ARENS REGULARITY AND RETRACTIONS

by NİLGÜN ARIKAN

(Received 13 April, 1981)

In this paper a characterisation of the regularity of a normed algebra A is given in terms of retractions onto A^{**} from A^{4*} . The second dual A^{**} of a normed algebra A possesses two natural Banach algebra multiplications, say \circ and *. Each of \circ and * extends the original algebra multiplication on A; see (2). An algebra A is called *regular* if and only if $F * G = F \circ G$ for all $F, G \in A^{**}$. See (1). The existing results in the Arens regularity theory can be found in a recent survey (2). Denoting the *n*th dual of A by A^{n*} , and e_n the natural embedding of A^{n*} in its second dual $A^{(n+2)*}$, we can naturally represent the second dual A^{**} of A as a Banach space retract of A^{4*} in two different ways:

$$A^{**} \xrightarrow{e_2} A^{4*} \xrightarrow{e_1^*} A^{**}$$
$$A^{**} \xrightarrow{e_0^{**}} A^{4*} \xrightarrow{e_1^*} A^{**}.$$

Our main results say that A^{**} is in fact a Banach algebra retract of A^{4*} (i.e. the maps involved are homomorphisms) in either of these cases if and only if A is regular.

The notation in (2) for the Arens multiplication is not easy to use for our purposes and we shall first establish our own. We consider the following bilinear mappings:

$$A^* \times A \to A^* : (f, x) \to {}_x f, \qquad \text{where} \qquad {}_x f(y) = f(xy),$$
$$A^{**} \times A^* \to A^* : (G, f) \to f_G, \qquad \text{where} \qquad f_G(x) = G({}_x f),$$

and

$$A^{**} \times A^{**} \rightarrow A^{**}: (F, G) \rightarrow F \circ G$$
, where $F \circ G(f) = F(f_G)$.

Similarly, we consider the following bilinear mappings:

$$\begin{array}{lll} A^* \times A & :(f, y) \to f_y, & \text{where} & f_y(x) = f(xy), \\ A^{**} \times A^* & :(F, f) \to F_f, & \text{where} & F_f(y) = F(f_y), \end{array}$$

and

 $A^{**} \times A^{**} \rightarrow A^{**}: (F, G) \rightarrow F * G$, where $F * G(f) = G(_F f)$.

It is easy to see that each of \circ and * is a Banach algebra multiplication on A^{**} extending the original algebra multiplication on A. We call \circ (respectively *) the first (second) Arens multiplication on A^{**} .

The algebra formed by A^{**} with its first Arens multiplication will be denoted by (A^{**}, \circ) . The second dual of (A^{**}, \circ) with its first Arens multiplication will be denoted by $(A^{4*}, \circ\circ)$, and with its second by $(A^{4*}, \circ*)$. In the same way, the algebras $(A^{4*}, *\circ)$ and $(A^{4*}, **)$ are second duals of $(A^{**}, *)$. Where there is no possibility of confusion, we may write simply $\circ\circ$ for the algebra $(A^{4*}, \circ\circ)$ etc.

Glasgow Math. J. 24 (1983) 17-21.

NİLGÜN ARIKAN

Because the canonical embedding of an algebra into its second dual is always a homomorphism, the maps

$$e_2: \circ \to \circ \circ \qquad e_2: \ast \to \ast \circ$$
$$e_2: \circ \to \circ \ast \qquad e_2: \ast \to \ast \ast$$

are homomorphisms (and in fact, injective homomorphisms). On the other hand,

$$e_2: \circ \rightarrow * \circ$$

sends (A^{**}, \circ) onto $e_2(A^{**})$ with the multiplication induced by $*\circ$, i.e. onto a copy of $(A^{**}, *)$. From this observation, it is easy to see the result.

PROPOSITION 1. The following are equivalent:

- (i) A is regular.
- (ii) $e_2: \circ \rightarrow * \circ$ is a homomorphism;
- (iii) $e_2: \circ \rightarrow **$ is a homomorphism.

PROPOSITION 2. Let A be a regular normed algebra. Then A^{**} is a Banach algebra retract of A^{4*} .

Proof. Under the regularity hypothesis on A there is just one multiplication \circ on A^{**} . We shall prove that $e_1^*:(A^{4*}, \circ \circ) \to (A^{**}, \circ)$ is a homomorphism (the proof for the other multiplication, $\circ *$, on A^{4*} is similar). First, for $f \in A^*$, $F \in A^{**}$ we prove that $_Fe_1(f) = e_1(_Ff)$. Indeed, for each $G \in A^{**}$ we find

$$(_{F}e_{1}(f))(G) = e_{1}(f)(F \circ G) = F \circ G(f) = G(_{F}f) = e_{1}(_{F}f)(G)$$

(where the regularity of A has been used). Next, if $\Psi \in A^{4*}$, we prove that $e_1(f)_{\Psi} = e_1(f_{e_1^*(\Psi)})$; indeed, for each $F \in A^{**}$,

$$\begin{aligned} (e_1(f)_{\Psi})(F) &= \Psi(_F e_1(f)) = \Psi(e_1(_F f)) \\ &= e_1^*(\Psi)(_F f) = F(f_{e_1^*(\Psi)}) \\ &= e_1(f_{e^*(\Psi)})(F). \end{aligned}$$

Finally, if also $\Phi \in A^{4*}$, we have

$$e_1^*(\Phi \circ \circ \Psi)(f) = \Phi \circ \circ \Psi(e_1(f)) = \Phi(e_1(f)_{\Psi})$$
$$= \Phi(e_1(f_{e_1^*(\Psi)})) = e_1^*(\Phi)(f_{e_1^*(\Psi)})$$
$$= e_1^*(\Phi) \circ e_1^*(\Psi)(f).$$

LEMMA 3. Let X, Y, Z, W be topological spaces with X compact and Y compact Hausdorff. Also assume that there exist mappings Φ, Ψ, χ and ω with Φ, Ψ, χ continuous and Φ surjective such that the following diagram commutes.

Then ω is continuous.

Proof. The proof follows easily from the identity $\omega^{-1}(K) = \Phi(\chi^{-1}(\Psi^{-1}(K)))$ $(K \subseteq W)$.

THEOREM 4. Let A be a normed algebra and A^* , A^{**} , A^{3*} and A^{4*} denote its first, second, third and fourth duals respectively. Also let $e_1: A^* \rightarrow A^{3*}$ represent the canonical embedding of A^* into its second dual A^{3*} . In order that A be regular it is necessary and sufficient that e_1^* be a homomorphism from A^{4*} with any one of its four multiplications to A^{**} with either of its two multiplications.

Proof. Necessity is given in the course of Proposition 2. Sufficiency will be proved here in the case when $e_1^*: \circ \circ \to \circ$ is a homomorphism (the other cases are proved in the same way).

Let F in A^{**} be fixed. The map $e_1^*: A^{4*} \to A^{**}$ is surjective as is also the map $e_1^*: A_1^{4*} \to A_1^{**}$ (where the suffix 1 on a space denotes its unit ball), and these two maps are continuous when their domains and ranges are given their weak* topologies. Now consider the following diagram

with $\chi: \Psi \to e_2(F) \circ \Psi$ and $\omega: G \to F \circ G$. It is easy to prove that the diagram commutes when $e_1^*: \circ \to \circ$ is a homomorphism. The weak* continuity of χ follows from the fact that for any Banach algebra B, the mapping $x \mapsto y \circ x$ in B^{**} is weak* continuous provided that $y \in e_0(B)$ where $e_0: B \to B^{**}$ is the natural embedding; see [2, p. 311]. By applying Lemma 3 we deduce that ω is weak* continuous on the right on $(A^{**})_1$. Now the regularity of A follows since the first Arens product is seen to be separately weak* continuous; see Theorem 1 of (2).

COROLLARY 5. Let A be a normed algebra with A^{n*} denoting its nth-dual space, and $e_n: A^{n*} \rightarrow A^{(n+2)*}$ be the natural embedding of A^{n*} into its second dual $A^{(n+2)*}$. In order that all 2^k possible Arens multiplications on A^{2k*} coincide it is necessary and sufficient that e_{2k-1}^* be a homomorphism for any Arens products on $A^{(2k+2)*}$ and A^{2k*} .

Proof. For k = 1, the corollary is Theorem 4. Assume it holds for k = r. The diagram

commutes for α, β the natural inclusions and ϕ^*, Ψ^* the adjoints of the natural inclusions $\phi: A^{3*} \to A^{(2r+1)*}$ and $\Psi: A^* \to A^{(2r-1)*}$ showing that the restriction of e_{2r-1}^* to A^{4*} is just e_1^* . Thus, when A^{4*} (respectively A^{**}) has the Arens multiplication induced from

19

NİLGÜN ARIKAN

 $A^{(2r+2)*}$ (respectively A^{2r*}), e_1^* is a homomorphism. By Theorem 4, A is regular. Put $B = A^{**}$ with its (unique) multiplication. Then $B^{(2k-2)*} = A^{2k*}$ etc., so we may apply the inductive hypothesis to conclude that all Arens multiplications on $B^{**} = A^{4*}$ coincide and so on.

Conversely, assume that all 2^k possible Arens multiplications on A^{2k*} coincide. Then by Theorem 4 it follows that e_{2k-1}^* is a homomorphism.

Corollary 5 allows us to speak of the regularity of $A^{(2k-1)*}$ without specifying the multiplication on it (as all are identical). N. J. Young produced an example in (3) to show that A could be regular although A^{**} was not. We do not yet know examples in which $A^{2(k-1)*}$ is regular but A^{2k*} is not for k > 1.

So far we have been considering the natural inclusion e_2 of A^{**} into A^{4*} , but there is another natural map from A^{**} to A^{4*} , namely the second adjoint e_0^{**} of the natural inclusion $e_0: A \to A^{**}$. The mappings e_0^{**} and e_2 are very different, as the following Proposition shows.

PROPOSITION 6. For a Banach algebra A, $e_0^{**}(A^{**}) \cap e_2(A^{**}) = e_2(e_0(A))$ where e_0, e_2, e_0^{**} are defined as above.

Proof. It is clear that the right hand side is contained in the left hand side. So let $\Phi \in e_0^{**}(A^{**}) \cap e_2(A^{**}) \setminus e_2(e_0(A))$. There exists $F \in A^{**}$ and $G \in A^{**} \setminus e_0(A)$ for which $\Phi = e_0^{**}(F) = e_2(G)$. As A is weak* dense in A^{**} there is a net (x_i) in A with $F = w^* \lim_{i \to 0} e_0(x_i)$. So for each $\sigma \in A^{3*}$ we have

$$\Phi(\sigma) = e_0^{**}(F)(\sigma) = \lim_{i \to \infty} e_0^{**}(e_0(x_i))(\sigma)$$
$$= \lim_{i \to \infty} \sigma(e_0(x_i))$$

and $\Phi(\sigma) = e_2(G)(\sigma) = \sigma(G)$. By choosing a $\sigma \in A^{3*}$ with $\sigma(e_0(A)) = 0$ and $\sigma(G) = 1$ we obtain a contradiction. Thus the proof is completed.

Now $e_0: A \to A^{**}$ is a homomorphism when A^{**} has either of its Arens multiplications; because the second adjoint of a homomorphism is a homomorphism provided that the same Arens multiplication is taken in each case, we have that

$$e_0^{**}: \circ \to \circ \circ \qquad e_0^{**}: * \to \circ *$$
$$e_0^{**}: \circ \to * \circ \qquad e_0^{**}: * \to * *$$

are homomorphisms. Obviously, if $\circ = *$, then

$$e_0^{**}: \circ \rightarrow \circ * \qquad e_0^{**}: \circ \rightarrow * *$$

are also homomorphisms. The converse is also true.

PROPOSITION 7. Let A be a normed algebra and $e_0: A \rightarrow A^{**}$ be its canonical embedding. Then A is regular if and only if either of the following is an algebra homomorphism:

$$e_0^{**}: \circ \to \circ * \qquad e_0^{**}: \circ \to **.$$

Proof. We will only give the proof that A is regular when $e_0^{**}: \circ \to **$ is a

homomorphism. So for F, $G \in A^{**}$ and $\sigma \in A^{3*}$ we have

$$e_0^{**}(F \circ G)(\sigma) = e_0^{**}(F) * * e_0^{**}(G)(\sigma).$$

But the right hand side of the latter equality is $e_0^{**}(F * G)(\sigma)$ since $e_0^{**}: * \to **$ always is a homomorphism. Thus

$$F \circ G(e_0^*(\sigma)) = F * G(e_0^*(\sigma)),$$

and the proof is completed by recalling that $e_0^*: A^{3*} \to A^*$ is a surjection.

COROLLARY 8. The mappings

$$A^{**} \xrightarrow{e_0^{**}} A^{4*} \xrightarrow{e_1^*} A^{**} \cdot$$

present A^{**} as a retraction of A^{4*} (for any of the Arens multiplications on A^{**} and A^{4*}) if and only if A is regular

Proof. This is clear.

I am grateful to Professor J. S. Pym for his advice and interest on this work.

REFERENCES

1. F. F. Bowall and J. Duncan, Complete normed algebras (Springer-Verlag, 1973).

2. J. Duncan and S. A. R. Hosseinian, The second dual of a Banach algebra. Proc. Roy. Soc. Edinburgh 84(A), (1979), 309-325.

3. N. J. Young, Periodicity of functionals and representations of normed algebras on reflexive spaces. Proc. Edinburgh Math. Soc., (2) 20, (1976), 99-120.

DEPARTMENT OF PURE MATHEMATICS UNIVERSITY OF SHEFFIELD SHEFFIELD S10 2TN Present address: Department of Mathematics Bosphorus University Bebek, Istanbul Turkey