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Asymptotic expansion of integrals

occurring in linear wave theory
P. van den Driessche and R.D. Braddock

The asymptotic expansion of an integral of the type

0

J W(k)exp(it¢(k)]dk , 1s derived in terms of the large parameter
-0

t . Functions ¢(k) and Y¥Y(k) are assumed analytic, and ¥(k)
may have zeros at a stationary phase point. The usual one
dimensional stationary phase and Airy integral terms are found

as special cases of a more general result. The result is used
to find the leading term of the asymptotic expansion of the
double integral. A particular two dimensional ¢(k) relevant to
surface water wave problems is considered in detail, and the
order of magnitude of the integral is shown to depend on the

nature of Y(k) at the stationary phase point.

1. Introduction

A type of integral frequently encountered in the solution of linear

wave problems is

(1) L(t) = J Y(k)exp (itdp(k))dk ,

where k is the wave number, ¢(k) is the phase function and Y¥Y(k) is
the amplitude function. Interest in applications often centres on the

asymptotic value of L for large values of the time, ¢ .

When k is confined to one dimension the usual method of stationary
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phase can be used, see for example Copson [3]; this must be modified at
points where the phase function has a double stationary point (Jeffreys and
Jeffreys [7]). The method of stationary phase can be extended to higher
dimensions, and must be combined with the method of residues when the
amplitude function has singularities (Lighthill [17, 12]; Jones [§]). It
also breaks down when the amplitude function is zero at a stationary phase

point.

Double integrals similar to {1) but with a finite domain of
integration have been considered in detail by Jones and Kiine [9], Chako
[2] and De Kok [4]; explicit asymptotic expansions of the integral are
derived by evaluating contributions from various interior and boundary

stationary points of the phase function.

This paper deals with one and two dimensional integrals of type (1)
and determines the modifications necessary when the amplitude function
vanishes at a stationary phase point. The investigation was prompted by a
model for tsunami generation forced by an asymmetric bottom velocity. The
amplitude function is then zero at the long wave length limit, which is a

physically important region.

2. One dimensional integral

Consider the one dimensional integral (1) with ¢(k) and Y¥(k)
analytic functions of k . Assuming that k = k* is the only stationary
phase point, the major contribution to L for large values of ¢ is

obtained from the neighbourhood of k = k* . Setting u =k - k* ,
€ .
L wj (et Wy, |
~-€
where € 1is small and positive. Now

(2) o(u) = ¢, +SZ ¢sus/s! , Y(u) = Z wpup/px ,
=q p=r

where r, g are integers, r20, g > 2 , and ¢S is understood to be

evaluated at the stationary phase point, that is,
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o = ()

s
du u=0

Note that zero terms have been omitted from the expressions in (2); if the

stationary phase point is of order q - 1 , then ¢l, ¢2, . are

LY

all zero. Approximating ¢ by the first two non-zero terms yields

w €
L% ¥ v j P Uuw)du

p=r -€
where F°9(y) = exp[it[¢o+¢quq/q!]]up/p!

If q is even, Fp’q(u) is odd or even according as p 1is odd or

even, and so

(3) Ld2 § ¥, J P () du
p=m p 0
where m = [(r+1)/2] . The odd terms give zero on integration, and the

range of integration for the even terms can be expanded since contributions

from (€, ©) are negligible.

If g 1is odd,

) L& ¥ explite ]{(-1)P j uPexp[—it¢ uq/qz]du
p=r 0 0 q

+ Im upexp[it¢ uq/qx]du}w /p!
0 q P

The particular cases arising in (3) and (4) lead to a consideration of an

integral of the form

P - J WPexp(rithul/qt)du ,
B 0

vhere b 1is a positive constant. Set v = uq/q! , whence

2 = (g PHa1 (g, J o Pa L (25 th)an
* 0

which can be evaluated in terms of a gamma function as
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(5) 829 = (@) P (g 1) 1r((p+1)/q) ()" P eyp (51 (pa1)mi/g)

The result (5) can now be used to write down asymptotic approximations

to the integrals. If ¢q is even (3) gives

( !J(2p+l)/q—1

&Il T((2p+1)/q)

(6) I %2(q-Dtexp(itdy) [ vy
p=m

(l¢q|t]-(2p+l)/qexp(%(2p+l)ni/qssn¢q]

Notice that if g 1is even the asymptotic approximations for r odd or

even are of the same order. If g is odd (k) gives

® y(P+1)/q-1
(1) L %2(q-1)texp(ite,) I wpf-"—;—' 1 T {(p+1)/q)
p=r )

(|¢qIt)'(p+l)/qexp(§iﬂp)cos(%(p+l)n/qsgn¢q_%np)

For large values of t the first term in the series gives the major
contribution to [ ; this arises from the first or second non-zero
derivative of ¥ at k = k* . VWhen ¢ has a finite number of stationary
points the contributions from each are additive. Note that the above
expressions can be extended to the case in which r and ¢q are not
integers but satisfy » + 1 > -q , an inequality needed in establishing
(5). In such a case the factorial quantities are replaced by gamma

functions.

The order of magnitude of the leading term in some frequently

encountered examples are listed in Table 1 on page 125.
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Conditions on Order of Reference
¢ anda VY magnitude

r=0,q=2 t 2 usual stationary phase: Copson [3]
3

r=1,q=2 t 2 Jones [81, p. 345

-(3+m)

general r, q = 2 t 2 Fang and Klosner [5], equation (48)
1

r=0,qg=3 t 3 Airy integral. Jeffreys and

Jeffreys [7]

2

r=1,q=3 t 3 Braddock and van den Driessche [1]

e -
Table 1. The order of magnitude of J W(k)ezt¢(k)
00

dk for large t ;

¢ and Y given by (2), m= [(r+1)/2] .

3. Two dimensional integral*

Consider the two dimensional integral (1) with k = (k, 1) ; and
¢(k) , ¥(k) analytic functions of k . It is assumed that (k*, 1*) is
the only stationary point of ¢(k) . Taking u =%k - k* , v=10-1%*,
this gives the first partial derivatives zero at the origin, namely
$30 = ¢91 = 0 ; and it is further assumed that ¢y9dg2 - ¢§1 # 0 , see (8)

below, where

- ap"'QQ
pq q
20 6, 5m0

Initially the amplitude function is taken to be non-zero at the

stationary phase point, that is, Y¥pp # O . Approximating ¢ by the terms

¢ = dgo + 3(020uP+2¢1 uv+doov?)

(1) vecomes

(o] 00
LR ‘yooexp(it(boo) J J e:cp(ilit[¢20u2+2¢11uv+¢02v2)]dudv .
-0 -0
* This section elaborates an idea of Lighthill [11],
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In general ¢;) # 0 , and it is now necessary to rotate the uv axes
through an angle arctan(2¢))/(¢20-092)) to eliminate this term from the
exponential. The resulting integrals can then be estimated using the
leading term of (6), giving

3 .
(8) L% 2w00[ ¢2o¢02'¢i1“ £ expi (td’oo*%’“’) >
where O = signature[¢11 ¢12]
12 922

If the amplitude function is zero at the stationary point it can be
expanded in a series about the point and the above argument extended as in
the case of the one dimensional integral. This is developed by Jones and
Kline [9] and by Chako [2], who also deal with the modifications necessary
when ¢p9dp2 - ¢%1 = 0 . In addition contributions from other stationary

phase points are additive.

4. Polar transformation

In some two dimensional cases it is more convenient to transform (1)
into polar coordinates; this is the case for problems dealing with a fluid

of depth & with a free upper surface when the phase function is

1
(9) o(k, 1) = ak/t + yL/t £ (g]|k|tann(|k|R))2 ,

which is analytic in E2 - {(0, 0)} . Taking the negative sign in the

exponential and setting x = rcos® , y = rsin8 , k = |k|cosn ,

1 1
1= |k|sinn , ¥ = |k|# , wulx) = » 2(gxtanhy)? , the integral (1) becomes

© 27
(10) L= J J X¥(x, ndexp(itd(x, n))dndx ,
X 07’0
where
(11) ¢(x, n) = (rx|(zh))cos(6-n) - u(x) .

Here the range of integration is the phase plane described byvthe polar

coordinates (X, n) .

Now suppose there is a stationary phase point at (x*, n*) with
x* # 0 such that ¢;9 = ¢9; = 0 ; suffixes now refer to derivatives with

respect to the phase plane varisbles evaluated at (x*, n*) . In addition

https://doi.org/10.1017/50004972700044889 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700044889

Expansion of integrals 127

the above form of ¢ implies that ¢;; = 0 . Assuming that VYgp, ¢20 and

¢9, are non-zero, (8) gives
1
- =] R .
(12) L& 2“X*WOO(I¢20¢O2|) 2t expt[t¢00+%n(sgn¢20+sgn¢02)}

Assume now that Y has a zero at (X*, n*) , but at least one of
Y20, Y02 are non-zero; the conditions on ¢ are unchanged. The above
argument, retaining terms in ¢ up to and including second derivatives,

yields
. -
(13) 1 % m* ([0, 1) 5t 2{w20(|¢20|) Lexp (misgnd,,)
+W02(|¢02|)_lexp(%ﬂisgn¢02]}expi[t¢oo+%n(sgn¢20+sgn¢02)

The terms involving Y;9 and Y¥g; give odd functions and so zero

contribution to the asymptotic approximation. Notice that there are two
terms in the approximation (13) both of order t_2 , in contrast with the

result of order t_l from (12) when WOO # 0 . If both Wzo and Wo

2
are zero the result (13) needs further modification by considering more
terms in the series for ¥ . If n* = 0 , the lower limit of n , the

results of (12) and (13) must be multiplied by 3

Consider now the phase function ¢ given by (11). When x* #0 and
1
r < t(gh)2 there is one stationary phase point (X*, n*) satisfying
n* =6 and Y, = r/(th) . The second solution to ¢g) = 0 , namely
n=296+m, is rejected as it does not satisfy $10 = 0 . This is due to

the nature of du/dy , which is a positive, strictly monotonic decreasing

function on (0, ®) with a maximum value ‘of (g/h)% at X =0 . At the
stationary phase point ¢,0¢92 = X*M1ly , thus the denominator in (12)

(or (13)) does not vanish for X* # 0 .. The asymptotic approximations are
thus correct except near the long wave length limit. Formula (8) is also
invalid here for ¢ given by (9) as the denominator terms are undefined at

the origin.

5. Long wave']ength Timit

When x* 1is a small positive number, that is at the long wave length
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limit, the approximations obtained previously are invalid. In this case
approximations can be achieved by first applying the stationary phase

principle to the n integral in (10), yielding
1 2
(14) L% (2mh/r)2 r X2¥(x, n*)expi [px/(th)-u(x))t—%Nde .
0

The resulting integral is similar to the one considered by Weston [13] for
the initial part of the received pressure pulse produced by a large
explosion in the atmosphere. Weston expresses the integral in terms of
products of Airy integrals and is thus able to find an asymptotic form.
Here Watson's Lemma is used to yield the leading term of the asymptotic

expansion for (1k4).
The phase in (1Y4) near the stationary point X* is approximately

1
_%n + t(g/h)2x3/3! and the amplitude function is expanded in a series as

\y=2wp>f/p!, v - |EY

p P
P IX ) y=y#0 ,n=n

At this long wave length r = Yght from the stationary phase condition,
thus

(15) L % (8mr/g)2exp(-tni) § "/p/p!(6)(2p‘3)/6r(<2p+3>_/6)
p=q

(317 2) P 347 (P/3%0) i ((2p+3)/22)

Thus when Y(x*, n*) # 0 this has the same order, namely ¢L , as the
main wave, a result which agrees with Gazarian L[6] and Kajiura [70]. 1In
agreement with Gazarian the ratio of amplitudes of the main wave to the
leading wave is /5 . However when Y does vanish at the long wave length

t—(q/3+l) . Thus wvhen Y has a simple zero the

5/3

limit the order becomes

U3

order is , and when Y has a double zero the order is In

these cases the main wave [order t_l ) has a larger magnitude than the

leading wave.
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