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Abstract

New proofs are given of the fundamental results of Bader, Lunardon and Thas relating flocks of the
quadratic cone in PG(3, q), q odd, and BLT-sets of Q(4, q). We also show that there is a unique BLT-set
of H(3, 9). The model of Penttila for Q(4, q), q odd, is extended to Q(2m, q) to construct partial flocks of
size qm/2 + m/2 — 1 of the cone Jt in PG(2m — 1, q) with vertex a point and base Q(2m — 2,q), where
q is congruent to 1 or 3 modulo 8 and m is even. These partial flocks are larger than the largest previously
known for m > 2. Also, the example of O'Keefe and Thas of a partial flock of Jf in PG(5, 3) of size 6
is generalised to a partial flock of the cone Jt? of PG(2pn — 1, p) of size 2pn, for any prime p congruent
to 1 or 3 modulo 8, with the corresponding partial BLT-set of Q(2pn, p) admitting the symmetric group
of degree 2pn + 1.

2000 Mathematics subject classification: primary 51E12; secondary 51A40, 51A5O, 51E20, O5B25.
Keywords and phrases: flock, generalised quadrangle, BLT-set, parabolic quadric, ovoid.

1. Introduction

The central role of BLT-sets in the rapidly expanding area of the study of flocks of
Miquelian Laguerre planes of odd order and the related elation generalised quadrangles
and translation planes is exemplified by Knarr's construction of the quadrangle from
the BLT-set. Here we consider a number of generalisations of BLT-sets of Q(4, q), q
odd: to BLT-sets of H(3, q2), q odd, in Section 5; to BLT-sets of T*(^) , in Section 6;
to BLT-sets of finite generalised quadrangles in general, in Section 2; to BLT-sets of
the polar spaces Q(2n, q), q odd, of rank n > 2, in Section 7. The material in Section 2
is related to work of De Soete and Thas [4], predating the introduction of BLT-sets of
Q(4, q) in Bader, Lunardon and Thas [2] by six years. While we note the advances
of Shult and Thas [14] in Section 3, we restrict ourselves to BLT-sets of points, rather
than sets of subspaces with the BLT-property.
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In Section 4, we give new proofs of the fundamental results of Bader, Lunardon
and Thas [2] relating flocks of the quadratic cone of PG(3, q), q odd, and BLT-sets of
Q(4, q). In Section 5, we show that there is a unique BLT-set of H(3, 9). In Section 7,
partial flocks of Q(2m, q) larger than those previously known are constructed, both by
extending the model of Penttila [12] of Q(4, q), q odd, to Q(4n, q) to obtain partial
flocks of size qn + n — 1 of the cone J(f in PG(4n — 1, q) with vertex a point and
base Q(4n — 2, q), where q is congruent 1 or 3 modulo 8, and by generalising the
example of O'Keefe and Thas [9] to a partial flock of size 2pn in PG(2pn — 1, p) for
any prime p congruent 1 or 3 modulo 8.

The paper is structured as a sequence of remarks. For reasons of space, we refer
the reader to [2, 1, 8, 9, 10, 16, 17] for background material and definitions.

2. Definition, combinatorics and non-existence results

Let y = (£*, S£, /) be a generalised quadrangle of order (s, t), where s, t > 1. A
partial BU-set of y is a set SB of b > 3 points such that for all distinct P, Q, R e SB
we have {P, Q, R}1 = 0. Equivalently, no point of y is collinear with more than
two points of 3$.

LEMMA 2.1. Let SB be a partial BYX-set in the generalised quadrangle y of order
(s, t). Then no two points of SB are collinear.

PROOF. Suppose that P, Q e SB are collinear, P ^ Q. If R e SB is on the line
PQ, P ^ R ^ Q, then R e {P, Q, fl}x; a contradiction. If R e SB is not on the line
PQ then there is a unique point X e PQ collinear with R, whence X € {/>, Q, R}x;
a contradiction. •

It is immediate that SB is a partial BLT-set if and only if it is a set of b > 3 points,
each three of which form an acentric triad (equivalently, each three of which form a
partial BLT-set).

LEMMA 2.2. Let S3 be a partial BLT-sef in the generalised quadrangle y of order
(s, t). Then b = \SB\ < s + 1.

PROOF. For i = 0, 1, 2, let t, be the number of points of & \ SB collinear with
exactly / points of SB. Counting in two ways the points of & \ SB, the pairs (P, T)
where P e SB and T e & \ SB are collinear and the ordered triples (/>, Q,T) where
P, Q e SB, P £ Q, and T e & \ SB are such that each of P and Q is collinear
with 7, we obtain:

to + h + h = (s + l)(st +l)-b,
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tx + 2t2 = bit + l)s.

Since n = b{t + l)(j - b + 1) > 0, the result follows. •

Let 5? be a generalised quadrangle of order (s, t), where s, t > 1. A BU-set in
5? is a partial BLT-set in 5? of size (maximal) j + 1. It is immediate from the proof
of Lemma 2.2 that if SB is a BLT-set in ^ then for each point X e 3* \ SB we have
\XLPiSB\ 6 {0,2}, and that ,5" admits *b = •*(•* + ! ) ( ' -1 ) /2 points of ^ \ «^ collinear
with no point of 38 and r2 = 5(J + l)(f + l)/2 points collinear with exactly two points
oiSB.

Some of these results have already been obtained by De Soete and Thas [4], who
define a (0, 2)-set in 5? to be a non-empty set SB of pairwise non-collinear points such
that IX1 n 38\ e {0, 2} for all X e & \ B§. They prove that if y admits a (0, 2)-set SB
then | ^ | = s +1; so the concepts of BLT-set and (0, 2)-set in a generalised quadrangle
of order (s, t), s, t > 1, coincide.

LEMMA 2.3 (De Soete and Thas [4]). Let y be a generalised quadrangle of order
(j, t), where 5, t > 1. If there exists a BLT-se? w «

PROOF. Let S§ be a BLT-set of <^\ The number of lines of 5? not meeting ^ is
it + l)(st + 1) - (s + l)(r + 1) = J(f + l)(r - 1) > 0; let I be such a line. For
each point P € 9B, there exists a unique point Tel collinear with P, and a unique
point P' e SS\ [P] collinear with T. It is immediate that \&\ = s + 1 is even, so s is
odd. •

LEMMA 2.4. Let y be a generalised quadrangle of order s. For any regular pair
[x, y), there is no partial BLT-sef containing both x and y.

PROOF. From [10, 1.3.6 (ii)] it follows that any triad Qc, y, z) has a centre. •

COROLLARY 2.5 (De Soete and Thas [4]). The generalised quadrangle W(<?) has
10 partial BIST-set.

PROOF. Every pair in W(g) is regular. D

COROLLARY 2.6. Let SB be a partial BUT-set in T2i&)for 6 an oval (which is not
1 conic) in PG(2, q), q even. Then (00) £ SB and SB has at most one point of type (ii).

PROOF. The point (00) is regular. Any pair of points of type (ii) is collinear with
he regular point (00) and therefore the pair is regular. •

https://doi.org/10.1017/S1446788700009897 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009897


332 Laura Bader, Christine M. O'Keefe and Tim Penttila [4]

The known (non-isomorphic) examples of generalised quadrangle of order 5 all
have 5 = q, a prime power. They are: W(<jr), Q(4, q) for q odd and T2(^) (and its
dual) for € an oval (which is not a conic) in PG(2, q), q even. The only example
which could admit a BLT-set is Q(4, q) for q odd. In fact there are many interesting
examples of such BLT-sets which we study further in Section 4. The example T2(^)
for 6 an oval (which is not a conic) in PG(2, q), q even, does not admit a BLT-set (by
Lemma 2.3), but may admit partial BLT-sets.

LEMMA 2.7. Any generalised quadrangle of order (s, s2), s > 1 has no partial
BLT-set.

PROOF. By a result of Bose and Shrikhande (see [10, 1.2.4]), every triad in a
generalised quadrangle of order (s, s2), s > 1, has exactly s + 1 centres. •

The next result is due to Thas (see Knarr [8]) for (complete) BLT-sets.

LEMMA 2.8. H(4, q2) has no partial BLT-set.

PROOF. The polar space of the subspace spanned by three points of H(4, q2) is
either a line or plane, so it meets the variety H(4, q2). Therefore, every triad has a
centre. •

3. BLT-sets and related structures

The next construction, due to Knarr [8], shows that to a dual BLT-set in W(^), q
odd, there corresponds a generalised quadrangle of order (q2, q).

THEOREM 3.1 (Knarr [8]). Let P be a point of VJ(5, q), lefW(q) = Px/P and let
38 be a BLT-set in W(g). So 3» = {(P, I) : I 6 38) is a set of q + 1 planes of
W(5, q) on P. Then the incidence structure with:

Points: (i) the point P, (ii) lines of W(5, q) on an element of &* and not on P,
(in) points of W(5, q)\ PL;
Lines: (a) the elements of' &, (b) the planes o/W(5, q) which meet PL in a line of the
form (ii);
Incidence: natural;

is a generalised quadrangle of order (q2, q).

Payne and Thas in [11] have related the group of this generalised quadrangle with
the subgroup of P P O(5, q) stabilising the BLT-set. Also, Shult and Thas in [14] have
vastly generalised this construction.
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Following is the well-known construction of the ovoid of Q+(5, q) from a flock,
but given directly from the BLT-set.

In PG(5, q), q odd, fix the quadric Q+(5, q) and embed Q(4, q) in Q+(5, q) as the
section with a hyperplane H. Denote by ± the polarity defined by Q+(5, q) and put
x = Hx. Let SS be a partial BLT-set of size k + 1 of Q(4, <?) and fix a point /? in ^ .
For each /?, e <^, pt £ p, i = \,2, ... ,k, let C, be the conic {x,p, pt) D Q+(5, q).
The set <? = Ci U C2 U • • • U Ck is the union of k conies with the common point p. Also,
6 is a partial ovoid because: no point of 6 different from p is collinear with p as they
lie on some Cf; no two points on the same C, are collinear; take any x{ e Ct, Xj e Cj,
i jL j w i th xt ^ p ^ Xj; t hen {x, xit Xj ,p)L = (p, p i y pj ) x n xL is an e x t e r n a l l ine

because 38 is a partial BLT-set, hence (x,xitXj, p) D Q+(5, q) = Q~(3, q), thus x,
and Xj are not collinear.

Note this argument is an alternative way of looking at the so called Thas-Walker
construction, and it works also for Q(2n, q), q odd.

A BLT-set (of points) of H(3, q2) has order q2 + 1 and gives, by duality, a BLT-set
B of lines of Q~(5, q), that is a set of mutually skew lines of Q~(5, q) such that no
three of them have a common tranversal on Q~(5, q). Shult and Thas [14] prove that
a translation generalised quadrangle of order q2 arises.

THEOREM 3.2 (Shult and Thas [14]). Fix a point P o /Q"(7, q). Let Q"(5, q) =
PL/P and let B be a BU-set of lines in Q~(5, q). So &> = {(P, 1) : I e BS) is a set
ofq2 + 1 planes o/Q~(7, q) on P. Then the incidence structure with:
Points: (i) the point P, (ii) lines of Q~(7, q) on an element of £? and not on P,
{in) points of Q~(7, q) \ PL;

Lines: (a) the elements of 3?, (b) the planes o/Q~(7, q) which meet PL in a line of
type (ii);

Incidence: natural;

is a translation generalised quadrangle of order q2.

Furthermore, we briefly recall the following construction. For more details, see
10] and [1]. An egg 0(2 , 2, q), say g, is a partial spread of lines in PG(5, q) such
hat:

(1) £ contains q2 + 1 elements;
(2) every three elements of & generate PG(5, q);
(3) each element X of £ is contained in a 3-dimensional subspace Tx having no
>oint in common with any element of S different from X. The subspace Tx is unique
ind is called the tangent space to S at X.

Embed PG(5, q) in PG(6, q) as a hyperplane, and define an incidence structure
T{S) as follows. Points are: (i) a new symbol (oo), (ii) the 4-dimensional subspaces
( of PG(6, q) for which X D PG(5, q) is a tangent space to £, and (iii) the points of
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PG(6, q) \ PG(5, q). Lines are: (a) the elements of £, and (b) the planes of PG(6, q)
which are not contained in PG(5, q) and meet PG(5, q) in elements of <?. Incidence
is defined as follows. The point (oo) is incident with all lines of type (a) and no line
of type (b). A point of type (ii) is incident with all lines of type (b) contained in it and
with the unique element of & incident with it. A point of type (iii) is incident only
with lines of type (b); here the incidence is that of PG(6, q).

Payne and Thas [10, 8.7.1] proved that T(£) is a translation generalized quadrangle
of order q2 with base point (oo).

4. BLT-sets in Q(4, q) and flocks of the quadratic cone in PG(3, q)

Let V be a 5-dimensional vector space over GF(q), q odd, let Q be a non-degenerate
quadratic form on V and let / be the bilinear polar form of Q, that is,

f(x,y) = Q(x + y) - Q(x) - Q{y) for x, ye V.

Let J_ denote the polarity determined by / . Let E = [e\,... , e5} be a basis for V over
G¥(q) and let d(f, E) be the determinant of the matrix \f (e,, e,)],,,=i 5- If E' is
any basis for V over GF(<?) then d(f, E') = d(f, E)a2 where a is the determinant of
the transition matrix between the two bases. It follows that the set d(f, E)F2 (where
F2 = {a2 : a 6 GF(g) \ {0}}) is an invariant, called the discriminant, of the quadratic
form Q (in other words, the property that d(f, E) is a square in GF(g) or not is an
invariant of Q). In the following we will use A to denote an arbitrary element of
d(f, E)F2, since we are usually only interested in whether this element is a square or
not.

LEMMA 4 .1 . Let q be odd. Suppose x,y,z are linearly independent vectors of V

such that (JC), (y), (z) are singular points with respect to Q. Then (x,y,z)~L is

anisotropic if and only if —If (x, y)f (y, z)f (z, x)/A is a non-square in GF(q).

PROOF. Let W — {x, y, z) and suppose that WL is anisotropic. Then dim W1 = 2,
dim W = 3 and V = W ± W \ where W1- = (M, V) for some u, v e V. Thus
E = {x, y, z, u, v] is a basis for V over GF(g) and

f(u,u) f(u,v)
f(v,u) f(v,v)

is a non-square in GF(^f); but it also equals

, E)

2f(x,y)f(y,z)f(z,x)
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and the result follows.
Conversely, suppose that - 2 / (x, y)f (y, z)f (z, x)/A is a non-square in GF(q).

Let W= (x,y,z). Then

f(x,x) f(x,y) f(x,z)
) f(y,y) f(y,z)

fiz.x) f(z,y) f(z,z)
= 2f(x,y)f(y,z)f(z,x)

is not zero, so W is non-degenerate and V = W ± WL. Let W1 = (u, v), then
E = [x, y, z, u, v] is a basis for V over GF(^) and

- / (u, u) f (u, v)
f(v,u) f(v,v)

-d(f, E)
2f(x,y)f(y,z)f(z,x)

is a non-square in GF(q)\ so W is anisotropic. D

COROLLARY 4.2. Let q be odd. Let 38 be a set of b > 3 points of Q(4, q) and let f be
the bilinear form corresponding to the quadratic form underlying Q(4, q). Then & is a
partialBLT-setifandonlyifforallx, y,z € gSwehave: —If (x, y)f (y, z)f (z, x)/A
is a non-square in GF(q).

LEMMA 4.3. Let q be odd. Let S8 = {x, y, z, w] be a set of four points of Q(4, q)
such that {x, y, z), {x, z,w) and {x, w, y] are partial BIST-sets. Then & is a partial
BLT-set.

PROOF. It suffices to check that {y, z, w) is a partial BLT-set. Now by Corol-
lary 4.2 we know that - 2 / (*, y)f(y, z)f (z, x)/A, -2f(x,z)f(z, w)f(w,x)/A
and —2/ (x, w)f (w, y)f (y, x)/A are all non-squares, hence their product

-2f(x,y)f(x,z)f(x,

is a non-square and the result follows.

-2f(y,z)f(z,w)f(w,y)

•
This proof was inspired by Seidel [13], where a very similar argument is used to

construct a 2-graph.
As an immediate corollary we obtain the following slight generalisation, originally

due to Johnson [6].

COROLLARY 4.4 (Johnson [6]). Let q be odd. Let SB be a set of b > 3 points of
Q(4, q). Suppose there exists x e 38 such that [x, y, z) is a partial BUT-setfor all
y,ze@\{x}. Then 38 is a partial BLT-set.
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Bader, Lunardon and Thas [2, Remark 1] linked BLT-sets in Q(4, q) with flocks of
quadratic cones in PG(3, q).

THEOREM 4.5. Let q be odd. To each point of a BLT-sef in Q(4, q) there corre-
sponds a flock of a quadratic cone in PG(3, q). Conversely, to a flock of a quadratic
cone in PG(3, q) there corresponds a BUT-set with a distinguished point.

PROOF. Let SB be a BLT-set in Q(4, q) and let P e SB. Then P 1 D £(4, q) is a
quadratic cone in the 3-dimensional space spanned by P x , and we consider the set of
q planes & = [PL n QL : Q e SB \ {P}}. For Q, R € SB \ {P}, Q^ /?, we have
(P x n QL) n (P1 n R1) = 0; so no two planes of & contain a common point of
Q(4, q) and & is a flock of P x n Q(4, 9). Conversely, let Ĵ " be a flock of a quadratic
cone J ^ with vertex P in PG(3, q). Embed JT in a non-singular quadric Q(4, q), so
that Jf = P x fl Q(4, g). For 7r € &, nL is a line on P which meets Q(4, q) in a
further point and we let

{(n1 n Q(4, q)) \{P):n e 9\.

For Q, R eSB\ {P}, Q^ R,we have

p 1 n e x n R1 = P 1 n (P Q)L n (P^)1 = 0.

By Corollary 4.4, SB is a BLT-set. •

COROLLARY 4.6. Two points of a BlST-set in Q(4, g) give rise to projectively equiv-
alent flocks of a quadratic cone in PG(3, q) if and only if they are in the same orbit of
the stabiliser of the BLT-sef in the stabiliser P V 0(5, q) o/Q(4, q).

5. BLT-sets in H(3, q1)

Apart from a brief mention in Knarr [8], BLT-sets in H(3, q1) have received little
attention to date. Knarr [8] attributes the following examples to Thas.

THEOREM 5.1. Let q be odd. Then, Q~(3, q) is a BLT-sef o/H(3, q1).

PROOF. Let Q~(3, q) have equation y1Ay = 0, with y homogeneous projective
coordinates in PG(3, q). Note that A is a symmetric matrix with entries in GF(<7).
Embed PG(3, q) in PG(3, q2). Denote by n the polarity defined by Q"(3, q) and
by o the Baer involution of PG(3, q2) defined by the automorphism x e G¥(q2) H*
xq e GF(<72). The map no is a unitary polarity of PG(3, q2), thus it defines a
varietyH(3, q2) (with equation yTAy" = 0) with the Q~(3, q) embedded. Given any
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three distinct points x,y, z on Q~(3, q), (x, y, z) is a plane, its polar point v (with
respect to the polarity 7rcr) is in PG(3, q) because x, y and z so are, and i> is not on
H(3, q2) because Q"(3, q) = H(3, q2) n PG(3, q). Hence, any triad on Q~(3, q) is
acentric. D

We only contribute a classification in the smallest case.

THEOREM 5.2. The unique BLT-set o/H(3, 9) is Q"(3, 3).

PROOF. Recall that for s odd (see Payne and Thas [10]) generalised quadrangles
of order s with an antiregular point are equivalent to Laguerre planes LP(s) of order
s (see Delandtsheer [5]), and the base point of a translation generalised quadrangle
of order s (s odd) is antiregular. By Theorem 5.1, the elliptic quadric Q~(3, q) is a
BLT-set of H(3, q2), and using Theorem 3.2 a translation generalised quadrangle of
order q2 with an antiregular base point is constructed, hence a Laguerre plane LP(g2)
of order q1. If q = 3, a unique Laguerre plane of order 9 exists by Steinke [15],
and Q~(3, 3) is the unique BLT-set of the corresponding generalised quadrangle of
order 9. •

Fix a BLT-set (of points) of H(3, q2). As before it gives, by duality, a BLT-set B of
lines of Q~ (5, q), that is a set of mutually skew lines of Q~ (5, q) such that no three of
them have a common transversal on Q~(5, q). This is an egg O(2, 2, q). The tangent
space at the line t of O(2, 2, q) is the tangent space of Q~(5, q) at I. On the other
hand, embed Q~(5, q) in Q~(7, q) as a section with a 5-dimensional space. Fix a point
P on Q-(7, q) \ Q~(5, q) with Q~(5, q) in P1 and consider a PG(6, q) in PG(7, q)
containing Q~(5, q), but not P. The egg O(2, 2, q) defines a translation generalised
quadrangle of order q2, which is isomorphic to the one constructed as in Theorem 3.2.
Indeed, the isomorphism is the following. The special points correspond. For any
line, say I, in the BLT-set, the plane (P, I) corresponds to 1. Any line on (P, I)
not containing P has a polar 5-dimensional space (w.r.t. Q~(7, q)) which intersects
PG(6, q) in a 4-dimensional space contaning the tangent space to Q~(5, q) at I. For
any plane, say n, of Q~(7, q) which meets PL in a line not containing P on some
{P, I), the 3-dimensional space (P, n) intersects PG(6, q) in a plane containing the
relevant 1. A point P' of Q~(7, q) not in P1 corresponds to the intersection of the
line PP'withPG(6, q) .

6. BLT-setsinT*pf)

De Soete and Thas [4] study V2(Jf). They show that the affine points of any affine
line not meeting Jf? are a BLT-set. Further, any two non-collinear points of 1*2{
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are contained in a unique such BLT-set (they use this to give a characterisation of
the underlying generalised quadrangle, with more assumptions). They determine all
BLT-sets ofTKJF) in the case that J f is regular. They give examples of BLT-sets in
the dual of T

7. Partial BLT-sets of Q(2/i, q), q odd,
and partial flocks of cones

O'Keefe and Thas in [9] have given a generalisation of the definition and of the
main properties of flocks of quadratic cones of PG(3, q), hence of BLT-sets of Q(4, q),
to partial flocks of quadratic cones of PG(2n — \,q), hence of partial BLT-sets of
Q(2n, q). In PG(2n - l,q), let Jff be the cone with vertex the point v and base a
parabolic quadric Q(2n - 2, q) in a hyperplane not containing v. A partial flock of X
of size k is a set of hyperplanes {jii, n2, . . . , nk}, each not on v, such that ?r, fuz) meets
Jtf in a non-singular elliptic quadric, for all i ^ j , i, j e {1, 2 , . . . , k). Embed JfT in
Q+(2n + 1, q) as a section with a suitable (2n — l)-dimensional space, and denote by
J- the polarity defined by Q+{2n + \,q). Hence, each partial flock defines a partial
ovoid of Q+(2n + 1, q) of size kq + 1 consisting of the A: conies 7T,1 DQ+(2n+ 1, q),
which are mutually tangent at a common point. On the other hand, for q odd, embed
X in Q(2n, q) as a hyperplane section, and denote by _L' the polarity denned by
Q(2n, q); for each ?r, in the partial flock, let p , the point of Q(2n, q) defined by
nf ^ Q(2«i q) — {u.P.K and put v = p0- The set {po,P\, ••• ,Pk) is a partial
BLT-set of Q(2n, <?). For more details, see [9].

Let q be odd. Following [2] and [9], let us write some examples of partial BLT-
sets of Q(6, q) arising from (possibly partial) BLT-sets of Q(4, q). Note that this
extends also to Q(2n, q) with similar argument. As a model for Q(6, q) take x§x\ +
*2*3 - x-l + x5x6 = 0, which contains the cone X : .*o*i + x2x-x, — x\ = x6 = 0,
having vertex /?0 = ( 0 , 0 , 0 , 0 , 0 , 1,0). Let & = {7r, : i e / ) be a (partial)
flock of J ^ . If 7r, has equation a,x0 + &i*i + c,*2 + ^i*3 + e,jc4 + JC5 = x6 = 0,
then its polar line with respect to Q(6, q) intersects Q(6, q) at the further point
Pi = (bj, ah dj, ct, - e , / 2 , ej/4 — atbi — c,d,, 1) and the corresponding partial BLT-
set consists of pa and of the points p, 's .

Any (partial) BLT-set of Q(4, q) : xQx\ — x\ + x$x6 = x2 = JC3 = 0 is a partial
BLT-set of Q(6, q), and any (partial) flock of J^ ' : XQX\ — xj = x2 = x^ = x6 — 0
canonically extends to a partial flock of J(f by reading the equations of the planes of
the flock of J ^ ' as equations of hyperplanes in PG(5, q) : x6 = 0.

The linear flock of J ^ ' defines a (partial) linear flock of J(f whose hyperplanes are
TT, : tx0 — atx\ + x5 = x6 = 0, t e GF(g), where a is a fixed nonsquare in GF(g), the
corresponding partial BLT-set is a conic and has p, = (—at, t, 0, 0, 0, at2, 1). Any
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of these hyperplanes JT,'S can be replaced by n't : 2tx0 + t2x2 — ctx3 + x5 = x6 = 0,
as it can be easily checked that (& — {JT,}) U {7r,'} is again a partial flock, so that p, is
replaced by p't = (0, 2t, —a, t2, 0, at2, 1), but only one such replacement can be done,
as [p't : t e GF(q)} is contained in the plane Tl : x2 + ax6 = x5 — ax3 — x0 = x* = 0
of Q(6, q). The partial ovoid of size q1 + 1 of Q+(7, q) corresponding to the original
BLT-setis an elliptic quadric Q~(3, q), and we can replace one conic on it with another
one, which is tangent to all the other conies at p0.

Any Kantor flock of Jf' defines a (partial) flock of JT whose hyperplanes are
n, : tx0 — at"x\ + x5 = x6 = 0, t e GF(q), where a is a fixed nonsquare
in GF(q) and a e Aut(GF(q)), the corresponding partial BLT-set being p, =
(-ata,t,0,0,0,ata+\ 1). Here any of the n,'s can be replaced by n't : txo —
ataxi + cx2 + dx3 + ex4 + x5 = x6 = 0, for c,d,e e GF(<y) such that e2 = cd,

and p, is replaced by p\ = (—af, t, d, c, \fcd, ata+l, 1). One can replace as many
points p, 's as one likes, [p't : t e GF(q)} is contained in x2x3 — xj = 0. The partial
ovoid of size q2 + 1 of Q+(7, q) corresponding to the original BLT-set is contained
in a 4-dimensional space, and we can replace any conic on it with another one, not in
that 4-dimensional space, which is tangent to all the other conies at p0.

Finally, any flock of J(f' defines a (partial) flock of Jf whose hyperplanes are
n, : a,x0 + b,xx + ctxx + x5 = x6 — 0, t e GF(g), for suitable a,,b,, c, e GF(q), the
corresponding partial BLT-set being p, = (b,, a,, 0, 0, — c,/2, c2/4 — a,b,, 1). One
can replace any of the n,'s by n', : a,x0 + b,x\ + dx2 + c,x4 +• x5 = x6 = 0, and p,
is replaced by p't = (b,, a,, d, 0, —c,/2, cf/4 — a,b,, 1), which lies on the line joining
p, and (0, 0, 1,0, 0, 0, 0). The partial ovoid of size q2 + 1 of Q+(7, q) corresponding
to the original BLT-set is contained in a 5-dimensional space, and we can replace one
conic on it with another one, not in that 5-dimensional space, which is tangent to the
other conies at p§.

The size of a partial flock of a quadratic cone of PG(2n — \,q), q even, is at
most q ([9, Theorem 2]), and this size actually occurs. On the other hand, for q odd,
examples of partial flocks of size q of PG(2« — l,q), hence of partial BLT-sets of
Q(2«, q), n > 2, of size q + 1, can be easily obtained as before, by taking a BLT-set of
Q(4, q), but the theoretical bound for partial BLT-sets is qO-vi2 +1 ([9, Theorem 6]),
while the only known example before the results of this section of (partial) BLT-set
of Q(2n, g), n > 3, having size greater than q + 1 was for the particular case Q(6, 3)
and is of size 7 ([9, Section 6]).

Next, we will give examples of (partial) BLT-sets of Q(4h, q), q odd, that have
size greater than q + 1. First, observe that the algebraic condition in Lemma 4.1
generalises immediately to quadrics Q(4n, q) for n > 2 (and q odd).

LEMMA 7.1. Let q be odd. Let Q = Q(2n, q) and suppose x,y, z are linearly

independent vectors of V such that {x), (y), (z) are singular points with respect to Q.
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Then (x, y, z ) x D Q is an elliptic quadric if and only if —If (x, y)f (y, z)f (z, x)/A
is a non-square in GF(q).

PROOF. Mutatis mutandum, see proof of Lemma 4.1. •

Then, following the ideas of Penttila [12], we can fix an alternative model for

Q(4n, <?)•

Let q be any odd prime power, and put

V = {(xi xn;yu-.- ,yn;a) : *,,)>, e GF(g2), i = 1 , . . . ,n, a e G¥(q)}.

The map Q : V h-> GF(q) defined as

,x2,... ,xn;yuy2,... ,yn;a)

= N(x{) + N(x2) + ••• + N(xn) + N(yi) + N(y2) + ••• + N(yn) + a2.

where N(z) = z1+q is the norm over GF(g), is a nondegenerate quadratic form over
V with discriminant A = 2. The associated bilinear polar form is

f((xux2,... ,xn;yuy2, . . . ,yn\a), (x\,x'2,... ,x'n;y[, y'2,... ,y'n\a'))

= nxrf) + T{x2x'2
q) + ••• + T(xnx'n

q) + T(yiy\
q) + T{y2y'2

q)

+ •••+ T(yny'n") + lad

where T{z) = z + zq is the trace over GF(q).
Using BLT-sets of Q(4, q) in this model, we construct partial BLT-sets of Q(4«, q)

of size n(q + 1).

THEOREM 7.2. Suppose q is congruent to 1 or 3 modulo 8. Let B\,..., Bk be
BUT-sets of the quadric Q(4, q) with equation Q(x, y, a) = N(x) + N(y) + a2 = 0
with x, y e GF(<72) and a e GF(^). Let Pu P2 Pn e {Bu ..., Bk). Then

{(*i ,0 0 ; y , , 0 , . . . , 0 ; l ) : (jc,,y,, 1) 6 P,}

U { ( 0 , x 2 , . . . , 0 ; 0 , y 2 0 ; 1) : (x2, y 2 , 1) 6 P2)

U - - U { ( 0 , 0 , . . . ,xn;0,0,... , y B ; l ) : (xH,yn,l)e Pn)

is a partial BlST-set o / Q ( 4 n , q).

PROOF. The proof follows by Lemma 7.1, provided also -2 is a nonsquare in GF(q),
which is equivalent with q congruent to 1 or 3 modulo 8 , when n > 2, because this is
required when the points (x), (y), (z) belong to different Pt, hence they are such that
f(x,y)f(y,z)f(z,x) = -2. D
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Note that some BLT-sets of Q(4, q) have a nice representation in this model (Penttila
[12]):

Classical BLT-set: {(x;0; 1) : x e GF(q2), N(x) = -1} ;
Fisher BLT-set: {(bx2;0;l) : x e GF(q2),N(x) = 1} U {(0;fry2; 1) : y e

GF(q2), N(y) = 1} for b a fixed element of GF(q2) such that N(b) = - 1 ;
Fisher-Thas-Walker BLT-set: {(ax;bx2; 1) : x e GF(q2), N(x) = 1} where q is

congruent to 2 modulo 3, a, b e GF(q) such that N(a) = —4/3 and N(b) = 1/3;
Mondello BLT-set: {(ax2; fct3; 1) : x e GF(q2), N(x) = 1} where q is congruent

to 1 or 9 modulo 10, a, be GF(q) such that N(a) = - 4 / 5 and N(b) = - 1 / 5 .
It is clear that any other BLT-set of Q(4, q), once written in a suitable way in the

model of [12], might be used for an explicit construction.
Note that Q(4«, q) is embedded in Q(4n + 2, q), hence any partial BLT-set of

Q(4n, q) is also a partial BLT-set of Q(4« + 2, q).
The partial ovoid of Q+(4n + 1, q) corresponding to the partial flock and the partial

BLT-set (see [9, Section 4.2]) is the union of the ovoids of Q+(5, q) associated with
any of the BLT-sets, is of size nq2 + 1 and consists of nq conies mutually tangent
at a common point. If Pt is classical for all / = 1, 2 , . . . , n, then the conies cover n
elliptic quadrics Q~(3, q).

The preceding procedure obtained partial ovoids of Q+ (An + 1, q) from ovoids of
Q+(5, q). A related construction is the following, which holds also when q is even.

Let V be a vector space with a quadratic form with associated nondegenerate bilinear
form/ and suppose that V is an orthogonal direct sum, say V = (v) _L U} -L • • • _L Uh.

THEOREM 7.3. Let ^, be a partial ovoid of (v, Ut) containing (v) and disjoint
from Uj. Then 6 = G\ U • • • U Oh is a partial ovoid of the quadric arising from the
quadratic form.

PROOF. Let P, Q be distinct points of 6. Hence P e &i and Q 6 Gj for some i, j .
[f i = j , since Gt is a partial ovoid, P and Q are not collinear. Suppose i ^ j . As
P ^ {v), P is not collinear with (v). Now, P1 contains Uj, so P1 n (u, Uj) = Uj,
ind Q £ Uj. Hence P and Q are not collinear. •

REMARK. Note we here are not assuming dim([/,) = dim(Uj).

Let us now generalise the example of [9, Section 6].

THEOREM 7.4. Let p be a prime congruent to I or 3 modulo 8, and let n be a
Positive integer. There exists a partial flock of size 2pn of the cone of PG(2pn — 1, p)
vith vertex a point and basis a parabolic quadric, with the corresponding partial
iU-set ofQ(2pn, p) admitting the symmetric group of degree 2pn + 1.
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PROOF. In PG(2pn, p), fix the quadric Q = Q(2pn,p) with equation x% +
x\ + • • • + x\pn = 0, with associated form / . For all i = 0, 1 , . . . , 2pn, put
At = (y0, y\, • • • , yipn) with y>i = 0 and y, = 1 fo r ; ^ i. Hence A, e Q and
disc(Q) = 21 + 2 p n, then disc(Q) is congruent to 21+2n modulo p, which is a nonsquare
by hypothesis. Also, for any i / j we have / (A,-, A;) = 2(pn — 1) = —2. This
implies that — 2/ (A, , A; ) / (A , , Ah)f (Ah, Aj) is a square, and by Lemma 7.1 this is a
partial BLT-set. Moreover, this is contained in the hyperplane ( 1 , 1 , . . . , l ) x , which
intersects Q in a Q~(2pn — 1, p). D

Finally, using the software MAGMA [3], we have constructed partial BLT-sets of
size 2q + I of the quadric i2(6, q) for q = 5, 7, 9. Can these be generalised? Is this
the maximum size for partial BLT-sets of i2(6, q)1
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