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Abstract

Let (R,m) be a Cohen–Macaulay complete local ring. We will apply an inductive argument to show that
for every nonprojective locally projective maximal Cohen–Macaulay object X of the morphism category
of R with local endomorphism ring, there exists an almost split sequence ending in X. Regular sequences
are exploited to reduce the Krull dimension of R on which the inductive argument is established.
Moreover, the Auslander–Reiten translate of certain objects is described.
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1. Introduction and preliminaries

1.1. Let R be a ring. Recall that an R-homomorphism g : B→C is said to be right
almost split provided it is not a split epimorphism and factors every R-homomorphism

X→C which is not a split epimorphism. A nonsplit exact sequence 0→ A
f
→ B

g
→

C→ 0 of R-modules is called an almost split sequence provided the endomorphism
ring of A is local and the R-homomorphism g is right almost split.

The notion of almost split sequences was first defined by Auslander and Reiten [3]
in their study of the module category of an Artin algebra. It was in this setting that
they gave the first existence theorem for almost split sequences. Later, almost split
sequences were studied in various contexts such as orders over Gorenstein rings [2]
and the category of maximal Cohen–Macaulay modules over a Henselian Cohen–
Macaulay local ring which admits a canonical module; see [13, 17].

For an associative ring R with unity, denote by Mod R (respectively, mod R)
the category of all (respectively, finitely generated) R-modules and by H(R) the

morphism category of R whose objects are all R-homomorphisms X
f
→ Y in Mod R

and whose morphisms are given by commutative squares. The subcategory of H(R)
consisting of finitely generated objects will be denoted by H f g(R). In this note we
will discuss the existence of almost split sequences in the morphism category of a
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commutative ring R. It will be proved that for certain R, any indecomposable locally
projective maximal Cohen–Macaulay object of H(R), in the sense we will define
later, is the end term of an almost split sequence. We prove this result by using
an inductive argument on the Krull dimension d of R. Actually, the induction is
done by using regular sequences to reduce the dimension of the base ring. We very
much hope that this inductive procedure may be improved and generalised to other
contexts.

Here we give a preview of the paper and state the main theorems. The rest of this
section is devoted to providing some preliminaries. In its last part we study the notion
of tensor product in the categoryH(R) by use of which we will prove the isomorphism
of Theorem 1.8. We remark that this isomorphism has been proved in [4] in the case
of commutative Gorenstein rings and also in [17] by applying spectral sequences. We
will follow the proof given in [13]. This is fruitful from the point of view that it enables
us to understand the explicit description of the Auslander–Reiten translate τH , as will
be introduced later on, of some certain objects ofH(R).

In Section 2 our main tool is the following theorem in which C(H) is the
subcategory of H f g(R) consisting of all objects which are maximal Cohen–Macaulay
when considered as R-modules.

T A. Let (R,m) be a complete Cohen–Macaulay local ring of dimension d and
let X be a nonprojective locally projective object of C(H) with local endomorphism
ring. Assume that x ∈m is an R- and X-sequence (see Definition 2.2). Then for some
natural number n, there exists a nonzero natural map

ηX : Ext1
H(R/xnR)(X/xnX, τH(R/xnR)(X/xnX)) −→ Ext1

H(R)(X, τH(R)(X))

which has the property that every socle element of the right-hand side is the image of
a socle element of the left-hand side.

P. See Theorem 2.8. �

Then an inductive procedure will be given to prove the following theorem.

T B. Let R be as in Theorem A. For any nonprojective locally projective

maximal Cohen–Macaulay object (see Definition 2.1) X = X
f
→ Y of H(R) with local

endomorphism ring, there exists an almost split sequence

0 −→ τH (X) −→ E −→X −→ 0

in C(H).

Also, in an effort to recognise the object τH (X), we prove the following result.

T C. With the hypothesis as above, let ω be the canonical module of R.
If Ext1R(Coker( f ), R) = 0, then τH (X) is a representative of the induced map
HomR(syzdTr Y, ω) −→ HomR(syzdTr Coker( f ), ω).
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We remark that there also exist dual statements concerning indecomposable
noninjective objects and the inverse Auslander–Reiten translation which can be proved
using the same inductive method; so we do not give them.

1.2. It is known that for a ring R, the projective objects of H(R) are direct sums of

elements of the form P
1
→ P and 0→ P where P runs through all projective R-modules.

Dually, every injective element inH(R) is a product of elements of the form I
1
→ I and

I→ 0 where I runs through all injective R-modules. Actually, the category H(R) is
clearly equivalent to the category of modules over the path algebra RQ of the quiver
Q : • → • over R; see [5]. Hence, among other sources, the latter two statements about
projective and injective elements in H(R) are just special cases of the main results
in [8, 9] respectively. Note that if R is commutative noetherian then H(R) may be
considered as a noetherian R-algebra in the sense of [2].

1.3. It is a standard result that every finitely generated object X
f
→ Y of H(R)

admits a projective cover when R is a local ring. So we just recall the structure

of the projective covers. Let P
ϕ
→ X and Q

ψ
→ Coker( f ) be projective covers of the

R-modules X and Coker( f ), respectively. If π f : Y → Coker( f ) is the natural map,
then there exists a homomorphism γ : Q→ Y with π fγ = ψ. This gives rise to a map

(ϕ, fϕ ⊕ γ) : (P
i
→ P ⊕ Q) −→ (X

f
→ Y), where i is the natural injection. Then we have

the following lemma.

L 1.1. Let X
f
→ Y belong toH f g(R). With the above notation, (ϕ, fϕ ⊕ γ) : (P

i
→

P ⊕ Q) −→ (X
f
→ Y) is a projective cover.

1.4. Recall that, for a ring R, the functor (−)∗ = HomR(−, R) : Mod R −→Mod Rop

induces a duality between the full subcategories of finitely generated projective

modules over R and those over Rop. Now let X
f
→ Y belong to H(R) and let π f be

the natural map Y → Coker( f ). The object Coker( f )∗
π∗f
→ Y∗ ofH(Rop) will be denoted

by (X
f
→ Y)∗ and if g = (g1, g2) : (X

f
→ Y) −→ (X′

f ′
→ Y ′) is a morphism in H(R), then

g∗ : (X′
f ′
→ Y ′)∗ −→ (X

f
→ Y)∗ is just the obvious map induced by the homomorphisms

g∗1 and g∗2. This turns out to be an appropriate extension of the R-dual functor
mentioned above to the morphism category of R, which will again be denoted by
(−)∗. Evidently, (−)∗ induces a duality between the subcategory of projective objects
inH f g(R) and those inH f g(Rop).

Recall that if P1
ψ0
−→P0

ψ
−→X −→ 0 is a projective presentation of a finitely

generated object X = X
f
→ Y in H(R) then its Auslander–Bridger transpose TrH (X),

or simply Tr(X), is defined as Coker(P∗0
ψ∗0
−→P∗1). Hence TrH (X) depends on

the choice of the projective presentation of X. However, it can be seen that if

Q1
ϕ0
−→Q0

ϕ
−→X −→ 0 is another presentation by projective objects, then

https://doi.org/10.1017/S0004972713000099 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972713000099


[4] Existence of almost split sequences via regular sequences 221

Coker(Q∗0
ϕ∗0
−→Q∗1) and Coker(P∗0

ψ∗0
−→P∗1) are isomorphic up to projective direct sum-

mands. Now, for any two objects X and Y of H(R), let P(X,Y) consist of those
maps from X to Y in H(R) which factor through a projective object. Also, let the
stable category H(R) have the objects of H(R) as its objects and HomH(R)(X,Y) =

HomH(R)(X,Y)/P(X,Y) for any X and Y. Then, even though there is not a functor
Tr :H f g(R) −→H f g(Rop), there exists a functor Tr :H f g(R) −→H f g(Rop) which is
easily seen to be a duality. It is also straightforward to see that for any two
objects X and Y ofH f g(R), there exists an isomorphism Hom

H(R)(X,Y) ' Hom
H(Rop)

(Tr(X), Tr(Y)).

We emphasise that when R is local, then according to Lemma 1.1 we may consider
minimal projective presentations to define and compute the transpose.

In the following proposition we intend to obtain the description of the transpose of
the objects in H f g(R). Here, the transpose in mod R of a finitely generated R-module
M is denoted by Tr(M).

P 1.2. Let R be a commutative local ring and X = X
f
→ Y belong toH f g(R)

with f a monomorphism. Then TrH (X
f
→ Y) is a representative of the induced map

Tr(Coker( f ))
Tr(π f )
−→ Tr(Y) as an object in H f g(R). If, moreover, Ext1R(Coker( f ), R) = 0,

then the sequence

0 −→ Tr(Coker( f ))
Tr(π f )
−→ Tr(Y)

Tr( f )
−→ Tr(X) −→ 0

of R-modules is exact.

P. Assume that P1
ξ0
−→ P0

ξ
−→ X −→ 0 is a minimal projective presentation of X

and choose projective R-modules Q0 and Q1 such that, by Lemma 1.1,

P1

��

ξ0 // P0

��

ξ // X

f

��

// 0

P1 ⊕ Q1
ϕ0 // P0 ⊕ Q0

ϕ // Y // 0

is a minimal projective presentation of X
f
→ Y in H f g(R). In view of the definition of

the transpose of an object given above, one may apply the functor (−)∗ to obtain the
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commutative exact diagram

0

��

0

��
Q∗0 //

��

Q∗1

��

// M

g

��

// 0

P∗0 ⊕ Q∗0
ϕ0
∗

//

��

P∗1 ⊕ Q∗1 //

��

N //

��

0

P∗0

��

ξ0
∗

// P∗1

��

// Coker(g) //

��

0

0 0 0

where the lower row is obtained by computing the cokernels of the vertical maps,

all the maps are just the obvious ones, and M
g
→ N is the transpose of X

f
→ Y .

Since P1
ξ0
−→ P0

ξ
−→ X −→ 0 is a minimal projective presentation of X, we get that

Coker(g) ' Tr(X). On the other hand, since f is mono, the Snake lemma implies
that Q1→ Q0→ Coker( f )→ 0 is a minimal projective presentation, that is, M '
Tr(Coker( f )). Also, again since f is a monomorphism, [11, Lemma 2.2] gives that

P1 ⊕ Q1
ϕ0
−→ P0 ⊕ Q0

ϕ
−→ Y −→ 0 is actually a minimal projective presentation of Y

and consequently N ' Tr(Y). Finally, if Ext1R(Coker( f ), R) = 0 then add the exact

sequence 0→ Coker( f )∗
π∗f
−→ Y∗

f ∗
−→ X∗ −→ 0 as the left column to the above diagram

and deduce then that g is a monomorphism. �

R 1.3. We point out that, by the results in [9], every Gorenstein projective object
in H(R) satisfies the hypothesis of the above proposition. So also does every object

X
f
→ Y of H(R) with f a monomorphism and Coker( f ) maximal Cohen–Macaulay in

the usual sense, when R is a local Gorenstein ring.

1.5. In this part we aim to settle the following Theorem 1.8. This has already been
established in some settings such as algebras over commutative Gorenstein rings [4].
We just provide prerequisites and follow the argument given in [13] for the case of
local Cohen–Macaulay rings admitting a canonical module. So let R be a commutative
ring and C(H) be the subcategory of H f g(R) whose objects are maximal Cohen–
Macaulay as R-modules. Our reference for Cohen–Macaulay rings and modules and
the canonical module of a ring is [6].

Firstly, we need to recognise explicitly the notion of tensor product in the category

H(R). So let X = X
f
→ Y belong to H(R). Define a functor HomR(X, −) : Mod R −→

H(R) in the following way: for any R-module U, HomR(X, U) is the element
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HomR(Y, U)
HomR( f ,U)
−→ HomR(X, U) and, if U

g
→ V is a homomorphism of R-modules,

we let HomR(X, g) act in the obvious way. Then it is easy to verify that HomR(X, −)
is indeed a left exact functor which, by the elementary properties of the usual
HomR functor, is product preserving. Hence by [15, Corollary 3.39] it has a left
adjoint. So now let −⊗HX :H(R) −→Mod R be the left adjoint of the functor
HomR(X, −). Therefore, for any R-module U and any objectM of H(R), there exists
an isomorphism

HomR(M⊗H X, U) ' HomH (M, HomR(X, U))

which is called the Hom − ⊗ adjoint isomorphism.
To see that −⊗HX has all expected attributes as a tensor product functor, we refer

to [16] where this approach has been applied to the more general setting of complexes
of modules over commutative rings; the arguments there permeate to H(R). For
instance, it can easily be seen that −⊗HX preserves direct limits. Moreover, if P is any
projective object in H(R), then −⊗HP is an exact functor. Note that for arbitrary X,
−⊗HX is right exact, being the left part of an adjoint pair.

However, we will show below that this behaviour should not be thought of as far
reaching.

L 1.4. For any X = X
f
→ Y in H(R), there are R-isomorphisms (0→ R) ⊗H X '

X and (R→ R) ⊗H X ' Y.

P. Let U be any R-module. From the Hom − ⊗ adjoint isomorphism,

HomR((0→ R) ⊗H X, U) ' HomH ((0→ R), HomR(X, U))

' HomH ((0→ R), (HomR(Y, U)→ HomR(X, U)))

' HomR(X, U),

implying the first isomorphism. The other one is checked analogously. �

Consider the triangular matrix extension

T (R) =

(
R 0
R R

)
of R and recall that H(R) is naturally equivalent to Mod T (R), the category of left
modules over T (R). So let F :H(R) −→Mod T (R) denote this equivalence; we refer
to [5] to see how F acts.

L 1.5. For every X inH(R), −⊗HX ' F(−) ⊗T (R) F(X).

P. Notice first that, since R is commutative, T (R)op may be identified with T (R)

itself. Let X = X
f
→ Y and consider the composite functor

G : Mod T (R)
F−1

−→H(R)
−⊗HX
−→ Mod R.
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Since G is right exact and coproduct preserving, by [15, Theorem 3.33], G ' −⊗T (R)B
where B = G(T (R)) has a natural left T (R)-structure. Since F−1(T (R)) = (0→ R) ⊕
(R→ R), we get from Lemma 1.4 that

B = ((0→ R) ⊗H X) ⊕ ((R→ R) ⊗H X) ' X ⊕ Y.

But, evidently, X ⊕ Y as a T (R)-module is nothing other than F(X) itself; hence
G ' − ⊗T (R) F(X) from which the required isomorphism of functors follows. �

Lemma 1.5 tells us that one may use −⊗HX freely to do homological algebra
in the category H(R). For instance, with this notion of tensor product, one defines
TorHi (X,Y) for any two elements X, Y in H(R) in the usual way: take a projective
resolution for X, apply −⊗HY and compute the homology modules. Note that it is
now routine to verify that, as in the case of modules over a commutative ring, TorHi
commutes with the usual localisation functor, that is, for any two objects X, Y in
H(R) and any prime ideal p of R there exists a natural isomorphism TorHi (X,Y)p '
TorHi (Xp,Yp).

We point out that for any element Y in H(R), there exists a right exact functor
Y ⊗H − :H(R) −→Mod R; this can be constructed directly from the functors −⊗HX
by using Yoneda’s lemma [10, Ch. 5] or from Lemma 1.5 above. For future use, we
record the following lemma whose proof is now standard in view of the notions of
tensor product we already have.

L 1.6. For any two elements X, Y in H f g(R), there exists an exact sequence
X∗ ⊗H Y −→ HomH (X,Y) −→ Hom

H
(X,Y) −→ 0.

D 1.7. An object X = X
f
→ Y of H(R) is said to be locally projective on the

punctured spectrum of R provided (X)p = Xp
fp
→ Yp is a projective object in H(Rp) for

every nonmaximal prime ideal p of R.

Assume now that R is local Cohen–Macaulay with canonical module ω. For an

R-module X, X′ denotes the R-module HomR(X, ω), and ifX = X
f
→ Y is an element in

H(R), then X′ will denote the object HomR(X, ω) = HomR(Y, ω)
HomR( f ,ω)
−→ HomR(X, ω)

ofH(R).
With all these prerequisites in hand, we are now able to state the following theorem.

As we pointed out earlier, its proof follows exactly that of [13, Proposition 12.16];
hence we skip it. Recall that for an object X in H(R), syzi(X) is the ith syzygy in a
minimal projective presentation of X. As usual, we ignore projective direct summands
in syzi(X). Also, E(R/m) stands for the injective envelope of R/m.

T 1.8. Let R be a Cohen–Macaulay local ring of dimension d which possesses a
canonical module ω. Suppose that X is an object inH f g(R) which is locally projective
on the punctured spectrum of R and Y ∈ C(H). Then there is an isomorphism
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of End
H

(X)-and End
H

(Y)-modules,

HomR(Hom
H

(X,Y), E(R/m)) ' Ext1
H

(Y, (syzdTrX)′),

which is natural in both variables.

Inspired by the above theorem, (syzdTrX)′ is called the Auslander–Reiten translate
of X and is denoted by τH(R)(X) or, when there is no ambiguity, τ(X).

2. Proof of the main theorems

Here, let (R,m) be a complete Cohen–Macaulay local ring of Krull dimension d. In
the following, we will prove the results mentioned in the introduction. As mentioned
earlier, the proof of Theorem B proceeds by induction on d. More precisely, we shall
reduce the problem by using regular elements. Details of basic properties of regular
elements and how they behave with Cohen–Macaulay modules may be found in [6].
We just recall that for a finitely generated R-module X a nonzero element x ∈ R is said
to be X-regular, or an X-sequence, provided it is not a zero divisor on X. Firstly, we
define what we mean by a maximal Cohen–Macaulay object inH(R) and then collect
some prerequisites. As before, E is the injective envelope of R/m.

D 2.1. An element X = X
f
→ Y of H f g(R) is said to be (maximal) Cohen–

Macaulay provided:

(i) f is a monomorphism;
(ii) the R-modules X, Y and Coker( f ) are (maximal) Cohen–Macaulay.

Evidently, every maximal Cohen–Macaulay object lies in C(H). Also, if f is a
monomorphism and either X and Coker( f ) or Y and Coker( f ) are maximal Cohen–
Macaulay, then X is maximal Cohen–Macaulay.

D 2.2. Let X = X
f
→ Y belong toH f g(R) and let 0 , x ∈ R. We say that x is an

X-sequence provided it is both an X- and a Coker( f )-sequence.

For an object X = X
f
→ Y ofH f g(R) and an element 0 , x ∈ R, we denote by X/xX

the object X ⊗R R/xR
f⊗R/xR
−→ Y ⊗R R/xR ofH f g(R/xR).

L 2.3. If X = X
f
→ Y is a (maximal) Cohen–Macaulay object of H(R) and x ∈ R

is an X-sequence, then X/xX is also (maximal) Cohen–Macaulay inH(R/xR).

P. By definition of (maximal) Cohen–Macaulay objects, the sequence 0 −→

X
f
−→ Y

π f
−→ Coker( f ) −→ 0 is exact so that x will also be a Y-sequence. It is

well known that the R/xR-modules X/xX, Y/xY and Coker( f )/xCoker( f ) are then
(maximal) Cohen–Macaulay; see [6, Theorem 2.1.3]. On the other hand, since x is a
Coker( f )-sequence, we have TorR

1 (Coker( f ), R/xR) = 0 which in conjunction with the
long exact sequence of Tor implies that f ⊗ R/xR is a monomorphism. This finishes
the proof. �
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L 2.4. Let X be a locally projective object of H f g(R) and let x ∈m be an R- and
X-sequence. IfL is an arbitrary object ofH f g(R), then there exists a natural number n
such that Hom

H(R)(X,L) is an R/xnR-module and HomR(Hom
H(R)(X,L), E) '

HomR/xnR(Hom
H(R)(X,L), E′) where E′ is the injective envelope of

R/xnR
m/xnR

as an R/xnR-module.

P. Since X is locally projective, the R-module Hom
H

(X,L) is of finite length.
Hence there exists a natural number n with mnHom

H(R)(X,L) = 0 and consequently
xnHom

H(R)(X,L) = 0. So Hom
H(R)(X,L) is an R/xnR-module. Now, by using the

Hom − ⊗ adjoint isomorphism,

HomR(Hom
H(R)(X,L), E) ' HomR

( R
xnR
⊗R/xnR Hom

H(R)(X,L), E
)

' HomR/xnR(Hom
H(R)(X,L), HomR(R/xnR, E)).

Since HomR(R/xnR, E) = E′, the required isomorphism follows. �

Following [7], IfX is an element inH f g(R) and x ∈m is both an R- andX-sequence,
we let nx(X) be the minimum of all n such that xnExt1

H
(X, −) = 0.

L 2.5. LetX be a nonprojective locally projective object of C(H) and let x ∈m be
an R- and X-sequence. Assume that L is an object of C(H) over which x is a regular
sequence. Then, for some natural number n, there exists a natural map

ηX,L : HomR/xnR(Hom
H(R/xnR)(X/xnX,L/xnL), E′) −→ HomR(Hom

H(R)(X,L), E).

Moreover, if nx(L) is finite and there exists a mapX→Lwhich does not factor through
projective objects then, for some natural number n, there exists a nonzero ηX,L as
above.

P. According to Lemma 2.4, we pick a natural number n1 such that the R-module
Hom

H(R)(X,L) is an R/xn1 R-module and HomR(Hom
H(R)(X,L), E) is isomorphic to

HomR/xn1 R(Hom
H(R)(X,L), E′). Note that the natural map

HomH(R)(X,L) −→ HomH(R/xn1 R)(X/xn1X,L/xn1L)

induces a map

ϕX,L : Hom
H(R)(X,L) −→ Hom

H(R/xn1 R)(X/xn1X,L/xn1L)

because for any projective R-module Q, Q/xn1 Q is a projective R/xn1 R-module by [6,
Lemma 1.3.5]. Hence the required map follows as ηX,L = HomR/xn1 R(ϕX,L, E′).

For the second part let the sequence 0 −→K
i
−→P

j
−→L −→ 0 be exact with

P the projective cover. We know from the assumption that nx(X) is finite;
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also nx(K) is by [7, Proposition 1.7] finite. Set n ≥max{n1, nx(X), nx(L)} + 1.
We will then show that the map ϕX,L which arises from the above process
with n instead of n1 is a monomorphism. Suppose that ε : X −→L is
such that ε ⊗R R/xnR : X/xnX −→L/xnL factors through a projective object in
H(R/xnR). We will show that ε factors through a projective object in H(R).
By [12] it suffices to show that in the pullback diagram

0 // K
t // N

��

s // X

ε

��

// 0

0 // K
i // P

j // L // 0

the top row splits. Since x is an L- and X-sequence, we get the diagram

0 // K/xnK
t⊗R/xnR// N/xnN

��

s⊗R/xnR// X/xnX

ε⊗R/xnR
��

// 0

0 // K/xnK
i⊗R/xnR // P/xnP

j⊗R/xnR// L/xnL // 0

Since ε ⊗ R/xnR factors through a projective object, the top row of the latter diagram
splits, that is, N/xnN 'K/xnK ⊕ X/xnX or N/xnN ' (X ⊕K)/xn(X ⊕K). Since
n ≥ nx(X ⊕K) + 1, X ⊕K ∈ C(H), and x is an N-sequence, [7, Theorem 1.3] yields

that N ' X ⊕K . But then, by [14], we deduce that the sequence 0 −→K
t
−→N

s
−→

X −→ 0 is split, as required. Consequently ϕX,L is a monomorphism which, by virtue
of the existence of a map which does not factor through projective objects, is certainly
nonzero; thus, so is ηX,L. �

Combining the above lemma and Theorem 1.8, we obtain the following corollary.

C 2.6. Under the assumptions of Lemma 2.5 there exists, for some natural
number n, a natural map

Ext1
H(R/xnR)(L/xnL, τH(R/xnR)(X/xnX)) −→ Ext1

H(R)(L, τH(R)(X)),

still denoted by ηX,L. If the extra assumptions of Lemma 2.5 hold, ηX,L is nonzero.

P 2.7. Let X be a nonprojective locally projective object of C(H) with local
endomorphism ring. Assume that x ∈m is an R- and X-sequence. Then for some
natural number n, there exists a nonzero natural map

ηX : HomR/xnR(End
H(R/xnR)(X/xnX), E′) −→ HomR(End

H(R)(X), E)

with the property that every socle element of the right-hand side is the image of a socle
element of the left-hand side.
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P. Set Γ = End
H(R)(X) and consider the natural number n ≥ nx(X) + 1 of

Lemma 2.5 which corresponds to a nonzero map ϕX : Γ −→ Γ′ where Γ′ =

End
H(R/xnR)(X/xnX). This gives the asserted nonzero map ηX = HomR/xnR(ϕX, E′).

By [7, Theorem 1.3], Γ′ is also a local ring, and by a result from Auslander
[1, Proposition 2.5], P(X, X) ⊆ J(End(X)) and P(X/xnX, X/xnX) ⊆ J(End(X/xnX))
where J denotes the Jacobson radical. Hence J(Γ) = J(End(X))/P(X, X) and,
likewise, J(Γ′) = J(End(X/xnX))/P(X/xnX, X/xnX). Note that if an endomorphism
ι of X factors through a projective object, then so does the endomorphism ι ⊗ R/xnR
of X/xnX. Therefore one may apply [6, Lemma 3.3.2] to deduce that ϕX induces a
map J(Γ) −→ J(Γ′). So now there is a ring homomorphism ψX : Γ/J(Γ) −→ Γ′/J(Γ′)
which is nonzero because otherwise the unit element of Γ′ would lie in J(Γ′) which is
absurd. Moreover, ψX is mono since Γ/J(Γ) is simple. Now consider the commutative
diagram

0 // HomR/xnR(Γ′/J(Γ′), E′)

HomR/xnR(ψX,E′)

��

α // HomR/xnR(Γ′, E′)

ηX

��
0 // HomR/xnR(Γ/J(Γ), E′)

β // HomR/xnR(Γ, E′)

in which HomR/xnR(ψX, E′) is an epimorphism and α and β are just the obvious maps.
Suppose that h ∈ HomR/xnR(Γ, E′) is a socle element. Then there exists an element
h′ ∈ HomR/xnR(Γ/J(Γ), E′) with h = β(h′). Since h′ itself is the image of some element
h′′ ∈ HomR/xnR(Γ′/J(Γ′), E′), we get h = β ◦ HomR/xnR(ψX, E′)(h′′) = ηX ◦ α(h′′). But,
clearly, J(Γ′) annihilates α(h′′), that is, α(h′′) is a socle element. This finishes the
proof. �

The following theorem is a combination of the above proposition with Theorem 1.8.

T 2.8. Under the assumptions of Proposition 2.7, for some natural number n,
there exists a nonzero natural map

ηX : Ext1
H(R/xnR)(X/xnX, τH(R/xnR)(X/xnX)) −→ Ext1

H(R)(X, τH(R)(X))

which has the property that every socle element of the right-hand side is the image of
a socle element of the left-hand side.

The following proposition is the last thing we need to prove the existence of almost
split sequences.

P 2.9. Let X be a locally projective Cohen–Macaulay object of H(R) with
a local endomorphism ring. Then τH(R)(X) = (syzdTrX)′ has a local endomorphism
ring.

P. From the assumption, we get that End
H(R)(TrX) is local. For every projective

object P in H f g(R), Ext1
H(R)(TrX, P) = 0 by Proposition 1.2; hence one applies a

standard argument to show that End
H(R)(TrX) ' End

H(R)(syz1TrX) implying that the
latter is a local ring. Using this repeatedly, it follows that End

H(R)(syzdTrX) is
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also local. But syzdTrX has no projective direct summands. Therefore P(syzdTrX,
syzdTrX) is contained in J(End(syzdTrX)) by [1, Proposition 2.5]. This gives that
EndH(R)(syzdTrX) is a local ring. Note that syzdTrX is a Cohen–Macaulay element
in H(R). Consequently, since (−)′ is clearly a duality on the subcategory of Cohen–
Macaulay objects, we elicit the desired result. �

We now come to the proof of Theorem B.

P  T B. Since X is locally projective, HomR(End
H(R)(X), E) has a socle

element, that is, an element which vanishes over J(End
H(R)(X)). So by Theorem 1.8,

Ext1
H(R)(X, τH(R)(X)) has a socle element s : 0 −→ τH(R)(X)

δ
−→ E

θ
−→X −→ 0. Our

aim is to prove, by induction on d, that this element is indeed the almost split
sequence ending in X in the subcategory C(H). That τH(R)(X), and so E, lie in C(H)
follows from Proposition 1.2. By virtue of Proposition 2.9, we only need to show
that θ is a right almost split map. For let L

ε
−→X be a nonisomorphism with L an

indecomposable object in C(H). Then there exists a pullback diagram

0 // τH(R)(X) δ′ // G
θ′ //

ε′

��

L //

ε

��

0

0 // τH(R)(X) δ // E
θ // X // 0

Clearly, it is sufficient to show that the sequence t : 0→ τH(R)(X)
δ′

→G
θ′

→L→ 0 is
split. Since X and L are maximal Cohen–Macaulay as R-modules, there exists an
element x ∈m which is simultaneously an R-, X-, and L-sequence. Assume first that
nx(L) is finite. Then by Theorem 2.8 and Corollary 2.6 we may choose a natural
number n ≥max{nx(X), nx(L)} + 1 in such a way that there exists a nonzero map

ηX : Ext1
H(R/xnR)(X/xnX, τH(R/xnR)(X/xnX)) −→ Ext1

H(R)(X, τH(R)(X))

and also a map

ηX,L : Ext1
H(R/xnR)(L/xnL, τH(R/xnR)(X/xnX)) −→ Ext1

H(R)(L, τH(R)(X))

and such that, by [7, Theorem 1.3], X/xnX and L/xnL both have local endomorphism
rings and, moreover, s is the image under ηX of a socle element

s′ : 0 −→ τH(R/xnR)(X/xnX)
σ
−→ E′

υ
−→X/xnX −→ 0

of Ext1
H(R/xnR)(X/xnX, τH(R/xnR)(X/xnX)). By the induction hypothesis s′ is an almost

split sequence. Now consider the pullback diagram

0 // τH(R/xnR)(X/xnX) σ′ // G′
υ′ //

��

L/xnL //

ε⊗R/xnR

��

0

0 // τH(R/xnR)(X/xnX) σ // E′
υ // X/xnX // 0 (∗)
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in which the map ε ⊗ R/xnR is not an isomorphism by [6, Lemma 3.3.2]. Therefore

the sequence t′ : 0 −→ τH(R/xnR)(X/xnX)
σ′

−→G′
υ′

−→L/xnL −→ 0 must be split exact.
But then the commutative diagram

Ext1(X/xnX, τ(X/xnX))
ηX //

Ext1(ε⊗R/xnR,τ(X/xnX))
��

Ext1(X, τ(X))

Ext1(ε,τ(X))
��

Ext1(L/xnL, τ(X/xnX))
ηX,L // Ext1(L, τ(X))

implies that t = 0 as desired.
Suppose now that nx(L) is infinite. Still, for some natural number n ≥ nx(X) + 1, we

have the map ηX,L and also the nonzero map ηX with the aforementioned property. We
claim that ε ⊗ R/xnR is not a split epimorphism. For if this is the case then Nakayama’s
lemma gives that ε is an epimorphism. Our choice of n shows that xnExt1(X, −) = 0,
that is, the map xn : X→X given by multiplication by xn factors through a projective
object by [12]; hence so does the map xnε. On the other hand, the exact sequence of
Lemma 1.6 gives rise to the commutative diagram

L∗ ⊗H X // HomH (L, X) // Hom(L, X) // 0

L∗ ⊗H L //

1⊗ε

OO

HomH (L,L) //

ε∗

OO

Hom(L,L)

OO

// 0

in which the map 1 ⊗ ε is an epimorphism since L∗ ⊗H − is a right exact functor. Note
that the image of the horizontal maps in the left square coincide with P(L, X) and
P(L,L), respectively. Therefore, chasing this diagram, one obtains a map γ :L→L
which factors through a projective object and satisfies xnε = εγ. So if xn :L→L is
multiplication by xn, then ε(γ − xn) = 0. Now the entry Y in the pullback diagram

0 // Y

h
��

j // L

γ−xn

��

// N

��

// 0

0 // K
i // L

ε // X // 0

is, by definition of a pullback, a submodule of K ⊕ L consisting of all pairs ((γ −
xn)(`), `) with ` ∈ L. (We are looking at modules over some triangular matrix ring
instead of objects inH(R) as pointed out before.) This means thatY ' Im(γ − xn) ⊕ L
and that the map j is an isomorphism. Hence L ' L ⊕ Im(γ − xn) which implies that
γ = xn since L is indecomposable. This conflicts with nx(L) =∞. Hence ε ⊗ R/xnR is
not a split epimorphism so that it factors through υ. The rest of the proof goes as in
the first case and gives t = 0. �

P  T C. For a maximal Cohen–Macaulay object X = X
f
→ Y of H(R)

with Ext1
H

(Coker( f ), R) = 0, TrH (X) is by Proposition 1.2 a representative of the
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induced monomorphism Tr Coker( f )
Tr (π f )
−→ TrY . Moreover by [11, Lemma 2.2] and

the construction of projective covers in H(R) given in Lemma 1.1, syzdTrX may be
represented as syzdTr Coker( f )→ syzdTr Y . Now apply the functor (−)′ as defined
before. �
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