SSI incidents and optimized the power to predict SSI through pattern recognition algorithms based on support vector machines (SVMs).

Methods: Data were collected on SSI at 5 different hospitals. The hospital infection control committees (CCIHs) of the hospitals collected all data used in the analysis during their routine SSI surveillance procedures; these data were sent to the NOIS (Nosocomial Infection Study) Project. NOIS uses SACIH software (an automated hospital infection control system) to collect data from hospitals that participate voluntarily in the project. In the NOIS, 3 procedures were performed:

1. a treatment of the database collected for use of intact samples;
2. a statistical analysis on the profile of the hospitals collected; and
3. an assessment of the predictive power of SVM with a nonlinear separation process varying in configurations including kernel function (Laplace, Radial Basis, Hyperbolic Tangent and Bessel) and the k-fold cross-validation-based resampling process (ie, the use of data varied according to the amount of folders that cross and combine the evaluated data, being k = 3, 5, 6, 7, and 10). The data were compared by measuring the area under the curve (AUC; range, 0–1) for each of the configurations.

Results: From 13,383 records, 7,565 were usable, and SSI incidence was 2.0%. Most patients were aged 35–62 years; the average duration of surgery was 101 minutes, but 76% of surgeries lasted >2 hours. The mean hospital length of stay without SSI was 4 days versus 17 days for the SSI cases. The survey data showed that even with a low number of SSI cases, the prediction rate for this specific surgery was 0.74, which was 14% higher than the rate reported in the literature.

Conclusions: Despite the high noise index of the database, it was possible to sample relevant data for the evaluation of general surgery patients. For the predictive process, our results were >0.50 and were 14% better than those reported in the literature. However, the database requires more SSI case samples because only 2% of positive samples unbalanced the database. To optimize data collection and to enable other hospitals to use the SSI prediction tool, a mobile application was developed (available at www.sacihweb.com).

Funding: None

Disclosures: None

DOI:10.1017/ice.2020.976

Presentation Type: Poster Presentation

Prevalence and Carabapenem Resistance of Acinetobacter baumannii and Other Than A. baumannii Isolates From Intensive Care Units (ICUs) and non-ICUs

Tomasz Kasperski, Bioph age Pharma S.A., Kraków; Agnieszka Chmielarczyk, Jagiellonian University Collegium Medicum; Monika Pomorska-Wesołowska, Analytical and Microbiological Laboratory of Ruda Slaska KORLAB; Dorota Romaniszyn, Jagiellonian University Medical School; Jadwiga Wojkowska-Mach, Jagiellonian University Medical School

Background: Acinetobacter spp are gram-negative bacteria that have emerged as a leading cause of hospital-associated infections, most often in the intensive care unit (ICU) setting. This is particularly important in Poland, where the prevalence of A. baumannii in various types of infections, including bloodstream infection (BSI), pneumonia, skin and soft-tissue infection (SSTI), and urinary tract infection (UTI) is higher than in neighboring countries. Recently, other Acinetobacter spp, including A. lwofii or A. ursingi, have been found to be clinically relevant. In Poland, we have also observed a very rapid increase in antimicrobial resistance, significantly faster for A. baumannii than for other nosocomial pathogens.

Methods: A study was conducted in 12 southern Polish hospitals, including 3 ICUs, from January 1 to December 31, 2018. Only adult hospitalized patients were included. Strains were identified using the MALDI-TOF method. Carabapenem resistance was determined using the minimum inhibitory concentration (MIC).

Results: During the study, 194 strains belonging to the Acinetobacter genus were isolated. A. baumannii was the dominant species, 88.1% (n = 171), and 23 isolates (11.9%) were other Acinetobacter spp: A. ursingi (n = 5), A. lwofii (n = 4), A. haemolyticus (n = 4), A. junii (n = 3), A. radioreisistens (n = 2), A. berezini (n = 2), and A. johnsonii (n = 2). Moreover, 15 Acinetobacter strains were collected from ICUs. The most Acinetobacter strains were isolated from SSTIs (n = 115) from non-ICU settings. Non-A. baumannii strains were also most frequently isolated from SSTIs; they constituted 11.3% of all Acinetobacter strains from this type of infection (n = 13). The total Acinetobacter prevalence was 2.6%, whereas the prevalence in the ICU setting was 7%. Acinetobacter prevalence in SSTIs was 10.4%. In pneumonia, Acinetobacter prevalence was 16.8% for ICUs (n = 13) and 2.7% for non-ICUs (n = 46). Strains from UTIs were isolated only with the non-ICU setting, and their prevalence was 0.7% (n = 14).