A NOTE ON CONVERGENCE OF FOURIER
 SERIES OF A FUNCTION ON
 WIENER'S CLASS V_{p}

BY
RAFAT N. SIDDIQI ${ }^{(1)}$

1. Introduction. Let f be a 2π-periodic function defined on [$0,2 \pi$]. We set

$$
\stackrel{b}{V_{p}}(f)=\sup \left\{\sum_{i=1}^{n}\left|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right|^{p}\right\}^{1 / p} \quad(1 \leq p<\infty)
$$

where suprema have been taken with respect to all partitions $P: a=t_{0}<t_{1}<$ $t_{2}<\cdots<t_{n}=b$ of any segment [a, b] contained in [$0,2 \pi$]. We call $V_{p}{ }_{a}^{b}(f)$ the p th total variation of f on $[a, b]$. If we denote p th total variaiton of f on $[0,2 \pi]$ by $V_{p}(f)$, then we can define Wiener's class simply by

$$
V_{p}=\left\{f: V_{p}(f)<\infty\right\} .
$$

It is clear that V_{1} is the ordinary class of functions of bounded variation, introduced by Jordan. The class V_{p} was first introduced by N. Wiener [5]. He [5] showed that functions of the class V_{p} could only have simple discontinuities. We note [3] that

$$
\begin{equation*}
V_{p_{1}} \subset V_{p_{2}} \quad\left(1 \leq p_{1}<p_{2}<\infty\right) \tag{1}
\end{equation*}
$$

is a strict inclusion. Hence for an arbitrary $1 \leq p<\infty$, Wiener's class V_{p} is strictly larger than the class V_{1}.
2. Let $f \in V_{p}(1 \leq p<\infty)$ and let

$$
S(f)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

be its Fourier series. Wiener [5] proved the following theorem.
Theorem A. If $f \in V_{p}(1 \leq p<\infty)$, then $S(f)$ converges almost everywhere in [$0,2 \pi$]. In particular, if $f \in V_{2}$ then $S(f)$ converges to $\frac{1}{2}[f(x+0)+f(x-0)]$ at every $x \in[0,2 \pi]$.

In this note we extend the above theorem for the class V_{p} for every p and we give the simple proof of our following main theorem.

[^0]Theorem. If $f \in V_{p}(1 \leq p<\infty)$, then $S(f)$ converges to $\frac{1}{2}[f(x+0)+f(x-0)]$ at every $x \in[0,2 \pi]$.
3. Proof. In view of (1), it suffices to prove our Theorem for $p>2$. Suppose that

$$
f(x)=\frac{1}{2}[f(x+0)+f(x-0)] .
$$

Also suppose that

$$
f_{x}(t)=f(x+t)-2 f(x)+f(x-t)
$$

Then $f_{x}(t)$ is continuous at $t=0$ and hence

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \sup _{0 \leq t \leq \varepsilon}\left\{f_{x}(t)\right\}=0 \tag{2}
\end{equation*}
$$

If we denote $V_{p}{ }_{0}^{2 \pi}\left(f_{x}\right)$ the p th total variation of f_{x} on $[0,2 \pi]$, it can easily be verified [5] that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \underset{0}{\varepsilon} V_{p}^{\varepsilon}\left(f_{x}\right)=0 \tag{3}
\end{equation*}
$$

Let $S_{n}(x)$ denote the nth partial sum of the Fourier series of f at the point x then

$$
S_{n}(x)-f(x)=\pi^{-1} \int_{0}^{\pi} \frac{\sin n t}{t} f_{x}(t) d t+o(1)
$$

$$
\begin{equation*}
=\pi^{-1} \sum_{k=0}^{n-1} \int_{k \pi / n}^{(k+1) \pi / n} \frac{\sin n t}{t} f_{x}(t) d t+o(1) \tag{4}
\end{equation*}
$$

By change of variable the above expression can be written

$$
\begin{aligned}
& =(2 \pi)^{-1} \sum_{j=1}^{n} \int_{(j-1) \pi / n}^{j \pi / n}\left(\frac{f_{x}(t+2 j \pi / n)}{t+2 j \pi / n}-\frac{f_{x}(t+(2 j+1) \pi / n}{t+(2 j+1) \pi / n}\right) \sin n t d t+o(1) \\
& =(\pi)^{-1} \int_{0}^{\pi / n}\left[\sum_{j=1}^{[n / 2]}\left(\frac{f_{x}(t+2 j \pi / n)}{t+2 j \pi / n}-\frac{f_{x}(t+(2 j+1) \pi / n}{t+(2 j+1) \pi / n}\right)\right] \sin n t d t+o(1) \\
& =(\pi)^{-1} \int_{0}^{\pi / n}\left[\sum_{j=1}^{[\varepsilon n]}+\sum_{[\varepsilon n]+1}^{[n / 2]}\right] \sin n t d t+o(1)=I_{n}(\varepsilon)+J_{n}(\varepsilon)+o(1) .
\end{aligned}
$$

We note here that

$$
\int_{0}^{\pi / n} \frac{f_{x}\left(t+\frac{n-1}{n} \pi\right)}{t+\frac{n-1}{n} \pi} \sin n t d t=o(1), \quad \int_{0}^{\pi / n} \frac{f_{x}\left(t+\frac{\pi}{n}\right)}{t+\frac{\pi}{n}} \sin n t d t=o(1)
$$

We consider now

$$
\begin{aligned}
\left|I_{n}(\varepsilon)\right|= & \left|(\pi)^{-1}\left[\int_{0}^{\pi / n}\left(\sum_{j=1}^{[\varepsilon n]} \frac{f_{x}(t+2 j \pi / n)}{t+2 j \pi / n}-\frac{f_{x}(t+(2 j+1) \pi / n)}{t+(2 j+1) \pi / n}\right)\right] \sin n t d t\right| \\
\leq & (\pi)^{-1} \int_{0}^{\pi / n}\left[\sum_{j=1}^{[\varepsilon n]} \frac{\mid f_{x}(t+2 j \pi / n)-f_{x}(t+(2 j+1) \pi / n \mid}{t+2 j \pi / n}\right] \sin n t d t \\
& +\frac{1}{n} \int_{0}^{\pi / n}\left[\sum_{j=1}^{[\varepsilon n]} \frac{\left|f_{x}(t+(2 j+1) \pi / n)\right|}{(t+2 j \pi n)(t+(2 j+1) \pi / n)}\right] \sin n t d t \\
= & I_{n_{1}}(\varepsilon)+I_{n_{2}}(\varepsilon) .
\end{aligned}
$$

For $1 / p+1 / q=1$, if we apply Hölder's inequality on the sum of integrand of $I_{n_{1}}(\varepsilon)$, we obtain,

$$
\begin{aligned}
& I_{n_{1}}(\varepsilon) \leq(\pi)^{-1}\left[\int_{0}^{\pi / n}\left(\sum_{j=1}^{[\varepsilon n]}\left|f_{x}(t+2 j \pi / n)-f_{x}(t+(2 j+1) \pi / n)\right|^{p}\right)^{1 / p}\right. \\
& \left.\quad\left(\sum_{j=1}^{[\varepsilon n]}\left|\frac{1}{2 j \pi / n}\right|^{q}\right)^{1 / q}\right] \sin n t d t .
\end{aligned}
$$

Using the definition of $V_{p}{ }_{a}^{b}(f)$ we obtain

$$
\begin{equation*}
I_{n_{1}}(\varepsilon) \leq \pi^{-1} \int_{0}^{\pi / n} \underset{0}{V_{p} \varepsilon \pi}\left(f_{x}\right)\left(\sum_{j=1}^{[\varepsilon n]}\left|\frac{1}{2 j \pi / n}\right|^{q}\right)^{1 / q} \sin n t d t \tag{5}
\end{equation*}
$$

Now consider the sum

$$
\sum_{j=1}^{[\varepsilon n]}\left(\frac{1}{|2 j \pi / n|}\right)^{q}=\left(\frac{n}{2 \pi}\right)^{q}\left\{1+\frac{1}{2^{q}}+\frac{1}{3^{q}}+\cdots+\frac{1}{[\varepsilon n]^{q}}\right\} \leq\left(\frac{n}{2 \pi}\right)^{q} \sum_{n=1}^{\infty} \frac{1}{n^{q}},
$$

but the series on right hand side converges for $q>1$, hence we can find a positive number M such that

$$
\begin{equation*}
\sum_{j=1}^{[\varepsilon n]}\left(\frac{1}{2 j \pi / n}\right)^{q} \leq M n^{q} \tag{6}
\end{equation*}
$$

From (5) and (6) we obtain,

$$
I_{n_{1}}(\varepsilon) \leq \pi^{-1} \int_{0}^{\pi / n} \underset{0}{\pi / n} V_{p}\left(f_{x}\right) M^{1 / q} n \sin n t d t=0(1)\left(\begin{array}{c}
3 \pi \varepsilon \tag{7}\\
V_{p} \\
V_{p}
\end{array}\left(f_{x}\right)\right)
$$

and also

$$
I_{n_{2}}(\varepsilon)=\frac{1}{n} \int_{0}^{\pi / n}\left[\sum_{j=1}^{[\varepsilon n]} \frac{\left|f_{x}(t+(2 j+1) \pi / n)\right|}{(t+2 j \pi / n)\left(t+(2 j+1) \frac{\pi}{n}\right.}\right] \sin n t d t
$$

$$
\begin{equation*}
=o(1)\left[\sup _{0 \leq t \leq 3 \varepsilon \pi}\left\{f_{x}(t)\right\}\right] \tag{8}
\end{equation*}
$$

Hence from (7) and (8), we obtain

$$
\left|I_{n}(\varepsilon)\right|=o(1)\left(\begin{array}{l}
3 \pi \varepsilon \\
V_{p} \\
0
\end{array}\left(f_{x}\right)+\sup _{0 \leq t \leq 3 \varepsilon \pi}\left\{f_{x}(t)\right\}\right) .
$$

Taking limit as $n \rightarrow \infty$ and using (2) and (3) we obtain,

$$
\begin{equation*}
\left|I_{n}(\varepsilon)\right| \leq K(\varepsilon) \quad \text { if } \quad n \geq n(\varepsilon), \quad K(\varepsilon) \rightarrow 0 \quad \text { as } \quad \varepsilon \rightarrow 0 . \tag{9}
\end{equation*}
$$

Similarly we can show that

$$
\left|J_{n}(\varepsilon)\right|=o(1)\left[\begin{array}{c}
\left.{\underset{V}{p}}_{p}\left(f_{x}\right) \frac{1}{(\varepsilon n)^{1 / p}}+\frac{1}{n}\right] \text { as } n \rightarrow \infty ~ . ~ \tag{10}
\end{array}\right.
$$

Therefore taking limits as $n \rightarrow \infty$, we obtain,

$$
\lim _{n \rightarrow \infty} \sup \left|S_{n}(x)-f(x)\right| \leq \lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty} \sup \left[\left|I_{n}(\varepsilon)\right|+\left|J_{n}(\varepsilon)\right|+o(1)\right]
$$

which tends to zero from (9), (10), and (4). This completes the proof of our main Theorem.

Acknowledgement. I would like to express my sincere thanks to Professor Thu Pham-Gia for his helpful suggestions concerning this paper. My thanks are also due to the referee for his suggestions to improve its presentation.

References

1. N. Bari, A treatise on trigonometric series, Vol. 1, Oxford, Pergamon Press, 1964.
2. W. Rudin, Fourier Analysis on groups, New York, Interscience Publishers, 1962.
3. R. N. Siddiqi, The order of Fourier coefficients of a function of higher variation, Proc. Japan Acad., 48 (1972), 569-572.
4. R. N. Siddiqi, Some properties of Fourier-Stieltjes coefficients of a function of Wiener's class V_{p}, Bull. Math. De Roumanie, Tome 16 (64), nr. 1 (1972), 105-112.
5. N. Wiener, The quadratic variation of a function and its Fourier coefficients, Massachusetts J. Math. 3 (1924), 72-94.
6. A. Zygmund, Trigonometric series, Vol. 1, Cambridge, 1959.

Department of Physics-Mathematics
Université de Moncton
Moncton, N.B., Canada
and
Summer Research Institute of Canadian Mathematical Congress
Dalhousie University
Halifax, N.S., Canada

Present address:
Department of Mathematics
Kuwait University
Kuwart

[^0]: Received by editors August 8, 1975 and, in revised form, May 12, 1976.
 ${ }^{(1)}$ This research was supported by National Research Council of Canada grant given to the Dept. of Phys.-Maths., Université de Moncton, Moncton, N.B., and by a fellowship of SRI of Canadian Mathematical Congress.

