle re-entrainment,
which gives initial estimates of conditions and time scales for plume collapse, and an
estimate of the effect of particle loading on final height for non-collapsing plumes. In
§ 3 we develop, and show results for, a more detailed numerical model, with simplified
CFD (computational fluid dynamics) used to solve a concentration equation in the
region outside the plume. This allows us to calculate both the time development of
the particle distribution and the effect of re-entraining particles on plume buoyancy
and intrusion height (including time to collapse), as well as particles falling out
during the rise phase. Finally, in § 4, we discuss our results and the implications for
practical applications.
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2. Simple plume model and estimates of collapse conditions
2.1. Non-particulate plume model

We assume an isolated plume emerges from a buoyant source, with initial total
buoyancy B0 rising in an unconfined, stationary, stratified ambient fluid of buoyancy
frequency N. For simplicity, we focus on the case where fluxes of mass and
momentum at the source are zero, so that we have a ‘pure’ plume rising from a
point source. In many practical cases with a source of finite size, the results will be
very similar, provided that one integrates back to a ‘virtual origin’ and the vertical
distances are offset appropriately. This type of flow has been studied by many
authors since the seminal paper of Morton et al. (1956), with the problem closed
by assuming that the horizontal entrainment velocity of ambient fluid into the plume
is proportional to the local vertical plume speed, W, their ratio being called the
‘entrainment coefficient’, α (Turner 1986). Models typically assume either a ‘top-hat’
formulation, where fluid properties are assumed to jump from the ambient values
outside the local plume radius, R, to constant local plume values inside, or Gaussian
profiles, where velocity, density deficit and (in principle) particle concentration have
an exp(−r2/R2) dependence and W and g′ signify values on the plume centreline. In
this section, in order to extract information from past literature, we allow for either
scenario, but later sections will use exclusively top-hat profiles. Writing Q(= πR2W)
for the volume flux, M(= QW/γ ) for the specific momentum flux and B(= Qg′/γ )
for the specific buoyancy flux, with γ = 1 for top-hat and γ = 2 for Gaussian plumes,
we have the classic equations:

dQ
dZ
= E,

dM
dZ
= g′A,

dB
dZ
=−N2Q,


(2.1)

where entrainment rate (E), cross-sectional area (A) and reduced gravity (g′) are given
by

E= 2πR · αW, A=πR2, g′ =
ρa − ρ

ρ0
g, N =

(
−

g
ρ0

dρa

dZ

)1/2

. (2.2a−d)

Note that g′ is the local reduced gravity, referenced to ambient density ρa at that
height, and not the global reference density ρ0. In this section we assume that N is
constant.

Reflecting differences in the literature, we non-dimensionalise in two stages: with
and without entrainment coefficient α in the scaling. First we use dimensional scales
B0 and N to give

dQ̃

dZ̃
= 2α

√
γπM̃,

dM̃

dZ̃
=

B̃Q̃

M̃
,

dB̃

dZ̃
=−Q̃,


(2.3)
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where
Q=QsQ̃, M =MsM̃, B= B0B̃, X= LsX̃, (2.4a−d)

Qs = (B3
0/N

5)1/4, Ms = B0/N, Ls = (B0/N3)1/4. (2.5a−c)

The non-dimensional entrainment constant α appears in the first of (2.3) only. An
α-independent problem may be derived by a second, α-dependent, scaling as

Q= qsq, M =msm, B= B0b, Z = lsz, (2.6a−d)

qs =
√
αQs, ms =Ms, ls =

1
√
α

Ls = α
−1/2(B0/N3)1/4, (2.7a−c)

to give:
dq
dz
= 2
√
γπm,

dm
dz
=

bq
m
,

db
dz
=−q.


(2.8)

Note, however, that for this second non-dimensionalisation the horizontal scale is α
times the vertical scale, since absolute radius R and height Z are given by

R=
√
αLs

q
√
γπm

, Z =
1
√
α

Lsz. (2.9a,b)

Note also that entrainment coefficients reflect the choice of reference velocity for the
plume profile. From (2.3),

αtop-hat =
√

2× αGaussian. (2.10)

Since the turbulent entrainment mechanism is different, α also depends on the type of
injection. Typical values of α for a Gaussian plume are 0.054 (jets) and 0.083 (plumes)
– see Turner (1986). The corresponding values for top-hat profiles are 0.076 and 0.12,
respectively.

Figure 2 shows the result of integrating (2.8) (with top-hat profiles: γ = 1) from
an origin where the volume and momentum fluxes are zero. The plume has the same
density as the ambient fluid at a height of 1.038ls, although the plume will overshoot
this, as velocity does not become zero until 1.366ls. Corresponding values for a
Gaussian plume, γ = 2.0, are 0.87ls and 1.15ls, as in Morton et al. (1956) – the
different (by a factor of 21/4) rise values in non-dimensional variables reflecting the
different α values for the different assumed plume profiles and reference velocities.
The volume fluxes at the start and end of the overshoot region are 2.49qs and 3.52qs
(for top-hat plumes) whilst the momentum fluxes at corresponding positions are
precisely B0/N and 0 and the buoyancy fluxes are 0 and −B0 for both types of
plume profile (see § 2.2 below).

The plume model is not strictly applicable in the overshoot region, as the plume
fluid falls back around the rising plume as a ‘curtain’, raising the density of fluid
entrained into the rising column above that of ambient fluid. However, for pure
plumes, the effect appears to be small. The laboratory experiments reported in
Morton et al. (1956) suggest, when extrapolated to a pure plume, a maximum rise
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FIGURE 2. (Colour online) Top-hat integral model for a pure plume; (a) volume,
momentum and buoyancy fluxes; (b) radius, velocity and reduced gravity. Variables scaled
according to (2.6).

of Zmax = 3.79(B0/N3)1/4 and an entrainment coefficient (assuming Gaussian-plume
profiles) of 0.093. Translated to the notation of the present paper this implies a
maximum height of 1.16ls. This is extremely close to that cited above for the
Gaussian-plume zero-momentum level, suggesting that, despite the deficiencies of the
entrainment assumption in the overshoot region, the maximum height of rise, Zmax, is
close to that by direct integration: 1.15ls for Gaussian, or 1.37ls for top-hat, plume
profiles, respectively.

The curtain of plume material, being negatively buoyant, falls back around the rising
core, entraining some ambient fluid and feeding an intrusion layer where the density
matches the surrounds. A model for this has been proposed by Carrazo, Kaminski &
Tait (2010), but in the context of negatively buoyant turbulent fountains. However, the
available experimental evidence suggests that, for pure plumes, the amount of ambient
fluid entrained in the overshoot region is much smaller than that in the rise phase,
probably because, unlike forced plumes, relative velocities in this region are smaller
and the interface between plume and ambient fluid is stably stratified. For the height
of the intrusion layer, ZT , Richards et al. (2014) cite ZT = 2.7(B0/N3)1/4 for a pure
plume. Accepting the maximum rise height Zmax in the previous paragraph, this implies
ZT/Zmax= 0.71. Mirajkar et al. (2015), with forced plumes, cite similar ratios: 0.68 for
single phase, or 0.75 with particle loading, the larger being primarily a consequence
of particle re-entrainment depressing the maximum height of rise. The ratio of neutral-
buoyancy height to maximum rise height for our naively integrated plume equations
is 0.76, not substantially different from these ratios.

We conclude then that, despite its formal inapplicability in the overshoot (fountain)
region, for pure plumes a simple integral plume model is consistent with an initial
maximum rise predicted from the zero-momentum level (WT = 0) and an intrusion at
the zero-buoyancy level (BT = 0) in the plume. This is unlikely to be true for buoyant
jets, since the enhanced momentum is expected to lead to more substantial entrainment
in the overshoot region.

2.2. Invariants
Before addressing particle-laden plumes, we note two invariants in special cases.
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In an unstratified environment, the last of (2.1) gives constant buoyancy flux:

B= const. (2.11)

This is widely used, but not relevant to the stratified environment here.
In a uniformly stratified environment (N = const.) the last two equations of (2.8)

can be combined and rearranged to give, for the α-scaled variables:

d
dz
(b2
+m2)= 0. (2.12)

Hence, in α-scaled variables,

b2
+m2

= const. (2.13)

The corresponding result in dimensional variables is a second (and surprisingly, but
as far as we can tell, not hitherto highlighted) invariant

B2
+N2M2

= const. (2.14)

As a corollary, for a pure plume (m0 = 0, b0 = 1), then at the neutral-buoyancy level
(b= 0) one must have

m= 1, (2.15)

whilst at maximum rise (m= 0),

b=−1. (2.16)

Thus, if the plume equations were to be integrated to the point of zero vertical velocity
then the buoyancy here would be equal and opposite to that at the source (figure 2a).

2.3. Intrusion layer
The concentration of particles within the spreading intrusion is assumed to be
axisymmetric, and the local volumetric flux of particles through the bottom of the
intrusion is assumed to be given by fall speed Ws multiplied by particle concentration
(figure 1). Assuming, first of all, that there is negligible entrainment of ambient fluid
in the overshoot region or the spreading intrusion, the volumetric concentration of
particles in the intrusion, C(r), can be found (Sparks et al. 1991):

d(QTC)
dr

=−2πrCWs, (2.17)

where r is radius and QT is the volumetric flux in the plume at the intrusion height ZT
(hence also the radial volume flux in the intrusion). The solution matching the plume
radius RT at the intrusion height is

C=CTe−(πWs/QT )(r2
−R2

T ). (2.18)

This profile has been used in the past for intrusions forming a free-surface gravity
current, as in laboratory studies of plumes injected into unstratified fluid (Sparks et al.
1991; Veitch & Woods 2000). However, it assumes that the volume flux entering the
intrusion layer is the same as that in the plume just below this layer. For the present,
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stratification determined, intrusions we can allow for additional particle free, and
hence less dense, fluid entrained in the overshoot region. If we suppose an additional
volume flux εQT to be entrained here, then the total volume flux entering the intrusion
layer is (1+ ε)QT and the initial concentration is CT/(1+ ε). Equation (2.18) is then
amended to read:

C=
CT

1+ ε
e−(πWs/(1+ε)QT )(r2

−R2
T ). (2.19)

The fraction ε links the buoyancy at the top of the plume, BT , and the distance
between the maximum height in the fountain and the intrusion level, both of which
can, in principle, be parameterised experimentally. If we estimate the averaged
entrained density as that in the ambient fluid half-way between these levels and
equate the resulting density of plume fluid entering the intrusion to the ambient fluid
density at intrusion height then we have, from mass flux divided by volume flux
entering the intrusion:

ρTQT +

(
ρa(ZT)+

1
2
(Zmax − ZT)

dρa

dZ

)
εQT

(1+ ε)QT
= ρa(ZT), (2.20)

or, after rearrangement and rewriting in terms of buoyancy flux and buoyancy
frequency:

BT =−
1
2(Zmax − ZT)(εQT)N2. (2.21)

Thus, the height of the intrusion layer ZT (with corresponding buoyancy BT = B(ZT))
and maximum initial height, Zmax, are intimately related to the additional volume flux
entrained, εQT . If Zmax and ZT can be determined experimentally, then the ratio, ε,
of ambient fluid entrained in the overshoot region to that below the intrusion can be
obtained. Conversely, for any given ε, ZT can be determined numerically from (2.21)
and the integral plume solution by noting that the quantity

B+ 1
2(Zmax − Z)(εQ)N2 (2.22)

varies monotonically from positive at the neutral-buoyancy level, to negative at Zmax.
In the remainder of the paper we will retain ε as a free parameter in order to

investigate the effect of the overshoot region. However, we also note the evidence
presented at the end of § 2.1, which suggests that, for pure plumes at least, BT , and
hence ε, is nearly 0. This is not the case for buoyant jets, because the experimental
evidence cited earlier indicates that the additional momentum increases the initial rise,
Zmax, and is likely to promote greater mixing in the overshoot region. To highlight
the effect that entrainment in the overshoot region could have, we plot graphs of
non-dimensional intrusion height (ZT/ls), intrusion-level plume buoyancy (BT/B0)
and critical source buoyancy ratio for particles (Pcrit – see § 2.4 below) against
ε in figure 3. The graphs show that entrainment in the overshoot region will, by
entraining slightly lighter fluid, lead to a modest increase in intrusion height ZT and
small negative values of BT . But, since the entrained fluid in this region is completely
particle free, the effect on Pcrit is more substantial.
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FIGURE 3. (Colour online) Effect of ε (ratio of volume flux entrained in the overshoot
region to that at the top of the plume) on (a) non-dimensional intrusion height, ZT/ls, with
maximum rise Zmax/ls shown by the dashed line; (b) non-dimensional plume buoyancy,
BT/B0, at intrusion height; (c) critical source buoyancy ratio Pcrit (see § 2.4).

2.4. Collapse of particle-laden plumes
In cases where the plume source contains particles, these particles will affect the
overall total buoyancy. We assume that the total buoyancy is given by B= BF + BP,
where BF is the buoyancy flux due to the plume fluid and BP is the buoyancy flux
(assumed negative) due to the particles. We write

P= |B0,P/B0,F| (2.23)

for the magnitude of the source buoyancy flux ratio (with 06P<1). In many previous
studies particles are assumed to have negligible effect on the flow (P� 1), but we
make no such assumption here. In this section (but not for our more detailed model
in § 3) we assume that the rising plume is sufficiently strong that particles remain
within the plume until it begins to spread as an intrusion.

Particles fall at their settling velocity, Ws, through the ambient fluid. As they fall
they are drawn towards the rising plume and those that fall from the intrusion at
less than a critical radius Rc are re-entrained rather than falling to the floor. To
calculate Rc it is necessary to integrate the effect of the horizontal entrainment of the
particles toward the plume centre line as the particles descend. Such an analytical
approximation to the critical radius has been described by Sparks et al. (1991),
Lane-Serff (1995) and Mingotti & Woods (2015) for a linearly stratified ambient
medium. By contrast, our formulation here, which was derived independently but
turns out to be a rephrased version of that in Veitch & Woods (2000), avoids making
assumptions about the ambient stratification or the vertical profile of plume radius or
entrainment velocity.

The ‘entrainment boundary’ distinguishing falling particles which may be re-
entrained into the plume from those which escape to be deposited on the ground
(figure 4) may be computed from a particle velocity given in radial/vertical coordinates
by

U=

−VeR
r

−Ws

 , (2.24)
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FIGURE 4. (Colour online) Re-entrainment region and particle fluxes.

where Ve is the entrainment velocity, r is the local radial coordinate and R is the
plume radius at that height. Then

dr
dZ
=

VeR/r
Ws

, (2.25)

or

2r
dr
dZ
=

2VeR
Ws
=

entrainment rate
πWs

; (2.26)

i.e.
dr2

dZ
=

1
πWs

dQ
dZ
. (2.27)

Hence, for a pure plume with r=Q= 0 at source:

r2
=

Q
πWs

. (2.28)

The critical radius Rc at intrusion height ZT is given by

R2
c =

QT

πWs
= R2

T
WT

Ws
, (2.29)

where WT is the upward velocity in the plume at this level. Note that this critical
radius depends only on the flow field generated by the plume below the intrusion
and not on fluid entrained in the overshoot (except, indirectly, in so far as that may
affect the intrusion height). This equation is equally valid in free-surface-limited and
stratification-limited cases.

In the intrusion layer, then, equation (2.19) can be written

C
CT/(1+ ε)

= e(Ws/WT )/(1+ε)e−(πWsr2/(1+ε)QT ) (2.30)
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and the proportion of particulate re-entrained is, with F the advective flux of
particulate:

Φ = 1−
F(Rc)

FT
= 1− exp(1/(1+ε))(Ws/WT ) exp

(
−

1
1+ ε

)
. (2.31)

In particular, if the particle settling velocity is small (Ws/WT� 1, or RT/Rc� 1) then
the proportion re-entrained is

Φ = 1− exp
(
−

1
1+ ε

)
. (2.32)

If there is no entrainment from the fountain, ε= 0, and this gives the proportion 0.632
derived by Veitch & Woods (2000). A key feature is that this is independent of plume
buoyancy, background stratification or particle settling velocity (provided the last is
small).

Equation (2.32) plays a critical role in establishing conditions for plume collapse.
We show below that the critical source buoyancy ratio, Pcrit is related to the residual
buoyancy flux BT in the plume at the height of the intrusion, which, as shown in § 2.3,
is related in turn to the amount of entrainment of particle-free fluid in the overshoot
region.

Consider first the particle flux F in plume or intrusion (figure 4). For heavy
particles, F is proportional to particle buoyancy flux BP. Following re-entrainment, a
particle flux F0 at source gives rise to a different particle flux FT at the top of the
plume (i.e. intrusion level). Flux ΦFT is recycled into the plume by re-entrainment,
whilst (1−Φ)FT escapes. In steady state the latter balances the source flux, so

F0 = (1−Φ)FT, (2.33)

or, in terms of particle buoyancy,

BT,P =
B0,P

1−Φ
, (2.34)

where subscripts T and 0 refer to top and source, subscripts P and F to particle and
fluid.

Now consider the total plume buoyancy (fluid + particles) at the intrusion level:

BT = BT,F + BT,P; (2.35)

i.e.
BT = (BT,F − B0,F)+ B0,F +

B0,P

1−Φ
. (2.36)

At source, by definition of the source buoyancy ratio,

B0,F =
B0

1− P
, B0,P =−P

B0

1− P
. (2.37a,b)

Substituting (2.37) in (2.36) gives

BT = (BT,F − B0,F)+
B0

1− P

(
1−

P
1−Φ

)
. (2.38)
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The first bracketed term on the right-hand side is negative (since the plume entrains
denser fluid), but becomes zero when the plume collapses (since then the ‘top’ T is
at the ground, 0). The critical value of P is then given, after rearrangement, by

Pcrit =
Φ ′(1− BT/B0)

1−Φ ′BT/B0
, (2.39)

where BT (6 0) is the plume buoyancy at the height of the intrusion layer and
Φ ′ = 1− Φ is the non-entrained fraction. These are, in turn, related via the volume
fraction ε entrained in the overshoot region, equations (2.21) and (2.32). Pcrit is
plotted as a function of ε in figure 3(c).

The minimum height that we might conceivably assign to the spreading layer is
the neutral-buoyancy height, BT = 0, occurring when ε= 0. Then we have a minimum
value of Pcrit for plume collapse:

Pcrit =Φ
′
|ε=0 = 0.368. (2.40)

We conclude that the plume will not collapse for any source buoyancy ratio smaller
than this. Moreover, as explained at the end of § 2.3, this is likely to be the critical
buoyancy ratio for pure plumes. We will show in § 3 that this bound is consistent with
a more detailed computational model.

For buoyant jets, however, the situation is more complex, as the greater momentum
throughout is expected to lead to both greater initial rise (Mirajkar et al. 2015) and
more mixing with particle-free fluid in the overshoot region. Equations (2.28)–(2.32)
require correction for a finite source, whilst Φ ′ and BT must be modified. If the
source is not large and the change to Zmax is not substantial, then figure 3(c) shows
the anticipated change in Pcrit with the entrained fraction from the overshoot region,
ε. This paper will primarily focus on pure plumes, but will investigate the effect of
overshoot-region entrainment in § 3.5.

2.5. Effect of particle sedimentation on the intrusion layer
In response to a reviewer’s comment, we address the effect on the intrusion layer of
its particle load being continually diminished by sedimentation. As particles drop out,
the overall density of the intrusion would be reduced, potentially leading to a layer
that was not horizontal but increased in height with radius.

To our knowledge this has never been observed experimentally. Any buoyant
tendency to rise would promote entrainment that quickly restored the neutral buoyancy
of the layer, albeit thickening it. Even if there were a resultant rise then, in the region
below the base of the intrusion, but above the original intrusion height, there would
be no horizontal entrainment into the rising plume, and so particles would drop
vertically until they reached the original intrusion height. Thus, apart from a small
extra fall time, there is no significant effect on the re-entrainment process, and the
model of § 2.4 (where we assumed a horizontal intrusion) will give the correct results
for the recycled fraction, at least for a quasi-steady flow.

Even if no entrainment into the intrusion took place and it rose with radius, we
can place an upper bound on any rise at the critical radius (the maximum distance at
which it can have any effect on the re-entraining part of the flow). Any entrainment in
the overshoot region inevitably dilutes the particle concentration. Hence, the maximum
effect of particle dropout on intrusion density will occur if the intrusion height ZT is
where the plume first reaches overall neutral buoyancy, BT = 0, In this case we have
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B(F)T =−B(P)T . At the critical radius, the particle buoyancy in the intrusion is the same
as that at the source, B(P)0 . Thus, the buoyancy in the intrusion at the critical radius
is (see (2.34) and (2.37)):

B= BT,F + B0,P =−BT,P + B0,P =−
Φ

1−Φ
B0,P =

Φ

1−Φ
P

1− P
B0. (2.41)

At P=Pcrit this is just B0. The density contrast is proportional to the buoyancy divided
by the volume flow rate. The height the intrusion needs to rise to match the ambient
density in this case is then (in α-scaled units) zrise = 1/qT , where qT = 2.49 is the
non-dimensional volume flux where the plume reaches neutral density, and thus zrise=

0.402 (compared with an initial non-dimensional intrusion height zT = 1.038). Initial
particle loads below the critical value will lead to smaller changes in intrusion height.

We reiterate that we do not expect the rise to happen, and that, even if it did, it
would have no effect on the criterion for plume collapse and a very minor effect on
the time to collapse.

2.6. Time to collapse
The entrainment of particles into the plume reduces the overall buoyancy of the rising
plume and depresses the intrusion height from its initial value. The intrusion height
will tend to a steady non-zero value if P is smaller than the critical value, while the
intrusion height will reach zero in a finite time for values of P larger than the critical
value. We can estimate the change in intrusion height by estimating the overall change
in buoyancy flux (since the heights scale with the quarter power of the buoyancy flux)
while the time scale for the recycling process depends mostly on the fall time (which
is much longer than the rise time in the plume or spreading time in the intrusion). The
fall time is given by the intrusion height divided by the fall speed and diminishes as
the intrusion height diminishes.

In a simple model we imagine successive discrete particle-recycling events,
occurring at the time intervals over which a particle falls with velocity Ws a distance
equal to the varying intrusion height ZT . The particulate contribution to buoyancy at
the top of the plume after n recycling events is (cf. (2.34)):

B(n)T.P = B0,P(1+Φ +Φ2
+ · · · +Φn)= B0,P

(
1−Φn+1

1−Φ

)
. (2.42)

Since the particle flux is added to the plume throughout its height, it is not
straightforward to use the flux at source in an estimate of the changing intrusion
height. However, the following is consistent with the requirements that: (i) the
intrusion height Z(n)T scales (in some sense) as (buoyancy)1/4; and (ii) Z(n)T → 0 as
n→∞ for plumes that just collapse:

Z(n)T = Z(0)T

(
B0,F + B(n)T,P − BT

B0,F + B0,P − BT

)1/4

. (2.43)

If we take the case of BT = 0 in (2.43) this gives intrusion heights that are the same
as those predicted by injecting all the buoyancy flux from the entrained particles at
the source, corresponding to the quickest collapse or lowest final intrusion height.
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Using (2.37) for B0,F and B0,P, equation (2.39) for BT , and (2.42) for B(n)T.P:

Z(n)T = Z(0)T

(
Φn
−µ

1−µ

)1/4

, (2.44)

where, with Pcrit the critical source buoyancy ratio for collapse given by (2.39),

µ=
1−

Pcrit

P
1− Pcrit

. (2.45)

Consider first the marginal case where the plume just collapses: P = Pcrit or µ = 0,
and

Z(n)T = Z(0)T Φ
n/4. (2.46)

This appears to approach Z(n)T = 0 asymptotically. However, as the fall time is reduced
at each recycling, complete collapse is actually obtained in finite time. Summing the
first n recyclings, with fall time during the nth recycling, 1t(n) = Z(n−1)

T /Ws:

t(n) =
Z(0)T

Ws

(
1−Φn/4

1−Φ1/4

)
. (2.47)

Rearranging for Φn/4 and substituting in (2.46) gives for the intrusion height ZT :

ZT = Z(0)T − (1−Φ
1/4)Wst. (2.48)

With Φ = 0.632 this gives an estimate of time to collapse for the marginal case as

tcollapse = 9.23
Z(0)T

Ws
. (2.49)

Equations (2.44) and (2.45) confirm that if P < Pcrit (µ < 0) there is no collapse,
whereas if P> Pcrit (µ> 0) plume collapse is faster than the critical case.

In the non-collapsing case (µ< 0) the model produces an estimate of the ratio of
final to initial intrusion height:

ZT

Z(0)T

=

(
|µ|

1+ |µ|

)1/4

. (2.50)

In the collapsing case, with P > Pcrit, the time to collapse can be estimated by
summing (numerically) fall times 1t(n) = Z(n−1)

T /Ws. This depends on Pcrit, which
is determined from the volume fraction ε entrained in the overshoot region via the
re-entrained particulate fraction Φ and residual buoyancy ratio BT/B0 ((2.21), (2.32),
(2.39); figure 3). Typical behaviour is illustrated in figure 5. Collapse time increases
markedly near the critical value of P, but does not exceed the limiting values from
(2.48) for each value of Φ.

This idealised model makes the assumption that individual recycling events occur
at discrete time intervals Z(n)T /Ws, whereas, in reality, particles are re-entrained
continuously in time over the full depth of the plume, the greatest particle
re-entrainment occurring (at the shortest time interval) near the top of the plume.
An advanced model seeks to provide a more accurate picture of events in § 3 below.
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FIGURE 5. (Colour online) Time to collapse versus source buoyancy ratio P for different
degrees of entrainment in the overshoot region.
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FIGURE 6. (Colour online) Schematic of PLUME and FIELD regions.

3. Numerical model of concentration evolution
3.1. Overview

A computational model has been developed to supplement the simple analytical
modelling in § 2. This advanced model offers several major advantages over the
simple model of § 2; it enables the temporal evolution of plume and particle cloud to
be followed, including the time to collapse; it incorporates time-dependent changes
to plume density due to particulate re-entrainment; for heavier particles it can
accommodate fallout from the plume during the rise phase. (Although not tested
here, it would also admit an arbitrary ambient density profile.)

The model has two components (figure 6): a PLUME component consisting of
an integral plume model and a horizontal intrusion, where plume rise is limited by
ambient stratification; and a FIELD component where a time-dependent advection
equation is solved by a two-dimensional, axisymmetric finite-volume approach for
the concentration of particulate material falling out of the horizontal layer and being
partially re-entrained into the plume.
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These two components are coupled. The PLUME model supplies plume radius
as a function of height, as well as the height of the spreading horizontal layer,
the entrainment velocity at the plume boundary (which determines the horizontal
velocity field outside) and the concentration distribution in the horizontal layer (2.19).
The time-dependent FIELD model supplies the ambient concentration at the plume
boundary, which is used to determine entrainment of particulate into the plume.

Assuming plume rise velocities to be much larger than particle settling velocity,
it is sufficient that within each time step there be a single update of the quasi-
static integral PLUME equations with current ambient conditions of density and
concentration, followed by an update of the FIELD component.

3.2. PLUME model
In this section, the following integral plume equations are solved for volume flux Q,
specific momentum flux M=WQ, mass flux ṁ=ρQ and particle volume flux F=CQ:

dQ
dZ
= E,

dM
dZ
= g′A,

dṁ
dZ
= ρaE,

dF
dZ
=CbE′.


(3.1)

Here, E is the entrainment rate, given by

E= 2πR · αW, (3.2)

and other quantities in the first two equations are as in § 2.
In the third equation we solve for the mass flux ṁ= ρQ, rather than the buoyancy

flux B used in § 2. These are related by

B=
ρa − ρ

ρ0
gQ=

1
ρ0
(ρagQ− ṁg). (3.3)

We solve for mass flux rather than buoyancy flux in this section because it is
computationally more tractable and permits the surrounding particulate concentration
to change the density of entrained material, ρa.

In the last of (3.1) the net entrainment of heavy particles is, for consistency with
the treatment at the boundary of the FIELD region, adjusted for the tendency to fall
out of the plume:

E′ = E−Ws
dA
dZ
, (3.4)

and the boundary value Cb is given by

Cb =

{
Ca (ambient concentration) if E′ > 0,
C (plume concentration) if E′ < 0.

(3.5)
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Finally, we note that, since A = Q2/M, it is computationally advantageous to avoid
division by zero by solving the second of (3.1) for M2 rather than M:

dM2

dZ
= 2g′Q2. (3.6)

With these qualifications, the system of (3.1) is written in vector form as

dY
dZ
=F, (3.7)

and solved by the second-order implicit Euler method:

Y(Z +1Z)= Y(Z)+
1Z
2
[F(Z, Y(Z))+F(Z +1Z, Y(Z +1Z))]. (3.8)

The height of the horizontal intrusion is determined as in § 2.3, following (2.21). It is
formally a function of the ratio, ε, of the volume of fluid entrained in the overshoot
region to that below the intrusion; however, the majority of calculations to be reported
here use ε= 0 (corresponding to BT = 0), with an examination of the effect of above-
intrusion entrainment in § 3.5.

Although quasi-static, the plume equations have to be solved afresh at each time
step as the ambient particulate concentration changes and affects the overall density
of material entrained into the plume:

ρa = (1−Ca)ρa,F +CaρP, (3.9)

where ρa,F is the ambient fluid density, ρP is particle density and Ca is the ambient
concentration (by volume). The last is supplied at the plume boundary by the FIELD
model.

For the integral plume calculation we used a step size 1z/Ls = 0.0005, which was
found to be adequate for grid-independent solutions for an isolated plume. Integration
was carried out to the height of zero rise velocity, beyond that necessary for the
intrusion height.

3.3. FIELD model
In the FIELD model a time-dependent axisymmetric finite-volume approach, with
curvilinear grid, is used to calculate concentration in the region external to the plume:

∂C
∂t
+
∂

∂r
(rUrC)+

∂

∂z
(rUZC)= 0. (3.10)

The mesh (shown schematically in figure 6) is delimited by the plume boundary,
the intrusion layer (whose height may change with time), an outer boundary (fixed,
by trial, at the greater of 10Ls and the critical radius) and the ground. Dimensions,
determined by grid-independence checks in collapsing and non-collapsing cases, was
800× 80 (horizontal × vertical), with uniform distribution along each horizontal and
near-vertical line.

The relative velocity field of particulate material is determined by the entrainment
velocity at the plume boundary R (but falling off as 1/r) and the settling velocity of
particles: (

Ur
UZ

)
=

−Ve(z)
R(z)

r
−Ws

 . (3.11)
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The small downward velocity of cell faces as the intrusion layer descends could be
included in a ‘moving-grid’ approach. However, this is considered sufficiently small
here to be neglected. It does not affect the end state.

Dirichlet boundary conditions are supplied at inflow boundaries:

C=Ctop(r) at upper boundary (2.19);
C= 0 at outer boundary.

}
(3.12)

To maintain conservation and for consistency with the plume model (3.4) and (3.5),
where there is net positive particle inflow E′ to the plume zero-gradient boundary
conditions are applied to the FIELD region at the plume boundary and supply the
‘ambient’ concentration Ca; conversely, where, due to significant fallout, there is net
efflux from the plume this switches locally to Dirichlet conditions, with boundary
concentrations those in the plume. At the ground, Neumann boundary condition
conditions give the deposition flux.

Equation (3.10) is solved for cell-centre concentrations by a standard iterative
approach (alternating direction implicit, with tridiagonal solver along coordinate
lines), using first-order upwinding for advection and backward differencing for the
time derivatives. With these schemes the system of algebraic equations is very
diagonally dominant and converges within a few iterations at each time step. Typical
computation times (up to a constant final-layer height or complete collapse) were
a few minutes on a desktop PC, longest times being required for source buoyancy
ratios near the critical value.

3.4. Results
Calculations were carried out for the ‘pure plume’, constant-buoyancy-frequency
scenario of § 2. This idealised case (source Q = 0, M = 0, B0 = 1, N = 1, in units
scaled by source buoyancy and buoyancy frequency) is realised computationally by
computing source fluxes from a virtual source just below ground level. The results
in this section employ a varying particle-to-fluid source buoyancy ratio P (2.23). In
this subsection, the height of the horizontal intrusion is taken to be that for which
entrainment of particle-free fluid in the overshoot region is negligible, ε≈ 0, whence
the plume’s intrusion-height buoyancy BT = 0. The critical source buoyancy ratio is
Pcrit = 0.368. For an investigation of the effect of overshoot-region entrainment, ε > 0,
see § 3.5.

Figure 7 shows the final concentration distribution for a series of source buoyancy
ratios P over which the plume behaviour changes from almost unperturbed by
particulate to completely ‘collapsed’. In these simulations the settling velocity is
0.01Us and the entrainment coefficient α = 0.12. Here, Us is a velocity scale based
on the exact solution for a plume in an unstratified environment but at height
ls = (1/

√
α)Ls (vertical scales as in (2.5) and (2.7)):

Us =

(
25

48π

)1/3

α−(1/2)(B0N)1/4. (3.13)

To avoid distorted horizontal and vertical scaling, when scaled on source buoyancy
B0 and ambient buoyancy frequency N, horizontal and vertical lengths in the plots of
figure 7 are effectively non-dimensionalised by Ls (not ls). Later figures will use the
α-dependent scale ls.
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FIGURE 7. (Colour online) Final concentration distribution for various values of
particle-to-fluid source buoyancy ratio P; lengths non-dimensionalised by Ls = (B0/N3)1/4.

Figure 8 shows the variation of the intrusion height (relative to its initial value)
in time units which are multiples of the initial fall time (z0/ws). In all cases the
height of the intrusion layer is reduced because re-entrainment of particles diminishes
the overall buoyancy of the plume (see also figure 9). There is a marked change in
behaviour between P = 0.36 (non-collapsed) and P = 0.4 (rapid collapse), consistent
with Pcrit = 0.368. The near-critical state, P= 0.38, takes an exceptionally long time
to reach its final depth.

There are opportunities here to compare with the very simplified analysis of §§ 2.4
and 2.6 for marginal collapse, time to collapse and final intrusion height. With the
intrusion height set at the neutral-buoyancy level, our predicted critical P of about
0.37 is indeed observed here. Qualitatively, we note the very substantial increase in
collapse time for marginal cases, as predicted in § 2.6. The time scale for collapse
in the case P= 0.4 is slightly larger than that predicted by (2.49), indicating that the
discrete-recycling-times model, whilst indicating qualitative behaviour, underestimates
the time for the intrusion height to diminish. In terms of the effect of particle loading
on intrusion height for non-collapsed plumes, the simple buoyancy-based model
of § 2.6 slightly underpredicts the reduction in height. For source buoyancy ratios
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FIGURE 8. (Colour online) Time variation (as multiple of initial fall time) of horizontal-
layer height (as multiple of initial height) for various values of particle-to-fluid source
buoyancy ratio P.
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FIGURE 9. (Colour online) Final height of the intrusion layer as a function of source
buoyancy ratio P: (a) variation with settling velocity ws; (b) variation with entrainment
coefficient α.

P= 0.1, 0.3 and 0.36, equation (2.50) predicts final-height factors 0.95, 0.72 and 0.43
respectively, which are slightly larger than the ratios 0.93, 0.62 and 0.34 observed in
figure 8.

For the particle loads considered, there was no evidence of oscillatory plume
collapse/recovery cycles such as those observed (in an unstratified medium) by Veitch
& Woods (2000).

Figure 9 shows the final height of the intrusion layer as a function of P for different
settling velocities and entrainment coefficient α. When intrusion height is normalised
by the α-dependent height scale ls all curves collapse, confirming the efficacy of this
scaling. Although the time scales are not indicated by these final heights, even small
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FIGURE 10. (Colour online) Variation of intrusion-layer height with source buoyancy ratio
for different degrees of entrainment in the overshoot region.

particle load is observed to depress the intrusion height. However, the most significant
change occurs within about 5 % of the critical value Pcrit = 0.368.

3.5. Effect of entrainment in the overshoot region
For stratification-limited plumes, the final intrusion height is affected by the amount of
entrainment of particle-free fluid in the initial overshoot region, since this determines
the density of fluid which forms the intrusion. In § 2.3 we formulated a relationship
between the intrusion height, ZT , (and hence buoyancy BT) and the ratio, ε, of volume
entrained in the overshoot region to that in the sub-intrusion rise. We noted that (a)
for pure plumes, experimental evidence is that ε is near zero, but that (b) critical
source buoyancy Pcrit would vary fairly rapidly with ε, because the entrainment in
the overshoot region is, by contrast with that below it, particle free. Thus, for any
future investigation of buoyant jets, where, due to momentum, the entrainment in
the overshoot region is likely to be more substantial, it is important to examine the
potential effect of ε on collapse behaviour.

Using constant values Ws/Us = 0.01 and α = 0.12, figure 10 shows the variation
of final height with source buoyancy ratio P for various overshoot-entrainment ratios
ε. Note that the time-varying maximum height Zmax is required to compute the
intrusion height (2.21), and this is still determined as the zero-momentum level in the
integral plume model. In each case, the plume collapses abruptly as a critical value
of P is approached. These critical values are consistent with those deduced earlier, in
figure 3(c). The graph confirms that entrainment in the overshoot region makes only
a small relative difference to final intrusion height, but a more substantial increase
to Pcrit.

4. Conclusions
The paper starts by recapitulating a simple top-hat model for particle-free plume rise

in a stratified environment. Judicious scaling based on source buoyancy, B0, ambient
buoyancy frequency, N, and entrainment constant, α, reduces this to a universal set
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of equations and (for a pure plume) boundary conditions. In linear stratification, an
additional invariant (B2

+ N2M2, where M is specific momentum flux) reduces the
problem further.

Particle loading is then considered. Using an expression for the fraction re-entrained
into the plume during settling, conditions for plume collapse are deduced, based on
the particle-to-fluid source buoyancy ratio, P, and the plume buoyancy at the height
of the intrusion layer. The latter is dependent on entrainment of ambient fluid in
the overshoot region and an expression relating final height to entrainment above
intrusion height is deduced. For pure plumes, comparison with experiment suggests
that this additional entrainment is small and the critical source buoyancy ratio for
small particles is Pcrit = 0.368. Where there is significant source momentum, the ratio
of the volume entrained in the overshoot region to that below intrusion height, ε,
is expected to be larger. A model is developed which shows that this leads to only
a modest increase in intrusion height, ZT , but a much more significant increase in
the critical source buoyancy ratio Pcrit. A simple estimate of time to collapse is also
made, based on the number of re-entrainment cycles required to depress net plume
buoyancy below that which can sustain a plume.

A more complex numerical model is then introduced, consisting of two parts:
a quasi-static integral plume model for the rising plume (topped by a horizontal
intrusion layer) and a time-dependent advection equation for particle concentration in
ambient fluid, with the horizontal flow field determined from the entrainment velocity
on the plume boundary. The model allows study of the time dependence of the
particle distribution and plume, as well as incorporating particle-concentration effects
on the density of entrained material. Comparison with the simpler model shows
very good agreement for the minimum source buoyancy ratio P at which plume
collapse occurs, but indicates that the time to collapse is greater than that assuming
discrete recycling intervals. Modest agreement is obtained for the final intrusion
height of non-collapsing plumes. Once scaled on ls = α

−1/2(B0/N3)1/4, plume height
and particle-driven collapse criteria are insensitive to particle settling velocity and
entrainment coefficient. Allowance for entrainment in the overshoot region confirms
the effects on intrusion height and critical buoyancy ratio proposed in the simpler
model.

Both models are considerable simplifications. A top-hat model is used for plume
variables; although it would be relatively straightforward to incorporate a more
general profile (e.g. Gaussian) for the fluid component, this is unlikely to reflect the
distribution of heavy particles which, due to re-entrainment, are more concentrated
on the margins. The model depends on the entrainment assumption (and, in the case
of particulate, its ability to predict the horizontal velocity field outside the plume).
There is no background current; the ambient fluid is essentially stationary. Particles
have a uniform size and settling velocity (although, again, it would be straightforward
to amend the numerical model to deal with several different particle concentrations,
each with different particle density and settling velocity). There is still imprecision in
assigning the height of the intrusion layer, as experimental data are not yet sufficient
to guide this in the case of particle-laden plumes. In reducing the requirements for
setting it to the ratio ε of fluxes entrained above the intrusion height to that in the
plume, we specify a physically interpretable parameter which we believe potentially
measurable and parameterisable.

Despite the simplifications, we believe that the modelling presented here provides
a useful guide to the transient behaviour of particle-laden plumes in a stratified
environment. The focus has been on pure plumes in linearly stratified environments
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(although the detailed computational model actually has neither of these restrictions)
and thus is suitable for further investigations on forced plumes (with significant
source momentum, and likely higher entrainment in the overshoot region) and more
complex stratification.
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