C^{*}-ALGEBRAS OF INFINITE REAL RANK

A. Chigogidze and V. Valov

Abstract

We introduce the notion of weakly (strongly) infinite real rank for unital C^{*}-algebras. It is shown that a compact space X is weakly (strongly) infine-dimensional if and only if $C(X)$ has weakly (strongly) infinite real rank. Some other properties of this concept are also investigated. In particular, we show that the group C^{*}-algebra $C^{*}\left(\mathbb{F}_{\infty}\right)$ of the free group on countable number of generators has strongly infinite real rank.

It is clear that some C^{*}-algebras of infinite real rank have infinite rank in a very strong sense of this word, while others do not. In order to formally distinguish these types of infinite ranks from each other we introduce the concept of weakly (strongly) infinite real rank. Proposition 1.1 characterises usual real rank in terms of infinite sequences of self-adjoint elements and serves as a basis of our definition 2.1 . We completely settle the commutative case by proving (Theorem 2.9) that the algebra $C(X)$ has weakly infinite real rank if and only if X is a weakly infinite dimensional compactum. As expected, the group C^{*}-algebra $C^{*}\left(\mathbb{F}_{\infty}\right)$ of the free group on countable number of generators has strongly infinite real rank (Corollary 2.10).

1. Preliminaries

All C^{*}-algebras below are assumed to be unital. The set of all self-adjoint elements of a C^{*}-algebra X is denoted by $X_{s a}$.

The real rank of a unital C^{*}-algebra X, denoted by $\operatorname{rr}(X)$, is defined as follows ([2]). We say that $\operatorname{rr}(X) \leqslant n$ if for each $(n+1)$-tuple $\left(x_{1}, \ldots, x_{n+1}\right)$ of self-adjoint elements in X and every $\varepsilon>0$, there exists an $(n+1)$-tuple $\left(y_{1}, \ldots, y_{n+1}\right)$ in $X_{s a}$ such that $\sum_{k=1}^{n+1} y_{k}^{2}$ is invertible and $\left\|\sum_{k=1}^{n+1}\left(x_{k}-y_{k}\right)^{2}\right\|<\varepsilon$.
1.1. Alternative definitions of the real rank It is interesting that the real rank can be equivalently defined in terms of infinite sequences.

Proposition 1.1. Let X be a unital C^{*}-algebra. Then the following conditions are equivalent:

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/02 \$A2.00+0.00.
(i) $\quad \operatorname{rr}(X) \leqslant n$.
(ii) for each $(n+1)$-tuple $\left(x_{1}, \ldots, x_{n+1}\right)$ in $X_{s a}$ and for each $\varepsilon>0$, there exists an $(n+1)$-tuple $\left(y_{1}, \ldots, y_{n+1}\right)$ in $X_{s a}$ such that $\sum_{k=1}^{n+1} y_{k}^{2}$ is invertible and $\left\|x_{k}-y_{k}\right\|<\varepsilon$ for each $k=1,2, \ldots, n+1$.
(iii) for any sequence of self-adjoint elements $\left\{x_{i}: i \in N\right\} \subseteq X_{s a}$ and for any sequence of positive real numbers $\left\{\varepsilon_{i}: i \in \mathbb{N}\right\}$ there exists a sequence $\left\{y_{i}: i \in \mathbb{N}\right\} \subseteq X_{s a}$ such that
(a) $\left\|x_{i}-y_{i}\right\|<\varepsilon_{i}$, for each $i \in \mathbb{N}$,
(b) for any subset $D \subseteq \mathbb{N}$, with $|D|=n+1$, the element $\sum_{i \in D} y_{i}^{2}$ is invertible.
(iv) for any sequence of self-adjoint elements $\left\{x_{i}: i \in \mathbb{N}\right\} \subseteq X_{s a}$ and for any $\varepsilon>0$ there exists a sequence $\left\{y_{i}: i \in \mathbb{N}\right\} \subseteq X_{s a}$ such that
(a) $\left\|x_{i}-y_{i}\right\|<\varepsilon$, for each $i \in \mathbb{N}$,
(b) for any subset $D \subseteq \mathbb{N}$, with $|D|=n+1$, the element $\sum_{i \in D} y_{i}^{2}$ is invertible.
(v) for any sequence of self-adjoint elements $\left\{x_{i}: i \in \mathbb{N}\right\} \subseteq X_{s a}$ such that $\left\|x_{i}\right\|=1$ for each $i \in \mathbb{N}$ and for any $\varepsilon>0$ there exists a sequence $\left\{y_{i}\right.$: $i \in \mathbb{N}\} \subseteq X_{s a}$ such that
(a) $\left\|x_{i}-y_{i}\right\|<\varepsilon$, for each $i \in \mathbb{N}$,
(b) for any subset $D \subseteq \mathbb{N}$, with $|D|=n+1$, the element $\sum_{i \in D} y_{i}^{2}$
is invertible.

Proof: (i) \Longrightarrow (ii). Let $\left(x_{1}, \ldots, x_{n+1}\right)$ be an $(n+1)$-tuple in $X_{s a}$ and $\varepsilon>0$. By (i), there exists an $(n+1)$-tuple $\left(y_{1}, \ldots, y_{n+1}\right)$ in $X_{s a}$ such that $\sum_{k=1}^{n+1} y_{k}^{2}$ is invertible and $\left\|\sum_{k=1}^{n+1}\left(x_{k}-y_{k}\right)^{2}\right\|<\varepsilon^{2}$.

Since $x_{k}-y_{k} \in X_{s a}$, it follows ([4, 2.2.4 Theorem $]$) that $\left(x_{k}-y_{k}\right)^{2} \geqslant 0$ for each $k=1, ; \ldots, n+1$. Then, by [4, 2.2.3 Lemma], $\sum_{k=1}^{n+1}\left(x_{k}-y_{k}\right)^{2} \geqslant 0$. Note also that $\sum_{i=1}^{n+1}\left(x_{i}\right.$ $\left.-y_{i}\right)^{2}-\left(x_{k}-y_{k}\right)^{2}=\sum_{i=1, i \neq k}^{n+1}\left(x_{i}-y_{i}\right)^{2} \geqslant 0, k=1, \ldots, n+1$, which guarantees that $\left(x_{k}-y_{k}\right)^{2}$ $\leqslant \sum_{i=1}^{n+1}\left(x_{i}-y_{i}\right)^{2}$ for $\begin{gathered}i=1, i \neq k \\ \operatorname{each} k\end{gathered}=1, \ldots, n+1$. By [4, 2.2.5 Theorem], $\left\|x_{k}-y_{k}\right\|^{2}=\left\|\left(x_{k}-y_{k}\right)^{2}\right\|$ $\leqslant\left\|\sum_{i=1}^{n+1}\left(x_{i}-y_{i}\right)^{2}\right\|<\varepsilon^{2}$. Consequently, $\left\|x_{k}-y_{k}\right\|<\varepsilon, k=1, \ldots, n+1$. This shows that condition (ii) is satisfied.
(ii) \Longrightarrow (iii). Suppose (ii) and let $\left\{x_{i}: i \in \mathbb{N}\right\} \subset X_{s a}$ and $\left\{\varepsilon_{i}: i \in \mathbb{N}\right\}$ be sequences of self-adjoint elements of X and positive real numbers, respectively. Denote by \mathbb{N}_{n+1} the family of all subsets of \mathbb{N} of cardinality $n+1$. For every $i \in \mathbb{N}$ and $D \in \mathbb{N}_{n+1}$ let $H_{i}=\left\{x \in X_{s a}:\left\|x-x_{i}\right\| \leqslant 2^{-1} \varepsilon_{i}\right\}$ and $H_{D}=\prod\left\{H_{i}: i \in D\right\}$ be the topological product of all $H_{i}, i \in D$. We also consider the topological product $H=\Pi\left\{H_{i}: i \in \mathbb{N}\right\}$
and the natural projections $\pi_{D}: H \rightarrow H_{D}$. Define the continuous maps $\phi_{D}: X_{s a}^{D} \rightarrow X$, $\phi_{D}\left(z_{i_{1}}, z_{i_{2}}, . ., z_{i_{n+1}}\right)=\sum_{j=1}^{n+1} z_{i_{j}}^{2}, D \in \mathbb{N}_{n+1}$. Condition (ii) yields that $\phi_{D}^{-1}(G)$ is dense (and, obviously, open) in $X_{s a}^{D}$ for every $D \in \mathbb{N}_{n+1}$, where G is the set of all invertible elements of X. The last observation implies that each set $G_{D}=\phi_{D}^{-1}(G) \cap H_{D}$ is open and dense in H_{D}. Consequently, each $U_{D}=\pi_{D}^{-1}\left(G_{D}\right)$ is open and dense in H because the projections π_{D} are continuous and open maps. Finally, using that H (as a product of countably many complete metric spaces) has the Baire property, we conclude that the intersection U of all U_{D} is non-empty. Take any point (y_{i}) from U. Then $y_{i} \in H_{i}$, so $y_{i} \in X_{s a}$ and $\left\|x_{i}-y_{i}\right\| \leqslant 2^{-1} \varepsilon_{i}<\varepsilon_{i}$ for every $i \in \mathbb{N}$. Moreover, for any $D \in \mathbb{N}_{n+1}$ the point $y_{D}=\left(y_{i}\right)_{i \in D}$ belongs to G_{D}, hence $\sum\left\{y_{i}^{2}: i \in D\right\}$ is invertible.

Implications (iii) \Longrightarrow (iv) and (iv) \Longrightarrow (v) are trivial.
(v) \Longrightarrow (i). Let $\left(x_{1}, \ldots, x_{n+1}\right)$ be an ($n+1$)-tuple of non-zero self-adjoint elements in X and $\varepsilon>0$. Consider the sequence $\left\{\bar{x}_{i}\right\}$ of self-adjoint elements of X, where

$$
\bar{x}_{i}=\left\{\begin{array}{l}
\frac{x_{i}}{\left\|x_{i}\right\|}, \text { if } i \leqslant n+1 \\
1, \text { if } i>n+1
\end{array}\right.
$$

By (iv), there exists a sequence $\left\{\bar{y}_{i}: i \in \mathbb{N}\right\}$ of self-adjoint elements of X such that $\sum_{i=1}^{n+1} \bar{y}_{i}^{2}$ is invertible and $\left\|\bar{x}_{i}-\bar{y}_{i}\right\|<\left(\varepsilon /\left(\max \left\{\left\|x_{i}\right\|: i=1, \ldots n+1\right\}\right)\right)$ for each $i \in \mathbb{N}$. Now let $y_{i}=\left\|x_{i}\right\| \cdot \bar{y}_{i}, i \in \mathbb{N}$. Then for every $i \leqslant n+1$ we have

$$
\begin{aligned}
\left\|x_{i}-y_{i}\right\|=\| \| x_{i}\left\|\cdot \bar{x}_{i}-\right\| x_{i}\left\|\cdot \bar{y}_{i}\right\|=\left\|x_{i}\right\| \cdot\left\|\bar{x}_{i}-\bar{y}_{i}\right\| & \quad<\left\|x_{i}\right\| \cdot \frac{\varepsilon}{\max \left\{\left\|x_{i}\right\|: i=1, \ldots n+1\right\}} \leqslant \varepsilon
\end{aligned}
$$

The invertibility of $\sum_{i=1}^{n+1} \bar{y}_{i}^{2}$ is equivalent to the validity of the equation $1=\sum_{i=1}^{n+1} z_{i} \bar{y}_{i}$ for a suitable $(n+1)$-tuple $\left(z_{1}, \ldots, z_{n+1}\right)$. Clearly $1=\sum_{i=1}^{n+1} \frac{z_{i}}{\left\|x_{i}\right\|} \cdot\left\|x_{i}\right\| \bar{y}_{i}=\sum_{i=1}^{n+1} \frac{z_{i}}{\left\|x_{i}\right\|} \cdot y_{i}$ which in turn implies the invertibility of $\sum_{i=1}^{n+1} y_{i}^{2}$.
1.2. Bounded rank For the readers convenience below we present definitions and couple of results related to the bounded rank. Details can be found in [3].

Definition 1.2: Let $K>0$. We say that an m-tuple (y_{1}, \ldots, y_{m}) of self-adjoint elements of a unital C^{*}-algebra X is K-unessential if for every rational $\delta>0$ there exists an m-tuple (z_{1}, \ldots, z_{m}) of self-adjoint elements of X satisfying the following conditions:
(a) $\left\|y_{k}-z_{k}\right\| \leqslant \delta$ for each $k=1, \ldots, m$,
(b) The element $\sum_{k=1}^{m} z_{k}^{2}$ is invertible and $\left\|\left(\sum_{k=1}^{m} z_{k}^{2}\right)^{-1}\right\| \leqslant \frac{1}{K \cdot \delta^{2}}$.

1-unessential tuples are referred as unessential.
Definition 1.3: Let $K>0$. We say that the bounded rank of a unital C^{*}-algebra X with respect to K does not exceed n (notation: $\mathrm{br}_{K}(X) \leqslant n$) if for any $(n+1)$-tuple $\left(x_{1}, \ldots, x_{n+1}\right)$ of self-adjoint elements of X and for any $\varepsilon>0$ there exists a K-unessential ($n+1$)-tuple (y_{1}, \ldots, y_{n+1}) in X such that $\left\|x_{k}-y_{k}\right\|<\varepsilon$ for each $k=1, \ldots, n+1$. For simplicity $\operatorname{br}_{1}(X)$ is denoted by $\operatorname{br}(X)$ and it is called a bounded rank.

PROPOSITION 1.4. Let $\left(y_{1}, \ldots, y_{m}\right)$ be a commuting m-tuple of self-adjoint elements of the unital C^{*}-algebra X. If $\sum_{i=1}^{m} y_{i}^{2}$ is invertible, then $\left(y_{1}, \ldots, y_{m}\right)$ is K-unessential for any positive $K \leqslant 1$.

Corollary 1.5. Let X be a commutative unital C^{*}-algebra and $0<K \leqslant 1$. Then $\operatorname{br}_{K}(X)=\operatorname{rr}(X)=\operatorname{dim} \Omega(X)$, where $\Omega(X)$ is the spectrum of X.

2. Infinite rank

We begin by presenting the definition of weakly infinite real rank.

2.1. Weakly (Strongly) infinite real and bounded ranks

Definition 2.1: We say that a unital C^{*} algebra X has a weakly infinite real rank if for any sequence of self-adjoint elements $\left\{x_{i}: i \in \mathbb{N}\right\} \subset X_{s a}$ and any $\varepsilon>0$ there is a sequence $\left\{y_{i}: i \in \mathbb{N}\right\} \subset X_{s a}$ such that $\left\|x_{i}-y_{i}\right\|<\varepsilon$ for every $i \in \mathbb{N}$ and the element $\sum_{i \in D} y_{i}^{2}$ is invertible for some finite set D of indices. If X does not have weakly infinite real rank, then we say that X has strongly infinite real rank.

The bounded version can be defined similarly.
Definition 2.2: Let $K>0$. A sequence of self-adjoint elements of a unital C^{*} algebra is K-unessential if it contains a finite K-unessential (in the sense of Definition 1.2) subset.

Definition 2.3: Let $K>0$. We say that a unital C^{*} algebra X has a weakly infinite bounded rank with respect to K if for any sequence of self-adjoint elements $\left\{x_{i}: i \in \mathbb{N}\right\} \subset X_{s a}$ and any $\varepsilon>0$ there is a K-unessential sequence $\left\{y_{i}: i \in \mathbb{N}\right\} \subset X_{s a}$ such that $\left\|x_{i}-y_{i}\right\|<\varepsilon$ for every $i \in \mathbb{N}$. If X does not have weakly infinite bounded rank, then we say that X has strongly infinite bounded rank.

For future references we record the following statement.
Proposition 2.4. Every unital C^{*}-algebra of a finite real rank has weakly infinite real rank.

Proof: Apply Proposition 1.1.
Note that, as it follows from Proposition 2.12, the converse of Proposition 2.4 is not true.

Proposition 2.5. Let $f: X \rightarrow Y$ be a surjective $*$-homomorphism of unital C^{*}-algebras. If X has weakly infinite real rank, then so does Y.

Proof: For any sequence of self-adjoint elements $\left\{y_{i}: i \in \mathbb{N}\right\} \subset Y_{s a}$ and for any $\varepsilon>0$ we need to find a sequence $\left\{z_{i}: i \in \mathbb{N}\right\} \subset Y_{s a}$ such that
(i) $Y_{Y} \quad\left\|y_{i}-z_{i}\right\|<\varepsilon$ for every $i \in \mathbb{N}$,
(ii) $)_{Y}$ for some $k \geqslant 1$ the element $\sum_{i=1}^{k} z_{i}^{2}$ is invertible.

For every $i \in \mathbb{N}$ let x_{i} be a self-adjoint element in X such that $f\left(x_{i}\right)=y_{i}$. Since X has weakly infinite real rank, there exists a sequence $\left\{w_{i}: i \in \mathbb{N}\right\}$ of self-adjoint elements in X such that
(i) $X_{X}\left\|x_{i}-w_{i}\right\|<\varepsilon$ for every $i \in \mathbb{N}$,
(ii) $)_{X}$ the element $\sum_{i=1}^{k} w_{i}^{2}$ is invertible for some $k \geqslant 1$.

Let $z_{i}=f\left(w_{i}\right), i \in \mathbb{N}$. Clearly $z_{i} \in Y_{s a}$ and $\left\|y_{i}-z_{i}\right\|=\left\|f\left(x_{i}\right)-f\left(w_{i}\right)\right\|$ $=\left\|f\left(x_{i}-w_{i}\right)\right\| \leqslant\left\|x_{i}-w_{i}\right\|<\varepsilon$ for each $i \in \mathbb{N}$. By (ii) ${ }_{X}$, there exists an element $a \in X$ such that $a \cdot \sum_{i=1}^{k} w_{i}^{2}=1$. Clearly $f(a) \cdot \sum_{i=1}^{k} z_{i}^{2}=f(a) \cdot \sum_{i=1}^{k} f\left(w_{i}\right)^{2}=f(a) \cdot f\left(\sum_{i=1}^{k} w_{i}^{2}\right)$ $=f\left(a \cdot \sum_{i=1}^{k} w_{i}^{2}\right)=f(1)=1$ which shows that $\sum_{i=1}^{k} z_{i}^{2}$ is invertible.

Proposition 2.6. Let $K>0$ and $f: X \rightarrow Y$ be a surjective $*$-homomorphism of unital C^{*}-algebras. If X has weakly infinite bounded rank with respect to K, then so does Y.

Proof: For a sequence $\left\{y_{i}: i \in \mathbb{N}\right\}$ of self-adjoint elements in Y and $\varepsilon>0$ choose a sequence $\left\{x_{i}: i \in \mathbb{N}\right\} \subseteq X_{s a}$ such that $f\left(x_{i}\right)=y_{i}$ for each $i \in \mathbb{N}$. Since X has weakly infinite bounded rank with respect to K, there exists a K-unessential sequence $\left\{w_{i}\right.$: $i \in \mathbb{N}\} \subseteq X$ such that $\left\|x_{i}-w_{i}\right\|<\varepsilon$ for each $i \in \mathbb{N}$. We claim that $\left\{z_{i}=f\left(w_{i}\right): i \in \mathbb{N}\right\}$ is a K-unessential sequence in Y. Indeed, let $\delta>0$ be a rational number. Since $\left\{w_{i}: i \in \mathbb{N}\right\}$ is K-unessential in X, there exists a finite subset $D \subseteq \mathbb{N}$ and a D-tuple $\left(s_{i}\right)_{i \in D}$ such that
(i) ${ }_{X} \quad\left\|w_{i}-s_{i}\right\| \leqslant \delta$ for each $i \in D$;
(ii) $)_{X}\left\|\left(\sum_{i \in D} s_{i}^{2}\right)^{-1}\right\| \leqslant \frac{1}{K \cdot \delta^{2}}$.

Now consider the D-tuple $\left(r_{i}=f\left(s_{i}\right)\right)_{i \in D}$. Clearly
(i) $)_{Y} \quad\left\|z_{i}-r_{i}\right\| \leqslant\left\|f\left(w_{i}\right)-f\left(s_{i}\right)\right\| \leqslant\left\|f\left(w_{i}-s_{i}\right)\right\| \leqslant\left\|w_{i}-s_{i}\right\| \leqslant \delta$ for each $i \in D$;
(ii) $)_{Y}\left\|\left(\sum_{i \in D} r_{i}^{2}\right)^{-1}\right\|=\left\|f\left(\sum_{i \in D} s_{i}^{2}\right)^{-1}\right\| \leqslant\left\|\left(\sum_{i \in D} s_{i}^{2}\right)^{-1}\right\| \leqslant \frac{1}{K \cdot \delta^{2}}$.

Proof is completed.
Proposition 2.7. Let $K>0$. If the unital C^{*}-algebra X has weakly infinite bounded rank with respect to K, then it has weakly infinite real rank.

Proof: Let $\left\{x_{i}: i \in \mathbb{N}\right\}$ be a sequence of self-adjoint elements in X and let $\varepsilon>0$. Take a K-unessential sequence $\left\{y_{i}: i \in \mathbb{N}\right\}$ in X such that $\left\|x_{i}-y_{i}\right\|<\varepsilon / 2$ for each $i \in \mathbb{N}$. Since $\left\{y_{i}: i \in \mathbb{N}\right\}$ is K-unessential, it contains a finite K-unessential subset $\left\{y_{i}: i \in D\right\}$, $D \subseteq \mathbb{N}$. As in the proof of Proposition 4.6, there exists a D-tuple $\left(z_{i}\right)_{i \in D}$ such that
(i) $\left\|y_{i}-z_{i}\right\| \leqslant \delta$ for each $i \in D$,
(ii) $\sum_{i \in D} z_{i}^{2}$ is invertible,

Clearly, $\left\|x_{i}-z_{i}\right\| \leqslant\left\|x_{i}-y_{i}\right\|+\left\|y_{i}-z_{i}\right\|<\varepsilon / 2+\varepsilon / 2=\varepsilon, i \in D$. According to (ii), $\sum_{i \in D} z_{i}^{2}$ is invertible, which shows that X has weakly infinite real rank.

Corollary 2.8. If a unital C^{*}-algebra has strongly infinite real rank, then it has strongly infinite bounded rank with respect to any positive constant.
2.2. The commutative case If X is a finite-dimensional compact space, then, according to Corollary $1.5, \operatorname{rr}(C(X))=\mathrm{br}_{1}(C(X))=\operatorname{dim} X$ for any positive $K \leqslant 1$. Our next goal is to extend this result to the infinite-dimensional situation.

First, recall that a compact Hausdorff space X is called weakly infinite-dimensional [1] if for any sequence $\left\{\left(F_{i}, H_{i}\right): i \in \mathbb{N}\right\}$ of pairs of closed disjoint subsets of X there are partitions L_{i} between F_{i} and H_{i} such that $\bigcap_{i=1}^{\infty} L_{i}=\emptyset$. Here, $L_{i} \subset X$ is called a partition between F_{i} and H_{i} if L_{i} is closed in X and $X \backslash L_{i}$ is decomposed as the union $U_{i} \cup V_{i}$ of
 to $\bigcap_{i=1}^{k} L_{i}=\emptyset$ for some $k \in \mathbb{N}$. If X is not weakly infinite-dimensional, then it is strongly infinite-dimensional.

A standard example of a weakly infinite dimensional, but not finite-dimensional, metrisable compactum can be obtained by taking the one-point compactification $\alpha\left(\oplus\left\{\mathbb{I}^{n}\right.\right.$: $n \in \mathbb{N}\}$) of the discrete union of increasing dimensional cubes. The Hilbert cube \mathbb{Q} is, of course, strongly infinite-dimensional.

Theorem 2.9. Let X be a compact Hausdorff space and $0<K \leqslant 1$. Then the following conditions are equivalent:
(a) $C(X)$ has weakly infinite bounded rank with respect to K;
(b) $\quad C(X)$ has weakly infinite real rank;
(c) X is weakly infinite-dimensional.

Proof: $(\mathrm{a}) \Longrightarrow(\mathrm{b})$. This implication follows from Proposition 2.7 (which is valid for any - not necessarily commutative - unital C^{*}-algebras).
(b) \Longrightarrow (c). Suppose that $C(X)$ has a weakly infinite real rank. Take an arbitrary sequence $\left\{\left(B_{i}, K_{i}\right): i \in \mathbb{N}\right\}$ of pairs of disjoint closed subsets of X and define functions $f_{i}: X \rightarrow[-1,1]$ such that $f_{i}\left(B_{i}\right)=-1$ and $f_{i}\left(K_{i}\right)=1$ for every $i \in \mathbb{N}$. Then, according to our hypothesis, there is a sequence $\left\{g_{i}: i \in \mathbb{N}\right\} \subset C(X)$ of real-valued functions and
an integer k with $\left\|f_{i}-g_{i}\right\|<1, i \in \mathbb{N}$, and $\sum_{i=1}^{k} g_{i}^{2}(x)>0$ for each $x \in X$. If C_{i} denotes the set $g_{i}^{-1}(0)$, the last inequality means that $\bigcap_{i=1}^{k} C_{i}=\emptyset$. Therefore, in order to prove that X is weakly infinite-dimensional, it only remains to show each C_{i} is a separator between B_{i} and K_{i}. To this end, we fix $i \in \mathbb{N}$ and observe that $\left\|f_{i}-g_{i}\right\|<1$ implies the following inclusions: $g_{i}\left(B_{i}\right) \subseteq[-2,0), g_{i}\left(K_{i}\right) \subseteq(0,2]$ and $g_{i}(X) \subseteq[-2,2]$. So, $X \backslash C_{i}=U_{i} \cup V_{i}$, where $U_{i}=g_{i}^{-1}([-2,0))$ and $V_{i}=g_{i}^{-1}((0,2])$. Moreover, $B_{i} \subseteq U_{i}$ and $K_{i} \subseteq V_{i}$, that is, C_{i} separates B_{i} and K_{i}.
$(\mathrm{c}) \Longrightarrow(\mathrm{a})$. Let us show that the weak infinite-dimensionality of X forces $C(X)$ to have a weakly infinite bounded rank with respect to K. To this end, take any sequence $\left\{f_{i}: i \in \mathbb{N}\right\} \subset C(X)$ of real-valued functions and any positive number ε. It suffices to find another sequence $\left\{g_{i}: i \in \mathbb{N}\right\}$ of real-valued functions in $C(X)$ such that $\left\|f_{i}-g_{i}\right\| \leqslant \varepsilon$ for every $i \in \mathbb{N}$ and $\sum_{i=1}^{m} g_{i}^{2}(x)>0$ for every $x \in X$ and some $m \in \mathbb{N}$. Indeed, if $\sum_{i=1}^{m} g_{i}^{2}(x)>0$ for every $x \in X$, then the function $\sum_{i=1}^{m} g_{i}^{2}$ is invertible. This, according to Proposition 1.4 , is equivalent to the K-unessentiality of the m-tuple $\left(g_{1}, \ldots, g_{m}\right)$. On the other hand, $\sum_{i=1}^{m} g_{i}^{2}(x)>0$ for each $x \in X$ if and only if $\bigcap_{i=1}^{m} g_{i}^{-1}(0)=\emptyset$. Further, since X is compact, the existence of $m \in \mathbb{N}$ with $\bigcap_{i=1}^{m} g_{i}^{-1}(0)=\emptyset$ is equivalent to $\bigcap_{i=1}^{\infty} g_{i}^{-1}(0)=\emptyset$. Therefore, our proof is reduced to constructing ${ }_{j}$ for each $i \in \mathbb{N}$, a function g_{i} which is ε-close to f_{i} and such that the intersection of all $g_{i}^{-1}(0)$'s, $i \in \mathbb{N}$, is empty.

For every $i \in \mathbb{N}$ let $c_{i}=\inf \left\{f_{i}(x): x \in X\right\}$ and $d_{i}=\sup \left\{f_{i}(x): x \in X\right\}$. We can suppose, without loss of generality, that each interval (c_{i}, d_{i}) is not empty and contains 0 . For every i we choose $\eta_{i}>0$ such that $\eta_{i}<\varepsilon / 2$ and $L_{i}=\left[-\eta_{i}, \eta_{i}\right] \subset\left(c_{i}, d_{i}\right), i \in \mathbb{N}$. Let $Q=\prod_{i=1}^{\infty}\left[c_{i}, d_{i}\right], Q_{0}=\prod_{i=1}^{\infty} L_{i}$ be the topological products of all $\left[c_{i}, d_{i}\right]$'s and L_{i} 's, respectively. Consider the diagonal product $f=\triangle\left\{f_{i}: i \in \mathbb{N}\right\}: X \rightarrow Q$ and note that $H=\bigcap_{i=1}^{\infty} H_{i}$, where $H=f^{-1}\left(Q_{0}\right)$ and $H_{i}=f_{i}^{-1}\left(L_{i}\right)$ for each $i \in \mathbb{N}$. We also consider the sets

$$
F_{i}^{-}=f_{i}^{-1}\left(\left[c_{i},-\eta_{i}\right]\right) \text { and } F_{i}^{+}=f_{i}^{-1}\left(\left[\eta_{i}, d_{i}\right]\right), i \in \mathbb{N}
$$

Since H is weakly infinite-dimensional (as a closed subset of X), by [1 , Theorem 19, Section 10.4], there is a continuous map $p=\left(p_{1}, p_{2}, \ldots\right): H \rightarrow Q_{0}$ and a pseudointerior point $b=\left\{b_{i}: i \in \mathbb{N}\right\} \in Q_{0}$ (that is, each b_{i} lies in the interior of the interval L_{i}) such that

$$
b \notin p(H), \quad F_{i}^{-} \cap H \subset p_{i}^{-1}\left(\left\{-\eta_{i}\right\}\right), \text { and } F_{i}^{+} \cap H \subset p_{i}^{-1}\left(\left\{\eta_{i}\right\}\right), i \in \mathbb{N}
$$

Since each b_{i} is an interior point of $L_{i}=\left[-\eta_{i}, \eta_{i}\right]$, there exists homeomorphisms $s_{i}: L_{i}$ $\rightarrow L_{i}$ which leaves the endpoints $-\eta_{i}$ and η_{i} fixed and such that $s_{i}\left(b_{i}\right)=0$. Let $s=\Delta\left\{s_{i}\right.$: $i \in \mathbb{N}\}: Q_{0} \rightarrow Q_{0}$ and $q=s \circ p$. Obviously $s(b)=0$ and $0 \notin q(H)$, where 0 denotes the point of Q_{0} having all coordinates 0 . Further observe that if $q_{i}=\pi_{i} \circ q$, where $q_{i}: Q_{0} \rightarrow L_{i}$
denotes the natural projection onto the i-th coordinate, then

$$
F_{i}^{-} \cap H \subset q_{i}^{-1}\left(\left\{-\eta_{i}\right\}\right) \text { and } F_{i}^{+} \cap H \subset q_{i}^{-1}\left(\left\{\eta_{i}\right\}\right), \quad i \in \mathbb{N}
$$

Therefore, each $q_{i}, i \in \mathbb{N}$, is a function from H into L_{i} satisfying the following condition: $q_{i}\left(F_{i}^{-} \cap H\right)=f_{i}\left(F_{i}^{-} \cap H_{i}\right)=-\eta_{i}$ and $q_{i}\left(F_{i}^{+} \cap H\right)=f_{i}\left(F_{i}^{+} \cap H_{i}\right)=\eta_{i}$. Let $h_{i}: H_{i} \rightarrow L_{i}$ be an extension of $q_{i}, i \in \mathbb{N}$. Note that the restrictions of h_{i} and f_{i} onto the sets $F_{i}^{-} \cap H_{i}$ and $F_{i}^{+} \cap H_{i}$ coincide. Finally, define $g_{i}: X \rightarrow\left[c_{i}, d_{i}\right]$ by letting

$$
g_{i}(x)= \begin{cases}h_{i}(x), & \text { if } x \in H_{i} \\ f_{i}(x), & \text { if } x \in X-H_{i}\end{cases}
$$

To finish the proof of the if part, we need to show that $g_{i}(x)$ is ε-close to $f_{i}(x)$ for each $i \in \mathbb{N}$ and $x \in X$, and that $\bigcap_{i=1}^{\infty} g_{i}^{-1}(0)=\emptyset$. Since g_{i} and f_{i} are identical outside H_{i}, the first condition is satisfied for $x \notin H_{i}$. If $x \in H_{i}$, then both $f_{i}(x)$ and $g_{i}(x)$ belong to L_{i}, so again $\left|f_{i}(x)-g_{i}(x)\right|<\varepsilon$. To prove the second condition, observe first that $x \notin H$ implies $x \notin H_{j}$ for some j. Hence, $g_{j}(x)=f_{j}(x) \notin L_{j}$, so $g_{j}(x) \neq 0$. If $x \in H$, then $g_{i}(x)=q_{i}(x)$ for all i and, because $\mathbf{0} \notin q(H)$, at least one $g_{i}(x)$ must be different from 0 . Thus, $\bigcap_{i=1}^{\infty} g_{i}^{-1}(0)=\emptyset$.

Let $C^{*}\left(\mathbb{F}_{\infty}\right)$ denote the group C^{*}-algebra of the free group on countable number of generators. It is clear that $\operatorname{rr}\left(C^{*}\left(\mathbb{F}_{\infty}\right)\right)>n$ for each n. Our results imply much stronger observation.

Cordllary 2.10. The group C^{*}-algebra $C^{*}\left(\mathbb{F}_{\infty}\right)$ of the free group on countable number of generators has strongly infinite real rank.

Proof: It is well known that every separable unital C^{*}-algebra is an image of $C^{*}\left(\mathbb{F}_{\infty}\right)$ under a surjective $*$-homomorphism. In particular, there exists a surjective $*$ homomorphism $f: C^{*}\left(\mathbb{F}_{\infty}\right) \rightarrow C(Q)$, where Q denotes the Hilbert cube. It is well known (see, for instance, [1, Sections 10.5]) that the Hilbert cube Q is strongly infinite dimensional. By Theorem 2.9, $C(Q)$ has strongly infinite real rank. Finally, by Proposition 2.5 , real rank of $C^{*}\left(\mathbb{F}_{\infty}\right)$ must also be strongly infinite.

Proposition 2.11. Let X and Y be unital C^{*}-algebras with weakly infinite real rank. Then $X \oplus Y$ also has weakly infinite real tank.

Proof: Let $\left\{\left(x_{i}, y_{i}\right): i \in \mathbb{N}\right\}$ be a sequence of self-adjoint elements of $X \oplus Y$ and $\varepsilon>0$. Since both X and Y have weakly infinite reak rank there exist sequences $\left\{z_{i}\right.$: $i \in \mathbb{N}\}$ and $\left\{w_{i}: i \in \mathbb{N}\right\}$ of self-adjoint elements of X and Y respectively such that
(i) $\left\|x_{i}-z_{i}\right\|<\varepsilon$ for every $i \in \mathbb{N}$;
(ii) $\left\|y_{i}-w_{i}\right\|<\varepsilon$ for every $i \in \mathbb{N}$;
(iii) for some $n \geqslant 1$ the element $\sum_{i=1}^{n} z_{i}^{2}$ is invertible;
(iv) for some $m \geqslant 1$ the element $\sum_{i=1}^{m} w_{i}^{2}$ is invertible.

Without loss of generality we may assume that $n \geqslant m$. Obviously, according to (iv), $\sum_{i=1}^{n} w_{i}^{2}$ is also invertible. Next consider the sequence $\left\{\left(z_{i}, w_{i}\right): i \in \mathbb{N}\right\}$. Note that

$$
\left\|\left(x_{i}, y_{i}\right)-\left(z_{i}, w_{i}\right)\right\|=\left\|\left(x_{i}-z_{i}, y_{i}-w_{i}\right)\right\|=\max \left\{\left\|x_{i}-z_{i}\right\|,\left\|y_{i}-w_{i}\right\|\right\}<\varepsilon
$$

and that, according to (iii) and (iv), $\sum_{i=1}^{n}\left(z_{i}, w_{i}\right)^{2}=\sum_{i=1}^{n}\left(z_{i}^{2}, w_{i}^{2}\right)$ is also invertible.
Next statement provides a formal example of a unital C^{*}-algebra of weakly infinite, but not finite real rank.

Proposition 2.12. Let $X=\alpha\left(\oplus\left\{I^{n}: n \in \mathbb{N}\right\}\right)$ be the one-point compactification of the discrete topological sum of increasing-dimensional cubes. In other words, $C(X)=\Pi\left\{C\left(I^{n}\right): n \in \mathbb{N}\right\}$ (here Π stands for the direct product of indicated C^{*} algebras). Then $C(X)$ has weakly infinite, but not finite real rank.

Proof: Obviously X is countably dimensional and hence, by [1 , Corollary 1 , Section 10.5], it is weakly infinite dimensional. By Theorem $2.9, C(X)$ has weakly infinite real rank. It only remains to note that $\operatorname{rr}(X)>n$ for any $n \in \mathbb{N}$.

In conclusion let us note that there exist non-commutative C^{*}-algebras with similar properties (compare with Corollary 2.10).

Corollary 2.13. There exist non-commutative unital C^{*}-algebras of weakly infinite, but not finite real rank.

Proof: Let X be as in Proposition 2.12 and A be a non-commutative unital C^{*} algebra of a finite real rank. According to Propositions 2.4 and 2.11, the product $C(X) \oplus A$ has weakly infinite real rank, It is clear that $C(X) \oplus A$ is non-commutative and does not have a finite real rank.

References

[1] P. Alexandroff and B. Pasynkov, Introduction to dimension theory,, (in Russian) (Nauka, Moscow, 1973).
[2] L.G. Brown and G.K. Pedersen, ' C '-algebra of real rank zero', J. Functional Anal. 99 (1991), 131-149.
[3] A. Chigogidze and V. Valov, 'Bounded rank of C^{*}-algebras', (Preprint math. OA/0109100v2, 2002).
[4] G.J. Murphy, C^{*}-algebras and operator theory (Academic Press, London, 1990).

Department of Mathematics and Statistics
University of Saskatchewan
McLean Hall
106 Wiggins Road
Saskatoon, SK, S7N 5E6
Canada
e-mail: chigogid@math.usask.ca

Department of Mathematics and Computer Science
Nipissing University
100 College Drive
P.O. Box 5002

North Bay, ON, P1B 8L7
Canada
e-mail: veskov@unipissing.ca

[^0]: Received 14th May, 2002
 The first author was partially supported by NSERC research grant. The second author was partially supported by Nipissing University Research Council Grant.

