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A NOTE ON CONVERGENCE OF FOURIER 
SERIES OF A FUNCTION ON 

WIENER'S CLASS Vp 

BY 

RAF AT N. SIDDIQI(1) 

1. Introduction* Let / be a 2 IT -periodic function defined on [0, 2ir]. We set 

Vp(/) = sup{£ \f(td-f(ti-i)\p\,P (l^p<«>), 

where suprema have been taken with respect to all partitions P : a = f 0 <f i< 
t2<- • • < tn = b of any segment [a, b] contained in [0, 2TT]. We call Vp

b
a(f) the 

pth total variation of / on [a, b]. If we denote pth total variaiton of / on [0, 2TT] 
by Vp(/), then we can define Wiener's class simply by 

V P ={/ :V p ( / )<œ}. 

It is clear that Vi is the ordinary class of functions of bounded variation, 
introduced by Jordan. The class Vp was first introduced by N. Wiener [5]. He 
[5] showed that functions of the class Vp could only have simple discontinuities. 
We note [3] that 
(1) V^cVp, ( l < P l < p 2 < o c ) 

is a strict inclusion. Hence for an arbitrary l<p<oo 5 Wiener's class Vp is 
strictly larger than the class Vi. 

2. Let fe Vp ( l<p<oo) and let 
oo 

S(f) = èao+ L (^n cos nx + bn sin nx) 
n = l 

be its Fourier series. Wiener [5] proved the following theorem. 

THEOREM A. If fe Vp ( l < p <<*>), then S(f) converges almost everywhere in 
[0,27r]. In particular, if feV2 then S(f) converges to eI/(x + 0) + / ( x - 0 ) ] at 
every xe[0,2TT]. 

In this note we extend the above theorem for the class Vp for every p and we 
give the simple proof of our following main theorem. 
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THEOREM. IffeVp (l<p«x>), then S(f) converges to è[/(x + 0) + / (x-0)] oi 
every xe[0, 2ir\ 

3. Proof. In view of (1), it suffices to prove our Theorem for p > 2. Suppose 
that 

/(*) = K/(* + 0)+/(x-0)]. 

Also suppose that 

fx(t) = f(x + t)-2f(x) + f(x~t). 

Then fx(t) is continuous at f = 0 and hence 

(2) lim sup{/x(r)} = 0. 

If we denote Vp ô C/x) the pth totai variation of fx on [0, 2TT], it can easily be 
verified [5] that 

(3) lim Vp(/X) = 0. 
e-*° o 

Let Sn(x) denote the nth partial sum of the Fourier series of / at the point x 
then 

sn(x)-f(x)=^-1 r*£j£fx(t)dt+o(i) 
Jo t 

(4) 
= » 1 ——fx(t)dt + o(l). 

fc=0 Jk-rr/n t 

By change of variable the above expression can be written 

. (.)-> r Pf (M!^^_/^y;i)^)1 sin ntdt+oil) 
Jo L/=i V t + 2/V/n f + (2j + l)ir/n /J 

1 + I sinmdf + o(l) = I„(e) + Jtl(e) + o(l). 
0 Lj = l [en]+lJ 
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We note here that 
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I 
Jo 

^"("^TM . 
tt-1 

r + 77 
n 

sin nf df = o(l), l 
Jo 

-<4+-i) 
77 

f + -

sin ntdt = o{\). 

We consider now 

| f , (e) | -
r J f - " / | V , ( . H - 2 , V W _ / . ( » + ( 2 / + l ) : M M s i n B | d [ 

LJo \>-i f + 2/Tr/n f + (2y + l)7r/n /J 

s ( , r ' - f ^ i / ,c+2,vM)- / .c+ (2 /+ i ) ^ i i s i n i i [ i i , 
Jo LA f+2777/n J 

1 r / n r v ] i/x0+(2/+i)7r/n)i 1 . 
"Jo L A ( ' + 277m)(' + (27 + l)7r/n)J 

= 7ni(e) + / J e ) . 
For l/p + l/q = 1, if we apply Holder's inequality on the sum of integrand of 
Jni(e), we obtain, 

r f *•/» /[en] \ l / p 

I n i ( £ )<(7rr i y yi |/x(t + 2;V/n)-/x(t + (2/ + l)7r/n)|pj 

( I b ^ T 1 s i n "'<*<• 
Using the definition of VPa(f) we obtain 

(5) /n i(e)^ 

Now consider the sum 

J*-"-/" 3e7T /[ej^] I 1 | q \ l / q 

À \|2;Vn|/ \2 J | 1 + 2 < i + 3« + " '+[en]"J ~ V2 J A n" ' 

but the series on right hand side converges for q>\, hence we can find a 
positive number M such that 

(6) 
Cy] 1—L.Y 
h \2Mnl 

•=Mnq. 

From (5) and (6) we obtain, 

(7) /n,(e) v; 
0 0 

Vp(/x)M1/qnsinnfdf = 0(l) (f(/,)); 
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and also 
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U«) = • i f 
n Jo 

tr/n " y [/,(* +(2 j + l)ir/n)| 

J=I (f+ 2;7r/n)(f + ( 2 / + !)''• 
7T 

sin nr dr 

(8) [ sup {fx(t)}] 

Hence from (7) and (8), we obtain 

|/n(8)| = o(l)(vp
e(/x)+ sup {/x(f)}). 

\ 0 0<t<3e7r / 

Taking limit as n -* oo and using (2) and (3) we obtain, 

(9) \In(e)\^K(e) if n>n(e), K(e)->0 as e -* 0. 

Similarly we can show that 

do) W*)l=^V/*)(^4] 
Therefore taking limits as n -» oo? We obtain, 

as n -> oo. 

[June 

lim sup|Sn(x)-/(jc)|<lim lim sup[|In(e)| + |/„(e)| + o(l)] 

which tends to zero from (9), (10), and (4). This completes the proof of our 
main Theorem. 
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