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Abstract

In this paper, we consider a neural network model for solving the generalized nonlinear complementarity
problem (denoted by GNCP) over a polyhedral cone. The neural network is derived from an equivalent
unconstrained minimization reformulation of the GNCP, which is based on the penalized Fischer–
Burmeister function φµ(a, b) = µφFB(a, b) + (1 − µ)a+b+. We establish the existence and the convergence
of the trajectory of the neural network, and study its Lyapunov stability, asymptotic stability and
exponential stability. It is found that a larger µ leads to a better convergence rate of the trajectory.
Simulation results are also reported.
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1. Introduction
The generalized nonlinear complementarity problem, denoted by GNCP (F,G,K), is
to find a vector x∗ ∈ Rn such that

F(x∗) ∈ K, G(x∗) ∈ K∗, F(x∗)TG(x∗) = 0,

where F and G are continuous functions from Rn to Rm, K is a nonempty closed convex
cone in Rm, and K∗ is the polar cone of K.

In this paper, we consider the GNCP (F,G,K) for the case where F and G are both
continuously differentiable from Rn to Rm and K is a polyhedral cone in Rn: that is,
there exist A ∈ Rs×m and B ∈ Rt×m such that

K = {v ∈ Rm | Av ≥ 0, Bv = 0}.
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It is easy to verify that its polar cone K∗ has the representation

K∗ = {u ∈ Rm | u = ATλ + BTω, λ ≥ 0, λ ∈ Rs, ω ∈ Rt}.

Obviously, if A is an identity matrix, B = 0 and G(x) = x, then the GNCP reduces
to the classical nonlinear complementarity problem.

To solve the GNCP, one usually reformulates it as a minimization problem over
a simple set or as an unconstrained optimization problem. Here we reformulate
the GNCP as a system of equations via the penalized Fischer–Burmeister function
(see [2]), which is defined as

φµ(a, b) = µφFB(a, b) + (1 − µ)a+b+,

where µ ∈ (0, 1) is an arbitrary but fixed parameter, a, b ∈ R, φFB(a, b) = a + b −
√

a2 + b2, a+ = max{0, a} and b+ = max{0, b}. The basic property of the penalized
Fischer–Burmeister function is that

φµ(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

For arbitrary vectors a = (a1, a2, . . . , an)T and b = (b1, b2, . . . , bn)T ∈ Rn, we define
a vector-valued function

Φµ(a, b) =


φµ(a1, b1)
φµ(a2, b2)

...
φµ(an, bn)

 .
Obviously,

Φµ(a, b) = 0⇐⇒ φµ(ai, bi) = 0, i = 1, 2, . . . , n
⇐⇒ ai ≥ 0, bi ≥ 0, aibi = 0, i = 1, 2, . . . , n
⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

Now, we give some equivalent statements relative to the solution of the GNCP.

Lemma 1.1 [14].

The vector x∗ is a solution o f GNCP (F,G,K)

⇐⇒


F(x∗) ∈ K = {v ∈ Rm | Av ≥ 0, Bv = 0},
G(x∗) ∈ K∗ = {u ∈ Rm | u = ATλ + BTω, λ ≥ 0, λ ∈ Rs, ω ∈ Rt},
F(x∗)TG(x∗) = 0,

⇐⇒ there exist λ∗ ∈ Rs, ω∗ ∈ Rt such that


AF(x∗) ≥ 0,
BF(x∗) = 0,
G(x∗) = ATλ∗ + BTω∗,
λ∗ ≥ 0,
F(x∗)TG(x∗) = 0,
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⇐⇒ there exist λ∗ ∈ Rs, ω∗ ∈ Rt such that


AF(x∗) ≥ 0,
λ∗ ≥ 0,
(λ∗)TAF(x∗) = 0,
BF(x∗) = 0,
G(x∗) = ATλ∗ + BTω∗,

⇐⇒ there exist λ∗ ∈ Rs, ω∗ ∈ Rt such that


Φµ(AF(x∗), λ∗) = 0,
BF(x∗) = 0,
G(x∗) = ATλ∗ + BTω∗.

Moreover, let z := (x, λ, ω) ∈ Rn+s+t and

Θ(z) :=

 Φµ(AF(x), λ)
BF(x)

G(x) − ATλ − BTω

 . (1.1)

If we define the function f : Rn+s+t → R as

f (z) := 1
2‖Θ(z)‖2, (1.2)

then the GNCP can be reformulated into the smooth minimization problem

min
z:=(x,λ,ω)∈Rn+s+t

f (z). (1.3)

From Lemma 1.1, (1.1) and (1.2), we can obtain the following theorem.

Theorem 1.2. The vector x∗ ∈ Rn is a solution of the GNCP (F,G, K) if and only if
there exist λ∗ ∈ Rs, ω∗ ∈ Rt such that f (z) = 0.

There are many algorithms that can be applied to the unconstrained smooth
minimization problem (1.3), such as effective gradient-type methods. However, in
many scientific and engineering applications, it is desirable to have a real-time solution
of the GNCP. Traditional unconstrained optimization algorithms may not be suitable
for real-time implementation because the computing time required for a solution
depends, to a large extent, on the dimension and structure of the problems. To
overcome this difficulty, we consider an Artificial Neural Network (ANN) (see [9]).

ANNs for optimization were first introduced in the 1980s by Hopfield and Tank
(see [6, 13]). Generally speaking, ANNs provide an alternative and attractive method
for solving optimization problems, and applications include linear programming,
nonlinear programming, quadratic programming, variational inequalities, and solving
linear and nonlinear complementarity problems (see [1, 3–5, 8, 10–12, 16]).

The main idea of the neural network approach for optimization is to construct a
nonnegative energy function and establish a dynamic system that can be represented
by an ANN. Moreover, the function defining the dynamic system is continuous only,
and not necessarily differentiable. The dynamic system is usually in the form of first-
order ordinary differential equations. Furthermore, it is expected that, for an initial
point, the dynamic system will approach its static state (or an equilibrium point), which
corresponds to the solution of the underlying optimization problem.
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In this paper, we apply a first-order ANN for the GNCP, which is based on the
steepest descent method, to (1.2): that is,

dz(t)
dt

= −ρ∇ f (z), z(0) = z0, (1.4)

where z := (x, λ, ω) ∈ Rn+s+t, ρ > 0 is a scaling factor.
Throughout this paper, Rn denotes the space of n-dimensional real column vectors.

The inner product of vectors x, y ∈ Rn is denoted by xTy and T denotes the transpose.
Let ‖ · ‖ denote the 2-norm or the Euclidean norm. For any differentiable function
f : Rn → R, ∇ f (x) means the gradient of f at x. For any differentiable mapping F =

(F1, F2, . . . , Fm)T : Rn → Rm, ∇F(x) = [∇F1(x),∇F2(x), . . . ,∇Fm(x)] ∈ Rn×m denotes
the transposed Jacobian of F at x. For vector a ∈ Rn, Da = diag(a) denotes the diagonal
matrix in which the ith diagonal element is ai.

2. Preliminaries

In this section, we will recall several definitions and results.

2.1. Properties of φµ and f . In this subsection, we will study the properties of φµ
and f .

Lemma 2.1 [2]. The function φµ : R2 → R satisfies the following properties:

(a) φµ(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = 0;
(b) φµ(a, b) is continuously differentiable on

R2\{(a, b) ∈ R2 | a ≥ 0, b ≥ 0, ab = 0};

(c) φµ is strong semismooth on R2;
(d) the generalized gradient ∂φµ(a, b) of φµ at a point (a, b) ∈ R2 is equal to the set

of all (va, vb) such that

(va, vb) =


µ(1 − ξ, 1 − η) if (a, b) = (0, 0),

µ
(
1 −

a
‖(a, b)‖

, 1 −
b

‖(a, b)‖

)
+ (1 − µ)(b+∂a+, a+∂b+) otherwise,

where (ξ, η) is any vector satisfying ‖(ξ, η)‖ ≤ 1 and

∂c+ =


1 if c > 0,
[0, 1] if c = 0,
0 otherwise.

Lemma 2.2 [5]. If F and G are both continuously differentiable, then f is continuously
differentiable, and its gradient at the point z := (x, λ, ω) ∈ Rn+s+t is given by ∇ f (z) =

VTΘ(z), where V ∈ ∂Θ(z).
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By simple calculation, it is not difficult to show that the generalized Jacobian of Θ

at any (x, λ, ω) ∈ Rn+s+t is

V =

DaAF
′

(x) Db 0
BF

′

(x) 0 0
G
′

(x) −AT −BT

 , (2.1)

where

Da := diag{a1(z), . . . , as(z)}, Db := diag{b1(z), . . . , bs(z)},

with

ai(z) = µ
(
1 −

[AF(x)]i√
[AF(x)]2

i + λ2
i

)
+ (1 − µ)(λi)+∂([AF(x)]i)+,

bi(z) = µ
(
1 −

λi√
[AF(x)]2

i + λ2
i

)
+ (1 − µ)([AF(x)]i)+∂(λi)+,

if [AF(x)]2
i + λ2

i > 0, and

ai(z) = µ(1 − ξi), bi(z) = µ(1 − ηi),

where ξ2
i + η2

i ≤ 1, if [AF(x)]2
i + λ2

i = 0.
From the above equations

ai(z) ≥ 0 and bi(z) ≥ 0 for all i = 1, 2, . . . , s,

which imply that Da and Db are positive semidefinite diagonal matrices.
To end this subsection, we propose a traditional way of obtaining the generalized

Jacobian V at any point z ∈ Rn+s+t, which is similar to the algorithm in [2].

Algorithm 2.3 (The procedure to evaluate an element V ∈ ∂Θ(z)).
Step 1. Let z := (x, λ, ω) ∈ Rn+s+t be given. Compute F

′

(x) and G
′

(x).
Step 2. Set

S 1 := {i | λi = (AF(x))i = 0}

and
S 2 := {i | λi > 0, (AF(x))i > 0}.

Step 3. Set c ∈ Rs such that ci = 0 for i < S 1 and ci = 1 for i ∈ S 1.
Step 4. For i ∈ S 1, set

ai = µ
(
1 −

cT(∇F(x)AT)i

‖(ci, cT(∇F(x)AT)i)‖

)
,

bi = µ
(
1 −

ci

‖(ci, cT(∇F(x)AT)i)‖

)
.
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Step 5. For i ∈ S 2, set

ai = µ
(
1 −

(AF(x))i

‖(λi, (AF(x))i)‖

)
+ (1 − µ)λi,

bi = µ
(
1 −

λi

‖(λi, (AF(x))i)‖

)
+ (1 − µ)(AF(x))i.

Step 6. For i < S 1 ∪ S 2, set

ai = µ
(
1 −

(AF(x))i

‖(λi, (AF(x))i)‖

)
,

bi = µ
(
1 −

λi

‖(λi, (AF(x))i)‖

)
.

Step 7. According to (2.1), compute the generalized Jacobian V .

2.2. Stability in differential equations. Now we recall some facts about first order
differential equations(ODE).

ż(t) = H(z(t)), z(t0) = z0 ∈ Rn, (2.2)

where H : Rn → Rn is a mapping. Next, we introduce three kinds of stability that will
be discussed later (see [9]).

Definition 2.4. A point z∗ = z(t∗) is called an equilibrium point or a steady state of the
dynamic system (2.2) if H(z∗) = 0. If there is a neighborhood Ω∗ ⊆ Rn of z∗ such that
H(z∗) = 0 and H(z) , 0 for ∀z ∈ Ω∗\{z∗}, then z∗ is called an isolated equilibrium point.

Lemma 2.5 [5]. Assume that H is a continuous mapping from Rn to Rn. Then for
arbitrary t0 ≥ 0 and z0 ∈ Rn, there exists a local solution z(t), t ∈ [t0, τ) for some τ > t0.
If, in addition, H is locally Lipschitz continuous at z0, then the solution is unique; if H
is Lipschitz continuous in Rn, then τ can be extended to∞.

If a local solution defined on [t0, τ) cannot be extended to a local solution on a larger
interval [t0, τ1), τ1 > τ, then it is called a maximal solution, and the interval [t0, τ) is
the maximal interval of existence. Clearly, any local solution has an extension to a
maximal one. We denote [t0, τ(z0)) by the maximal interval of existence associated
with z0.

Lemma 2.6 [5]. Assume that H : Rn → Rn is continuous. If z(t) with t ∈ [t0, τ(z0)) is a
maximal solution and τ(z0) <∞, then

lim
t↗τ(z0)

‖z(t)‖ =∞.

Definition 2.7 (Stability in the sense of Lyapunov). Let z(t) be a solution of (2.2). An
isolated equilibrium point z∗ is Lyapunov stable if, for any z0 = z(t0) and any scalar
ε > 0, there exists a δ > 0 such that if ‖z(t0) − z∗‖ < δ then ‖z(t) − z∗‖ < ε for t ≥ t0.
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Definition 2.8 (Asymptotic stability). An isolated equilibrium point z∗ is said to be
asymptotically stable if, in addition to being Lyapunov stable, it has the property that
z(t)→ z∗ as t→ +∞ if ‖z(t0) − z∗‖ < δ.

Definition 2.9 (Lyapunov function). Let Ω ⊆ Rn be an open neighborhood of z. A
continuously differentiable function W : Rn → Rn is said to be a Lyapunov function at
the state z over the set Ω for (2.2) if

W(z) = 0, W(z) > 0, ∀z ∈ Ω\{z},

dW(z(t))
dt

= ∇Wz(z(t))TH(z(t)) ≤ 0, ∀z ∈ Ω.

The next result addresses the relationship between stabilities and a Lyapunov
function.

Lemma 2.10 [5].

(a) An isolated equilibrium point z∗ is Lyapunov stable if there exists a Lyapunov
function over some neighborhood Ω∗ of z∗.

(b) An isolated equilibrium point z∗ is asymptotically stable if there exists a
Lyapunov function over some neighborhood Ω∗ of z∗ such that dW(z(t))/dt < 0
for all z ∈ Ω∗\{z∗}.

A stronger notion than the Lyapunov stability is the so-called exponential stability.
Moreover, exponentially stable equilibria are asymptotically stable.

Definition 2.11 (Exponential stability). An isolated equilibrium point z∗ is
exponentially stable if there exist % > 0, κ > 0, δ > 0 such that an arbitrary solution z(t)
of (2.2) with the initial conditions z(t0) = z0 and ‖z(t0) − z∗‖ < δ is defined on [0,∞)
and satisfies

‖z(t) − z∗‖ ≤ κe−%t‖z(t0) − z∗‖, t ≥ t0.

To end this subsection, we provide a diagram to show how the first order ANN (1.4)
is implemented on hardware (see Figure 1).

3. Convergence and stability of the trajectory

In this section, we focus on two aspects of the stability issues of the first order
ANN (1.4). Firstly, we analyze the general behavior of the solution trajectory of (1.4),
including various properties such as existence, uniqueness and convergence. Secondly,
we address three kinds of stability for an isolated equilibrium.

Proposition 3.1. For z∗ = (x∗, λ∗, ω∗) ∈ Rn+s+t, x∗ is a solution to GNCP (F,G,K) and
Θ(z∗) = 0. Then z∗ is an equilibrium point of the ANN (1.4).

Proof. Since Θ(z∗) = 0, according to Lemma 2.2, ∇ f (z∗) = 0. So z∗ is the equilibrium
point of (1.4). �
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Figure 1. A simplified block diagram for the first order ANN (1.4).

The following proposition gives a suitable condition that guarantees that every
stationary point of the ANN (1.4) solves the GNCP.

Proposition 3.2. Suppose that z∗ = (x∗, λ∗,ω∗) is an equilibrium point of the ANN (1.4),
F
′

(x∗) is nonsingular, and G
′

(x∗)[F
′

(x∗)]−1 is positive definite in the null space of B.
Then x∗ is a solution of the GNCP (F,G,K).

Proof. Since z∗ = (x∗, λ∗, ω∗) is an equilibrium point of the ANN (1.4) (that is ∇ f (z∗)
= 0), and Da,Db are positive semidefinite diagonal matrices. Using a method similar
to the proof of Theorem 4.1 in [14], we can verify that Θ(z∗) = 0: that is, x∗ is the
solution of the GNCP (F,G,K). �

Proposition 3.3. Suppose z∗ = (x∗, λ∗, ω∗) is an equilibrium point of the ANN
(1.4), F

′

(x∗) and G
′

(x∗) are nonsingular, the matrix B has full row rank, and
AF

′

(x∗)[G
′

(x∗)]−1AT is a P-matrix. Then x∗ is a solution of the GNCP (F,G,K).

Proof. Since z∗ = (x∗, λ∗, ω∗) is an equilibrium point of the ANN (1.4) (that is ∇ f (z∗)
= 0). Using a method similar to the proof of [14, Theorem 4.2], we can verify that any
V ∈ ∂Θ(z∗) is nonsingular. Then we have Θ(z∗) = 0: that is, x∗ is the solution of the
GNCP (F,G,K). �

We recall that z∗ is said to be a regular solution to f (z) = 0 if every V ∈ ∂Θ(z∗) is
nonsingular. According to Lemmas 1.1 and 2.2, it is easy to get the following result.

Proposition 3.4. If z∗ = (x∗, λ∗, ω∗) ∈ Rn+s+t is an equilibrium point of the ANN (1.4),
and all V ∈ ∂Θ(z∗) are nonsingular. Then z∗ is a regular solution to f (z) = 0.

Proposition 3.5. The function f (z(t)) is nonincreasing with respect to the variable t.
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Proof. Since
d f (z(t))

dt
= ∇ f (z(t))T dz(t)

dt

= ∇ f (z(t))T[−ρ∇ f (z(t))]

= −ρ‖∇ f (z(t))‖2 ≤ 0.

This concludes the proof. �

Let Ω(z0) denote the level set associated with the initial state z0 and be given by

Ω(z0) = {z ∈ Rn+s+t | f (z) ≤ f (z0)}.

Theorem 3.6. For an arbitrary initial state z0 := (x0, λ0, ω0) ∈ Rn+s+t, the following
results hold:

(a) there exists a local solution z(t), t ∈ [t0, τ(z0)) for some τ(z0) > t0; and
(b) if Ω(z0) is bounded, then τ(z0) = +∞.

Proof. (a) It is known that ∇ f (z) is continuous. Hence Lemma 2.5 implies this result.
(b) If τ(z0) < +∞, it follows from Lemma 2.6 that

lim
t↗τ(z0)

‖z(t)‖ =∞.

Let
τ0 = inf{s ≥ 0 | s < τ(z0), z(s) ∈ Ωc(z0)} <∞,

where Ωc(z0) is the complement of the set Ω(z0) in Rn+s+t. Moreover, Ω(z0) is compact
since it is bounded by assumption and it is also closed because of the continuity of f .
Therefore, we have z(τ0) ∈ Ω(z0) and τ0 < τ(z0), implying that

f (z(s)) > f (z0) ≥ f (z(τ0)) for some s ∈ (τ0, τ(z0)). (3.1)

However, Proposition 3.5 says that f (z(·)) is nonincreasing on [t0, τ(z0)), which
contradicts (3.1). This completes (b). �

Corollary 3.7. For an arbitrary initial state z0 := (x0, λ0, ω0) ∈ Rn+s+t, let z(t) :
[t0, τ(z0)) be the unique maximal solution to (1.4). If τ(z0) = +∞ and {z(t)} is bounded,
then

lim
t→+∞

∇ f (z(t)) = 0. (3.2)

Moreover, if z∗ is a accumulation point of the trajectory z(t) and all V ∈ ∂Θ(z∗) are
nonsingular, then x∗ is a solution to the GNCP (F,G,K).

Proof. It is proved in Proposition 3.5 that f (z(t)) is a nonincreasing function with
respect to t. We also note that f (z(t)) is a nonnegative function over Rn+s+t: that is,
f (z(t)) is bounded from below. Those arguments are exactly the same as those for
[9, Corollary 4.3]. Thus we omit them. If z∗ is a accumulation point of the trajectory
z(t) (that is, limt→+∞ z(t) = z∗), it follows, from (3.2), that ∇ f (z∗) = 0. Then applying
Proposition 3.4 leads to the desired result. �
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Theorem 3.8. If z∗ is an isolated equilibrium point of (1.4), then z∗ is asymptotically
stable for (1.4).

Proof. Using a method similar to [9, Theorem 4.4], we can show that f (x) is a
Lyapunov function over the set Ω∗ for (1.4). Furthermore, using Lemma 2.10(b), we
have that z∗ is asymptotically stable for (1.4). �

Theorem 3.9. If z∗ is a regular solution to f (z) = 0, then z∗ is exponentially stable
for (1.4).

Proof. Since F and G are both continuously differentiable, then Θ is semismooth
which is similar to the [14, Lemma 2.4]. Furthermore, with Lemma 2.2 and
Theorem 3.8, the arguments are exactly the same as those for [9, Theorem 4.6]. Thus
we omit them. �

4. Simulation results

In this section, we test some examples obtained by the neural network model
(1.4). The numerical implementation is coded by Matlab 2011(b) and the ordinary
differential equation solver adopted is ode23s.

Example 4.1 [15, Example 2]. Find x ∈ R5 such that

x ≥ 0, F(x) ≥ 0, xTF(x) = 0,

where

F(x) =


x1 + x2x3x4x5/50

x2 + x1x3x4x5/50 − 3
x3 + x1x2x4x5/50 − 1

x4 + x1x2x3x5/50 − 0.5
x5 + x1x2x3x4/50

 .
It has only one solution,

x∗ = (0, 3, 1, 0, 0)T, F(x∗) = (0, 0, 0, 0.5, 0)T.

For Example 4.1, four starting vectors are used, namely,

x(1)
0 = (0.01, 1, 0.5, 0.01, 0.01)T, x(2)

0 = (1, 1, 1, 1, 1)T,

x(3)
0 = (5, 5, 5, 5, 5)T, x(4)

0 = (10, 10, 10, 10, 10)T.

Example 4.2 [7]. Find x ∈ R4 such that

x ≥ 0, F(x) ≥ 0, xTF(x) = 0,

where

F(x) =


3x2

1 + 2x1x2 + 2x2
2 + x3 + 3x4 − 6

2x2
1 + x1 + x2

2 + 3x3 + 2x4 − 2
3x2

1 + x1x2 + 2x2
2 + 2x3 + 3x4 − 1

x2
1 + 3x2

2 + 2x3 + 3x4 − 3

 .
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This is a nondegenerate GNCP and the solution is

x∗ =

( √6
2
, 0, 0, 0.5

)T
, F(x∗) =

(
0, 2 +

√
6

2
, 5, 0

)T
.

For Example 4.2, four starting vectors are used, namely,
x(1)

0 = (2, 0.01, 0.01, 0.1)T, x(2)
0 = (0, 0, 0, 0)T,

x(3)
0 = (1, 1, 1, 1)T, x(4)

0 = (10, 10, 10, 10)T.

Example 4.3. Find x ∈ R4 such that
F(x) ≥ 0, G(x) = x − m(x) ≥ 0, F(x)TG(x) = 0,

where

F(x) =


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

 x +


1
1
1
1


and m(x) = ϕ(F(x)) : R4 → R4 is twice continuously differentiable. The function ϕ(·)
that defines our test problems is

ϕi(t) = 0.5 − ti, i = 1, 2, 3, 4.
It has only one solution,

x∗ = (−0.3,−0.4,−0.4,−0.3)T,

and
F(x∗) = (0.8, 0.9, 0.9, 0.8)T, G(x∗) = x∗ − m(x∗) = (0, 0, 0, 0)T.

For Example 4.3, four starting vectors are used, namely,
x(1)

0 = (0, 0, 0, 0)T, x(2)
0 = (−0.5,−0.5,−0.5,−0.5)T,

x(3)
0 = (1, 1, 1, 1)T, x(4)

0 = (10, 10, 10, 10)T.

Firstly, we test the influence of the parameters µ and ρ on the value ‖x(t) − x∗‖.
From Figures 2 and 3, we can see that it generates the fastest decrease of ‖x(t) − x∗‖
when µ = 0.99 and ρ = 2. We will emphasize that the convergence behavior of the error
‖x(t) − x∗‖ is astable when ρ ≥ 3. We set µ = 0.95, ρ = 2 in the following computational
experiments.

The transient behavior of x(t) for Examples 4.1–4.3 is depicted in Figures 4, 6 and
8, respectively. We can see that they are both very close to the solution of the GNCP
with suitable initial states.

Figures 5, 7 and 9 describe how ‖x(t) − x∗‖ varies with different initial states. We
emphasize that the initial state x0 is not required to be close to the solution.

In summary, the neural network (1.4) is a better alternative to the network based on
the penalized Fischer–Burmeister function if appropriate values of µ and ρ are chosen.
From the numerical simulations above, we see that, to obtain a better convergence
rate of the trajectory x(t), the parameter µ cannot be set too small and the parameter ρ
cannot be set too large. In addition, we should emphasize that the initial state x(t0) has
little influence on the convergence behavior of ‖x(t) − x∗‖.

https://doi.org/10.1017/S1446788715000300 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000300


[12] A neural network for the GNCP 375

0 5 10 15 20 25 30 35 40 45 50
Time (ms)

Figure 2. Convergence behavior of the error ‖x(t) − x∗‖ in Example 4.1 with five different values of
µ(0.1, 0.5, 0.9, 0.95 and 0.99) and initial point x(1)

0 .

0 5 10 15 20 25 30 35 40 45 50
Time (ms)

Figure 3. Convergence behavior of the error ‖x(t) − x∗‖ in Example 4.1 with five different values of
ρ(0.5, 1, 2, 3 and 4) and initial point x(1)

0 .
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Figure 4. Transient behavior of x(t) in Example 4.1 with initial point x(1)
0 .
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Figure 5. Convergence behavior of the error ‖x(t) − x∗‖ in Example 4.1 with four different initial points
x(1)

0 , x(2)
0 , x(3)

0 and x(4)
0 .
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Figure 6. Transient behavior of x(t) in Example 4.2 with initial point x(1)
0 .
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Figure 7. Convergence behavior of the error ‖x(t) − x∗‖ in Example 4.2 with four different initial points
x(1)

0 , x(2)
0 , x(3)

0 and x(4)
0 .
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Figure 8. Transient behavior of x(t) in Example 4.3 with initial point x(1)
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Figure 9. Convergence behavior of the error ‖x(t) − x∗‖ in Example 4.3 with four different initial points
x(1)

0 , x(2)
0 , x(3)

0 and x(4)
0 .
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