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Processing of recognition information and additional cues: A
model-based analysis of choice, confidence, and response time
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Abstract

Research on the processing of recognition information has focused on testing the recognition heuristic (RH). On the
aggregate, the noncompensatory use of recognition information postulated by the RH was rejected in several studies,
while RH could still account for a considerable proportion of choices. These results can be explained if either a) a part
of the subjects used RH or b) nobody used it but its choice predictions were accidentally in line with predictions of
the strategy used. In the current study, which exemplifies a new approach to model testing, we determined individuals’
decision strategies based on a maximum-likelihood classification method, taking into account choices, response times
and confidence ratings simultaneously. Unlike most previous studies of the RH, our study tested the RH under conditions
in which we provided information about cue values of unrecognized objects (which we argue is fairly common and
thus of some interest). For 77.5% of the subjects, overall behavior was best explained by a compensatory parallel
constraint satisfaction (PCS) strategy. The proportion of subjects using an enhanced RH heuristic (RHe) was negligible
(up to 7.5%); 15% of the subjects seemed to use a take the best strategy (TTB). A more-fine grained analysis of the
supplemental behavioral parameters conditional on strategy use supports PCS but calls into question process assumptions
for apparent users of RH, RHe, and TTB within our experimental context. Our results are consistent with previous
literature highlighting the importance of individual strategy classification as compared to aggregated analyses.

Keywords: parallel constraint satisfaction, probabilistic inferences, recognition, strategy classification, decision time,
confidence.

1 Introduction
Imagine you visit a nice conference in southern France.
Your presentation was successful and you want to reward
yourself with a good wine. You are offered a Château
Teyssier and a Château Margaux. The waiter presents
you both bottles. You have not tried the wines before but
you remember having heard of Château Margaux. The
offered 2001 Château Teyssier is from St. Emilion, and
has a Grand Cru classification. The Château Margaux
is from the Medoc, has a Premier Cru classification and
is from 2004. How would you predict which wine you
will like better? A simple strategy would be to select the
wine you recognize. Alternatively you might compare the
bottles on the available cues in a stepwise manner, start-
ing, for instance, with the region and instantly choose the
Château Teyssier because you know that wine from the
St. Emilion region usually meets your preferences. Or
you could weigh all pieces of information against each
other, taking into account their importance and also their
constellation. You might quickly come up with a consis-
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tent interpretation for all pieces of information: although
Château Margaux has an outstanding classification and
is well known, it would be suboptimal to drink such a
wine so early. The Château Teyssier is clearly preferable
because it comes from an excellent region, has a good
classification and has been sufficiently matured.

In this paper we investigate how recognition informa-
tion is processed and integrated with other available cue
information in such decisions.1 Particularly, we compare
whether people apply simple noncompensatory strate-
gies like the two strategies known as recognition heuris-
tic (RH, as applied to the situation with known cue val-
ues), the take the best heuristic (TTB), and an enhanced
version of RH which combines them (RHe); or whether
people alternatively rely on more complex partially auto-
matic processes that generate consistent interpretations,
referred to as a parallel constraint satisfaction (PCS) strat-
egy. Most previous research on processing recognition

1There is some disagreement about whether a situation with knowl-
edge about cue values of the unknown object, as in the wine example,
constitutes a proper case for the RH in the first place. We conjecture
that it is an interesting empirical question to ask whether RH is applied
in such a case, and that is what we tested in the experiment reported be-
low. The situation of non-recognition combined with cue information
is quite common, as in many consumer decisions. However, we empha-
size that our conclusions in this article will necessarily be confined to
this kind of situation.
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information has focused on testing for or against the RH.
This is one of the first studies (see also Marewski, Gaiss-
maier, Schooler, Goldstein, & Gigerenzer, 2010) that
compare different strategies and which in addition con-
tains a fine-grained analysis of the underlying process
models taking into account choices, decision times and
confidence ratings simultaneously.

2 Ignorance based decision mak-
ing: The recognition heuristic

Goldstein and Gigerenzer (1999, 2002) formulated the
RH as a noncompensatory rule, claiming that no addi-
tional probabilistic cues are searched for when recog-
nition allows for deciding between two objects in a
domain with high validity of the recognition informa-
tion. This notion fits within a framework that postu-
lates “fast and frugal” decision making which uses effi-
cient and resource-saving rules of thumb for inferences.
However, the empirical prediction of noncompensatory
use of recognition information in decision making has
raised some controversy, and Goldstein’s and Gigeren-
zer’s (2002) initial empirical demonstration was criti-
cized on methodological grounds (see Bröder & Eich-
ler, 2006; Newell & Shanks, 2004; Pachur, Bröder, &
Marewski, 2008; Richter & Späth, 2006). It has also been
argued that several assumptions underlying the recogni-
tion principle and fast and frugal heuristics in general are
psychologically implausible from the viewpoint of cogni-
tive psychology (Dougherty, Franco-Watkins, & Thomas,
2008). Furthermore, a bunch of studies challenged RH
and found support for the processing of additional cues
beyond recognition in situations where the RH could have
been used (Bröder & Eichler, 2006; Hilbig & Pohl, 2008,
2009; Newell & Fernandez, 2006; Newell & Shanks,
2004; Oppenheimer, 2003; Pachur, et al., 2008; Pohl,
2006; Richter & Späth, 2006). All studies acknowl-
edge that recognition information heavily influences de-
cisions if it is valid, but they also suggest that it is inte-
grated with additional cue knowledge to draw probabilis-
tic inferences. Hence, the picture emerges that subjective
recognition information is treated like other evidence and
integrated in a compensatory fashion. This influence of a
metacognitive cue (recognition) on decisions is in itself a
noteworthy empirical finding, regardless of the additional
(and probably mistaken) claims of its noncompensatory
use.

However, Pachur et al. (2008) in turn identified poten-
tial criticisms of some of the above-mentioned studies,
criticisms they tried to avoid in their experiments, partic-
ularly in their Experiment 3, where they used a domain
with high recognition validity and pre-existing recogni-
tion and cue knowledge of subjects (see Pachur et al.,

2008, for a discussion of these variables). Although these
authors therefore created perfect conditions for applying
the RH in this experiment, additional cue information
was shown to affect the decisions at the group level, thus
again challenging the claim of noncompensatory process-
ing. However, when they broke down their analysis to the
individual-subject level, the choices of about 50% of sub-
jects were strictly in accordance with the RH. If compati-
bility of choice predictions and choices (i.e., the so-called
adherence rate) is used to infer the strategy, a large pro-
portion of subjects would thus be classified as genuine
noncompensatory RH users.

However, it is still unclear whether these subjects ac-
tually used the RH for decision making. Hilbig and Pohl
(2008; see also Hilbig, 2010) convincingly argued that
the fit of choices with predictions alone might be an in-
sufficient indicator of noncompensatory cue use since ad-
ditional cue information might have been processed any-
way. If the subjective weights of this information were
not sufficient to jointly overrule the impact of recogni-
tion information, the resulting choices would still be con-
sistent with RH despite the processing of multiple cues.
Data on choice outcome alone cannot readily distinguish
between two different processing models that predict the
same choices. Hilbig and Pohl (2008; see also Pachur &
Hertwig, 2006; Pohl, 2006) invented a very clever way to
prove the use of additional cue information based on out-
come data alone: Their “discrimination index” (DI) com-
pares the proportion of RH-consistent choices for cases
in which RH is correct with the proportion of RH choices
if the heuristic fails. Any reliable difference clearly sig-
nifies that additional information must have been pro-
cessed, and the index can be assessed individually. This
sophisticated reasoning is a major progress, but still, a DI
of about zero (apparently consistent with RH) may result
if subjects consulted additional knowledge that is simply
not valid. Hence, the index may still overestimate the
proportion of “true” RH users who do not consider other
information besides recognition, and it would be worth-
while to include predictions about other dependent vari-
ables that might allow for differentiating various process
models empirically.

An important step in this direction was done by Hilbig
and Pohl (2009), who found that individuals’ response
time was not related to the number of steps necessary
to perform the RH. In contrast — and in line with the
predictions of PCS models (Glöckner & Betsch, 2008b;
Holyoak & Simon, 1999; Thagard & Millgram, 1995)
as well as other information integration models (Buse-
meyer & Johnson, 2004; Busemeyer & Townsend, 1993)
— it was found that on average response times increased
with decreasing advantage of the evidence speaking for
the favored option as compared to the evidence for the
non-favored option. However, Hilbig and Pohl’s (2009)
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investigation did not classify strategies on the individual
level.

In another approach, Hilbig, Erdfelder and Pohl (2010)
recently developed a formal measurement model to as-
sess how often the RH was truly used, that is, the pro-
portion of cases in which subjects relied on recogni-
tion alone. This multinomial processing tree model
(Batchelder & Riefer, 1999; Erdfelder, et al., 2009) pro-
vides a better measure of RH use and can also be applied
at the individual level to classify subjects as users or non-
users of the RH. However, it does not provide information
on which alternative strategies may have been applied by
the non-users. Also, it does not take response times or
confidence ratings into account and therefore will still
tend to overestimate the usage of RH.

Hence, different methods may overestimate RH use,
but to different degrees. While an undifferentiated use of
adherence rates is generally problematic (Hilbig, 2010),
the DI and the multinomial processing tree model are
much less prone to overestimation and have particular
merits in situations in which tight experimental control
is not possible (i.e., in situations in which controlling the
cues, cue values, and cue validities available to decision
makers is impossible). In these situations the method
used in the current study (see below) cannot be applied.

All the above-mentioned approaches except Marewski
et al. (2010) focus on testing against the RH as the
null hypothesis and show more or less severe devia-
tions from it. Thereby, individual differences in strategy
use are rarely taken into account (but see Hilbig, 2008;
Marewski, et al., 2010; Pachur, et al., 2008), and no spe-
cific alternative models are provided (but see Marewski,
et al., 2010). This state of affairs is unsatisfactory. In
this paper we go beyond testing against the RH, which
has been shown not to account for all data. We test an
enhanced version of RH (i.e., RHe) against other specific
process models for how recognition information is inte-
grated with explicitly provided cue information. In our
approach, we take into account potential individual dif-
ferences by classifying strategies on an individual level,
and we simultaneously analyze multiple dependent mea-
sures for strategy classification.

Overall, we take a four step analytical approach: first,
for comparative reasons, we descriptively analyze aggre-
gated choices, decisions times, and confidence ratings;
second, we apply a choice based strategy classification
(Bröder & Schiffer, 2003a) testing multiple models si-
multaneously; third, we extend strategy classification by
simultaneously taking into account choices, decision time
and confidence using the method of Glöckner (2009)
which uses more behavioral information for classifica-
tion and reveals potential overestimations of RHe use;
and fourth, we analyze the fit of confidence and decision
time predictions to the data conditional on strategy use in

order to make a fine-grained analysis of the considered
process models as suggested by Glöckner (2009). The
RHe is defined in the next section.

In the following, we will briefly describe the two strat-
egy classification methods used as well as a set of po-
tential process models which we consider as competitors.
Then we discuss some methodological requirements that
are necessary for conducting strategy classification. Fi-
nally, we report an experiment using the city size task,
eliciting not only choices but also decision times and
confidence ratings, which are then used to distinguish
amongst different process models at the individual level
using the four step analytical approach described above.

3 Classification by multiple criteria
and different process models

3.1 Strategy classification methods

Bröder and Schiffer (2003a) developed a simple
outcome-based classification method for individual
strategies which, in a nutshell, identifies the strategy from
a predefined set for which the observed choice data are
most likely, given a to-be-estimated probability of re-
sponse errors. The application of the model hence re-
quires the prediction of different choice patterns by each
strategy. Often, however, strategies will show a tremen-
dous overlap of choice predictions. Strictly speaking, a
noncompensatory choice vector as predicted by RH, RHe
or TTB can also be generated by a weighted additive pro-
cess (WADD) if the weights are chosen appropriately (see
Martignon & Hoffrage, 1999). Compensatory decision
making mimicking WADD choices, on the other hand,
can be achieved by very different processes, such as de-
liberate calculations or by automatic processes like se-
quential evidence accumulation as described in decision
field theory (Busemeyer & Townsend, 1993) or by acti-
vation spread in a network as assumed by PCS (Betsch
& Glöckner, 2010; Glöckner & Betsch, 2008b; see also
Glöckner & Betsch, 2008c). Hence, choice outcomes
alone are not always sufficient for discriminating between
different process models. This problem has been outlined
above with respect to RH.

Fortunately, however, many strategies are formulated
as process models that allow for additional predictions,
for example concerning response times or confidence
ratings. Hence, with the addition of two data dimen-
sions, many more options for disentangling the models
become available. Glöckner (2009, 2010) extended the
maximum likelihood approach to handle the additional
data dimensions and to classify strategies based on em-
pirical choice vectors, response time vectors and confi-
dence judgment vectors simultaneously (called MM-ML
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for multiple-measure maximum likelihood). Since re-
sponse times cannot be predicted precisely by any heuris-
tic (due to idiosyncratic speed variations), the method re-
lies on within-subject contrasts of different item types
that predict varying response times and/or confidence
judgments. These can be coded as contrast weights. For
details on the method, application examples, and instruc-
tions of implementation, we refer the reader to Glöck-
ner (2009, 2010; see also Jekel, Nicklisch, & Glöck-
ner, 2010). In model recovery simulations the MM-ML
method has been shown to be unbiased and more efficient
than previously used methods (Glöckner, 2009).

3.2 Decision strategies and predictions

One prerequisite for strategy classification with MM-ML
is the formulation of a strategy set that covers the most
plausible candidates for a given inference situation. Ac-
cording to previous findings, one should consider models
for noncompensatory and compensatory use of recogni-
tion information in probabilistic inferences (here, a city
size task). We therefore chose to compare the follow-
ing competitors: RHe, TTB, and two variants of a PCS
model.

Enhanced recognition heuristic and take-the-best
heuristic. The extended variant of RH tested here re-
lies on recognition information exclusively if it discrimi-
nates in a binary choice. However, instead of guessing in
the other cases, the model assumes that subjects follow a
TTB strategy according to the subjective cue validity hi-
erarchy they expressed in the experiment. This so-called
RHe heuristic has the advantage to be applicable also in
cases where both objects are recognized and to exploit
the power of TTB to increase accuracy. It is equivalent to
Gigerenzer’s and Goldstein’s (1996) fast and frugal TTB
heuristic which entails the recognition principle. There-
fore, we think that RHe is a natural fast and frugal exten-
sion of RH in the spirit of the adaptive toolbox. RHe can
be compared to other strategies across all decision tasks
rather than only the subset of so called RU (Recognized
vs. Unrecognized) cases with only one of two objects rec-
ognized. However, we will also report model compar-
isons with the original RH only for the RU cases to show
that our conclusions do not hinge on this extension.

Subjects applying a noncompensatory strategy might,
however, not always use recognition information as the
most valid cue as suggested by RH. Therefore we ad-
ditionally implemented TTB by assuming that subjects
used the cue validity hierarchy expressed by them in a
post-test, including recognition information as one of the
cues. They search the cues in decreasing validity or-
der and stop search when a discriminating cue is found.
Note that RHe and TTB are indistinguishable if a sub-
ject judged the recognition cue to be the most valid one,

which was, however, only sometimes the case (31%).
Response time predictions are easy to derive from both
strategies assuming sequential cue search: The more cues
are looked up, the longer the decision should take (see
Bröder & Gaissmaier, 2007; Glöckner, 2001). Put dif-
ferently, RHe and TTB make the same processing time
predictions for tasks in which a certain number of cues
(e.g., only one cue) has to be considered to differentiate
between the options due to the fact that the same cogni-
tive operations are applied (cf. Payne et al., 1988).

The sequential nature of heuristic processing has re-
peatedly been highlighted by many proponents of the fast
and frugal heuristics approach (e.g., Gigerenzer & Gold-
stein, 1999, p. 79; Goldstein & Gigerenzer, 1999, p. 57;
Martignon & Hoffrage, 1999, p. 137) and consequently,
heuristics are assumed to be fast because they are fru-
gal. This is also assumed for the RH (Pachur & Her-
twig, 2006, p. 986; p. 989). Hence, although concrete
implementations in various cognitive architectures may
alter very specific aspects of the predictions due to model-
specific constraints, we take as a starting point the obvi-
ous predictions that can easily be generated by taking the
often-claimed seriality assumption seriously.2

Confidence predictions for TTB are explicitly stated in
Gigerenzer, Hoffrage, and Kleinbölting’s (1991) theory
of probabilistic mental models, which states that the cue
validity of the cue on which the inference relies is given
as a confidence rating. Hence, confidence ratings were
predicted to correspond to the stated subjective cue valid-
ity of the differentiating cue.3 We extended this principle
to RH and RHe as well.

Parallel Constraint Satisfaction models. The PCS
model was developed by Glöckner and Betsch (2008b)
based on previous work on connectionist networks (e.g.,
Holyoak & Simon, 1999; McClelland & Rumelhart,
1981; Monroe & Read, 2008; Read, Vanman, & Miller,
1997; Thagard & Millgram, 1995) and describes the de-
cision process as an automatic increase of mutual consis-
tency between a choice and the cue information by means

2It has been recently argued that combining RH with specific mem-
ory models might allow for more differentiated predictions that do not
necessarily predict the lack of systematic deviations within one item
class that we assume here (Marewski, et al., 2010). These new theories
can of course also be tested when they are specified in detail. In our pre-
dictions, we rely on the original RH and the notions of serial fast and
frugal processing as emphasized by ABC proponents (e.g., Gigerenzer
& Goldstein, 1999, p. 79; Goldstein & Gigerenzer, 1999, p. 57; Mar-
tignon & Hoffrage, 1999, p. 137)

3Since subjects may use the validity response scales differently, we
do not make the unrealistic assumption of point predictions of data.
Rather, as in the case of response times, we predict a pattern of within-
subject differences for different item types with a free scaling param-
eter for each individual. Note that the confidence predictions for RHe
are generated by analogy to TTB using Gigerenzer et al.’s (1991) PMM
theory. Hence, this may not necessarily conform to Goldstein’s and
Gigerenzer’s (2002) ideas who did not explicitly model confidence
judgments with the RH.
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of spreading activation in a network. Cues as well as op-
tions have activations that are changed over time depend-
ing on information input and the strength of links between
cues and options which reflect cue predictions. Impor-
tantly, there is mutual inhibition of activation between
options which is essentially a contrast-enhancing mech-
anism (see also Montgomery, 1989; Svenson, 1992). A
“general validity” node, which reflect prior beliefs about
cue validities, has connections to each cue node. When
cue information is fed into the network, activation will
spread bidirectionally, and the network will finally set-
tle in a stable state with a differential activation of the
options. The choice prediction of the network corre-
sponds to the most activated option; the time prediction
corresponds to the number of iterations necessary for set-
tling in a stable consistent representation; and confidence
predictions correspond to the difference between the ac-
tivations of different options (see Appendix A for de-
tails). All cue information is considered simultaneously
and in a compensatory manner, so choice predictions do
not necessarily differ from those of deliberate compen-
satory strategies. However, the model predicts a unique
response time pattern which is not predicted by a deliber-
ate weighted additive strategy.

Appendix A reports in detail how the predictions for
choice, decision time and confidence were derived from
the competitors. We modeled the decision process on
an individual level by applying each of the four consid-
ered strategies to the specific cue-information and cue-
validities of each single person in each decision. This re-
sulted in 3 (i.e., choice [A/B]; time [contrast value]; con-
fidence [contrast value]) x 120 (i.e., number of decision
tasks) prediction values per person and strategy. Note that
the predictions concerning decision time comprise no ab-
solute decision times (i.e., the decision A vs. B will take
2.5 sec) but only contrast predictions (e.g., for PCS: A
vs. B = 200 iterations, A vs. C = 150 iterations, C vs. D =
100 iterations; interval-scale level is assumed). The same
holds true for confidence predictions.

We used two different variants of PCS here (PCS1 and
PCS2), which differ only in the transformation function
used to model subjects’ prior beliefs about cue validities
from their expressed subjective validities (i.e., cue usage).
PCS1 assumes a simple linear transformation, whereas
PCS2 uses a quadratic transformation, which would re-
flect an accentuation of differences between cues (see Ap-
pendix A for details). We used two versions of PCS to
avoid complex model fitting of individual transformation
parameters in PCS but nevertheless to put noncompen-
satory and compensatory strategies at the same footing
(i.e., using two strategies each).4

4Note that PCS1 and PCS2 should not be considered different strate-
gies or submodels of PCS. They merely capture individual differences
in cue perception. As will be reported below, dropping either of them

Recent findings indicate that choices, decision time
and confidence in probabilistic inferences (Glöckner,
2008; Glöckner & Betsch, 2008c; Glöckner & Hodges, in
press) and risky choice tasks (Glöckner & Betsch, 2008a;
Glöckner & Herbold, 2011) are well in line with the pre-
dictions of the PCS model. Considering these findings,
the decision time findings (Hilbig & Pohl, 2009) and find-
ings concerning arousal (Hochman, Ayal, & Glöckner,
2010) in line with PCS but in conflict with RH and the
further challenges to RH mentioned above, we expected
PCS to account better for judgments incorporating recog-
nition information than RH and even RHe.

4 Methodological preliminaries

As introduced above, in this paper we attempt to iden-
tify the different strategies used for integrating recogni-
tion information and further cues on an individual level.
This requires that precise and differentiating predictions
are derived. The information that subjects might use has
to be thoroughly controlled and decision tasks have to be
selected that differentiate between strategies. For our re-
search goal it is of course also essential to use real recog-
nition information and a domain in which recognition is
a valid cue. We asked subjects to select the larger of two
cities and used real cities with cue patterns5 for which
sufficiently divergent predictions of the considered strate-
gies could be expected. To have control over the informa-
tion that might be used, cue information for known and
unknown cities was presented to the subjects.

There have been extended debates about methodolog-
ical details in investigating fast and frugal heuristics
in general and the RH specifically (Bröder & Schiffer,
2003b; Hilbig, 2010; Pachur, et al., 2008) and a number
of conditions have been put forward that — according
to proponents of fast and frugal heuristics — are nec-
essary for a fair test of these models. Taken together,
these requirements make it hard to test the prevalence of
RH against other models. For instance, it was postulated
that only natural cue information should be used which
means that one should rely only on the information that
people already have about the cities before coming to the
experiment (Pachur, et al., 2008). Because further cue
knowledge is conditional on knowing the city (i.e., you
have to know the city before you can know more about
it) and because people are likely to encode and gener-
ate mainly positive cue values (Dougherty, et al., 2008)
this implies that all reasonable strategies often make the
same predictions for all choices. Hence, decision strate-
gies cannot be differentiated, and even perfect individual

did not change our results.
5Cue patterns refer to constellations of cue information such as: the

city is known, is a state capital and a diocese but has no university.
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adherence rates with RH (e.g., Pachur, et al., 2008; ob-
served for half of the subjects) do not provide conclusive
(if any) evidence whether RH was used or not (Hilbig,
2010). Restricting empirical tests to these circumstances
will make it hard to derive clear contrasting predictions
from different models. In a first attempt to do so, sev-
eral strategies were developed that are testable also un-
der these circumstances (Marewski, et al., 2010). These
strategies comprise the use of other cues that are available
for the known (i.e., recognized) option and that override
the recognition cue in decisions between recognized and
unrecognized cases.

Using a different approach, in this study we focused on
a situation where the recognition cue was valid and natu-
ral, whereas additional cue information was provided by
the experimenter. This allows deriving clear contrasting
predictions from the models. We are aware that our con-
clusions may not generalize to situations in which cue
information is not provided and inferences must be made
from memory, because the RH is very likely more use-
ful in these situations. Here, as a reasonable first step, we
prefer a maximum of experimental control. Arguably, the
differences between studies that respect all methodolog-
ical caveats (e.g. Study 3 of Pachur et al., 2008) or not
(e.g., Bröder & Eichler, 2006; Newell & Shanks, 2004)
seem to be a matter of degree rather than category. In
addition, as our introductory example shows, inference
situations in which recognition is relevant whereas cues
are provided (even for the unrecognized object) may be
quite common. They, for instance, prevail in most buying
situations, in which only some of the products are known
and further information concerning price and quality of
all products is provided (as in supermarkets and Web sites
for shopping).

5 Hypotheses

We expected to replicate the finding that additional cue
information beyond the recognition cue has an effect on
choices. More specifically, according to previous find-
ings we expected that at the individual level, a PCS model
will better capture the actual strategy of subjects than
RH/RHe and TTB (H1). According to findings support-
ing decision time and confidence predictions of PCS in
contrast to that of RH (Hilbig & Pohl, 2009; Hochman,
et al., 2010), it was furthermore assumed that the esti-
mated proportion of PCS users increases if decision time
and confidence ratings are taken into account in addition
to mere choices (H2). Furthermore, we investigated fits
of decision times and confidence for different strategies
in a more fine-grained manner. Specifically, we tested
the undirected hypothesis whether there is a difference in
fit for supposed users of the different strategies (H3). A

Figure 1: Decision task.

low conditional fit would put process assumptions of the
respective strategy into question. Finally, we aimed to ex-
plore which problems and misinterpretations can arise if
data are analyzed at the group level rather than the indi-
vidual level.

6 Experiment
We investigated the use of recognition information in in-
ferences from givens and particularly the underlying pro-
cesses using decision time and confidence as additional
dependent measures. In an incentivized task, subjects de-
cided repeatedly which of two American cities has more
inhabitants, approximately half of them being known and
half of them being unknown as determined by a pilot
study. For this decision they were provided with addi-
tional cue information about the cities.

6.1 Method
Subjects and design. Eighty-three students of different
subjects from the University of Erfurt took part in the
experiment (62 female, mean age 21.6 years). The ex-
periment lasted about 20 minutes and was part of an ex-
perimental battery with another unrelated study. In ad-
dition to a participation fee for the battery of on aver-
age 6 Euro they received between 0.15 Euro and 1.15
Euro performance-contingent payments for the study. No
between-subjects manipulation was used but the structure
of the decision task was manipulated within subjects (see
below).

Materials. In a pilot study (n = 48) we selected 8 mid-
size US-American cities between 50.000 and 300.000 in-
habitants which were mainly known or mainly unknown,
respectively.6 The cities were selected so that they had

6The selection criterion was that “unknown cities” are known by less
than 30% of the subjects and “known cities” are known by more than
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specific properties concerning the considered cues in this
study which were: a) is the city a state capital or not? b)
is the city a diocese / has it a bishop or not? c) has the
city a major university (with more than 4000 students)
or not? Cities were selected so that they represented all
eight possible (i.e., 23) cue combinations for known cities
as well as for unknown cities. The resulting 16 cities (see
Appendix B, Table B1) were all compared to each other
in the main experiment, resulting in 120 decision tasks.

Procedure. Subjects were informed that they should
make decisions concerning which of two US-American
cities has more inhabitants and that they would receive 2
Cents for each correct answer and loose 1 Cent for each
wrong answer. The three cues and the presentation for-
mat were introduced (Figure 1). Additionally they were
told that in case there are different US cities with the
same name, the larger one is referred to. Finally, they
were introduced to the confidence measure which was
presented after the decision and they were instructed to
make good decision and to proceed as fast as possible.
Then subjects solved a warm-up trial. If there were no
more questions, subjects started working on the 120 de-
cisions, which were presented in individually randomized
orders. The presentation order of the two cities on each
screen (i.e., left / right) was also randomized. Confidence
was measured on a scale from very uncertain (−100) to
very certain (100) using a horizontal scroll-bar. Choices
were indicated by mouse click. Although this may create
some noise in the reaction time data, we wanted to avoid
subjects switching the input device. Decision trials were
separated by a blank screen with a continue button in the
centre of the screen. A pause screen announcing a volun-
tary 1-minute-break was presented after half of the tasks
to reduce effects of decreasing attention.

After the choices were completed we measured sub-
jects’ cue-usage and perceived cue-validity. First we
asked subjects to indicate how much they relied on the
three cues when making their decision and how much
they relied on whether they knew the city before on a
scale from not used (0) to very much used (100). Sub-
jects indicated which of the four pieces of information
(3 cues plus recognition of the city) predicts the size of
US-cities best by bringing them in an order (i.e., assign-
ing numbers between 1 and 4).7 Subjects were asked

70% of the subjects.
7According to recent findings, people change their subjective val-

uation of cues in decisions that might be caused by PCS mechanisms
(e.g., DeKay, Patino-Echeverri, & Fischbeck, 2009; Glöckner, Betsch,
& Schindler, 2010; Holyoak & Simon, 1999; Russo, Carlson, Meloy,
& Yong, 2008). Hence, measuring cue validities after the decisions
might be considered suboptimal. Measuring them before the decisions
could, however, induce demand effects. We argue that the problem is
not too severe in our setting because, due to the random presentation of
decisions, coherence shifts will induce no systematic errors but only in-
crease random variance, and because coherence shifts have been shown
to be transient and might at least partially disappear before the rating

about their prior knowledge about the cities on a three
point scale (1-unknown, 2-I knew the name, 3-I knew
more than the name). Finally we measured estimations of
cue-validities directly by asking subjects to indicate how
many of 100 US-cities with the respective property are
larger than cities without it for the three cues and recog-
nition using a horizontal scroll-bar (scale: 50–100).

6.2 Results
Manipulation check. We checked whether our manipu-
lation of recognition was efficient. For the “unknown
cities” (i.e., cities 1–8) across subjects we found that 74%
of them were indeed unknown, for 25% the name was
known and for 1% more than the name was known. For
the “known cities” we found that 7% were unknown, for
61% the name was known and for 33% more than the
name was known. Hence, our manipulation of city recog-
nition as determined by the pilot study was highly effec-
tive. Each “unknown city” was unknown to the majority
of the subjects and the reverse was true for the “known
cities”.

Cue validity ratings and cue usage. Individuals’ ex-
plicated cue-hierarchies (according to the ordering of the
predictive power of the information) were very hetero-
geneous. 49% subjects said that state capital is the best
predictor, whereas 5%, 14%, and 31% indicated diocese,
university, or recognition as most valid cue, respectively.
A similar order was found in the numerical cue-validity
ratings (in the same order with SE in parentheses): 82
(1.4), 62 (1.2), 79 (1.3), and 77 (1.6); and in the cue-
usage rating: 70 (3.0), 31 (2.6), 69 (2.5), and 69 (3.1).
Subjects were rather consistent in their answers to all
three measures. Order of cues correlated highly nega-
tive with cue usage (MD(Rho)= −.80) and cue validity
(MD(Rho)= −.80); and the latter also correlated highly
with each other (MD(Rho)= .80).

6.2.1 Aggregated data analysis for choices, decision
time and confidence

Choices. To analyze at the group level whether recog-
nition information is used in a noncompensatory manner
and to provide a test for the “pure” RH we ran a logis-
tic regression predicting choices for unknown cities when
they were compared with known cities only (i.e., RU-
cases). As predictors we used three variables that coded
whether the respective probabilistic cue predicted in fa-
vor of the known city (1), or against it (−1), or was in-
different (0). If the known city, for instance, was a state
capital and the unknown city was no state capital the vari-
able was coded 1. Positive predictions on all three cues
significantly increased the probability of choices for the

(Simon, Krawczyk, Bleicher, & Holyoak, 2008).
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Table 1: Logistic regression predicting choices for the
known cities when compared with unknown cities by
cues. Statistics are corrected for 83 clusters in observa-
tions due to repeated measurement (Rogers, 1993); all
cues coded: 1=for known city, −1=against; 0=indifferent
*** p < 0.001.)

Odds ratio z statistic

Cue 1 (capital) 4.869*** (8.81)
Cue 2 (diocese) 2.790*** (9.43)
Cue 3 (university) 5.249*** (12.43)

Observations 4775

known city (Table 1) indicating a compensatory integra-
tion of cues with the recognition cue which confirmed our
expectations and former results in the literature. It clearly
speaks against the application of the “pure” RH in cases
in which recognition differentiates.8

Next, we analyzed the overall adherence rate of choice
outcomes with strategy predictions. Therefore, we cal-
culated predictions of RHe/RH, TTB, and the two ver-
sions of PCS (i.e., cue usage transformation linear=PCS1,
quadratic=PCS2) for the decision tasks and compared the
predictions with individual choices (Table 2).9 Overall,
predictions of RH and RHe were least accurate. Predic-
tions of TTB fit better, and PCS predicted actual choices
best. This was found for all cases (i.e., RHe) as well as for
RU-cases in which one city is recognized and the other
one is not recognized (i.e., RH). Nevertheless, differences
in aggregated prediction performance were rather small,
except for the considerably worse performance of RH in
RU-cases (see also Appendix, Figure B1). On the basis of
similar data patterns it has been occasionally argued that
simple noncompensatory models are better in describing
individuals’ behavior than more complex compensatory
models according to an Occams’ razor argument (e.g.,
Brandstätter, Gigerenzer, & Hertwig, 2006). We suspect
that such conclusions might be wrong due to different ag-

8We also conducted the same logistic regressions per person and
found that for 90 percent of the subjects at least one of the cues had a
significant influence on choices (at p < .05; one-sided). For these sub-
jects the usage of an RH strategy is very unlikely also on an individual
level.

9Only in very few cases strategies made no choice predictions. No
choice predictions could be derived if the compared cities had an exactly
equal cue pattern which could happen due to the fact that people did not
know some cities they were supposed to know according to the pilot
study (or vice versa). This accounts for the 2% of missing predictions
for RHe and TTB. For PCS additional missing predictions resulted from
the fact that some subjects indicated that they did not use a cue at all or
that they used two cues equally. This happened very rarely, accounting
for the additional 1% of missing values for PCS. For simplicity and
because of this low proportion, we excluded tasks with missing choice
predictions from the following analyses.

Table 2: Adherence rates. Proportion of individual
choices in line with strategy predictions (adherence rate)
is indicated by p(correct). p(no pred) indicates the pro-
portion of choices in which the strategy makes no pre-
dictions. RU-cases comprise only decisions in which one
city was known and the other city was not known (48%
of the cases). RH is only defined for RU-cases whereas
RHe is defined for all cases. Both analyses are run for the
same cases for all strategies. Adherence rates per subject
are shown in Appendix B (Figure B4).

all cases (n=9960) RU-cases only (n=4775)

p(correct) p(no pred) p(correct) p(no pred)

RHe/RH 0.73 0.02 0.70 0
TTB 0.78 0.02 0.80 0
PCS1 0.79 0.03 0.81 0.002
PCS2 0.79 0.03 0.82 0.002

gregation artifacts. Just to mention a simple example: as-
suming that half of the people use strategy A, the other
use strategy B which predict exactly opposite choices.
Nobody uses strategy C which predicts choices half in
line with A and half in line with B. Looking at the aggre-
gates will show that strategy C predicts the data equally
well as strategies A and B (i.e., 50% correct) although no-
body used strategy C. As we mentioned above, it has also
been convincingly shown on a more general level that ad-
herence rates are not particularly informative concerning
peoples’ strategy use (Hilbig, 2010).

Decision time. Subjects followed the instruction and
made rather quick decisions (M = 3039 ms, SD = 2284
ms, MD = 2310 ms, Skew = 2.7, Kurt = 15.6). To
reduce skewness and the influence of outliers decision
times were log-transformed for further analyses. To ana-
lyze at an aggregated level whether the time predictions
of the different strategies fit with observed decision times,
we conceptually calculated the average decision times for
each decision task (e.g., average decision time for Tempe
vs. Miami Beach; Tempe vs. Mobile, etc.) and corre-
lated them with the average decision time prediction of
the strategy for these tasks. Specifically, we analyzed
time scores (i.e., time-residual after log-transformation
and partialling out order effects) of all 120 decision tasks,
averaged across subjects. We correlated the resulting 120
averaged prediction values per strategy with the averaged
decision times for the respective decision tasks. The cor-
relation was significant for PCS1 (r = .57, p < .001) and
PCS2 (r = .39, p < .001) but not for TTB (r = .09, p = .34)
and RHe (r = .02, p = .84) (see Appendix, Figure B2).10

10To allow comparing our results to previous findings concerning de-
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Confidence. Overall, subjects indicated that they were
not very confident in their decisions and showed high
variance, M = 8.7, SD = 45.3 (scale: −100 to 100). To
analyze whether confidence predictions of the different
strategies fit the observed confidence measures, we calcu-
lated correlations between predictions and data after av-
eraging for each of the 120 decision tasks across subjects
(missing and zero predictions were excluded). The corre-
lations for PCS1 (r = .62, p < .001) and PCS2 (r = .57, p <
.001) turned out to be significant, and — although being
considerably lower — so did the correlation for TTB (r =
.19, p = .04), whereas the correlation for RHe (r = .11, p
= .25) did not (see Appendix, Figure B3).

6.2.2 Choice-based strategy classification

To investigate strategies at an individual level, we first
analyzed the data using the choice-based strategy classifi-
cation method (Bröder, 2010; Bröder & Schiffer, 2003a).
Results indicate a clear predominance of compensatory
PCS models.11 For 63.75% of the subjects, choice pat-
terns were best explained by PCS models, whereas for
only 32.5% choice patterns were more in line with non-
compensatory strategies. Hence there is support for our
first hypothesis that PCS captured choice behavior of the
majority of people better than noncompensatory models.
The proportion of RHe users was small (between 5% and
13.75%; when interpreting all ties in probabilities as RHe
users).

6.2.3 Multiple-measure strategy classification
method

In a third step we analyzed the overall behavioral data
simultaneously (i.e., choices, confidence, and response
time) using the MM-ML strategy classification method
outlined above (Glöckner, 2009, 2010). The test was
done because MM-ML allows for a more efficient strat-
egy classification. It provides a more precise estimate of
strategy use and allows us to test our second hypothe-
sis: with further dependent measures the predominance

cision times by Bröder and Gaissmaier (2007), we also analyzed the
uncollapsed data by regressing log-transformed time residuals on the
time predictions of RHe and TTB (i.e., the number of steps needed to
come to a decision using the respective strategy; correcting for clusters
due to repeated measurement). For both strategies the number of steps
significantly predicted decision time (both p < .05). However, both ef-
fects disappeared (and even the sign of the coefficient reversed) when
controlling for difficulty in comparisons by adding the absolute differ-
ence between the weighted sums of cues and (corrected) cue-validities
of both options. Hence, the correlations were due to confounding item
difficulty and the number of computational steps. (A tolerance test con-
firmed that multicollinearity was not a problem in our analysis. For
TTB: variance inflation factor = 1.1; correlations between predictors
r(TTB_Pred and abs(WADDdiff)) = −.29; for RH: variance inflation
factor = 1.03, r(RH_Pred and abs(WADDdiff)) =−.18.)

11Three subjects could not be classified resulting in N=80.

Figure 2: MM-ML Strategy Classification. Bars with la-
bels containing multiple-strategy (e.g., “RHe/TTB”) in-
dicate that behavioral data were equally likely for both
strategies.
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of PCS should increase and the number of potential users
of noncompensatory strategies should decrease.

In line with our expectations, simultaneously consid-
ering choices, decision times and confidence in MM-
ML leads descriptively to an increased classification of
PCS users (77.5%) and fewer users of noncompensatory
strategies (22.5%) (Figure 2). Our final estimate for us-
age of RHe in such situations is therefore 5%–7.5%.

In our study the pure choice-based strategy classifi-
cation method seems to overestimate noncompensatory
strategy use by about 10 percentage points as compared
to MM-ML. However, the difference in noncompensatory
vs. compensatory strategy use between analysis methods
did not reach conventional significance levels, χ2(N=157,
df =1)=2.47, p = .12. Hence, we found only weak support
for our second hypothesis.

The reliability of MM-ML strategy classification can
be evaluated by inspecting error rates and likelihood ra-
tios. We found that average estimated error rates for strat-
egy application were rather low, except for RHe (Table 3).
The Likelihood-ratios were high indicating a good relia-
bility of strategy classification. For PCS2 the value was
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Table 3: Strategy classification results MM-ML. N is
the number of subjects classified as user of the respec-
tive strategy. p(error) indicates the average percentage of
choices that deviated from the predictions of the respec-
tive strategy (considering supposed users of each strategy
only). L-Ratio is the ratio of the likelihoods of the classi-
fied strategy divided by the likelihood of the second most
likely strategy. High numbers indicate high reliability.

N p(error) SE MD(L-Ratio)

RHe 4 .28 .02 274
TTB 12 .16 .03 427
RHe/TTB 2 .26 .05 70
PCS1 38 .19 .01 79
PCS2 24 .14 .01 4
not classified 3

particularly lower which was due to the fact that PCS1
and PCS2 often made similar predictions.

When considering only PCS1 and comparing it against
RHe and TTB, the proportion of PCS1 users was 73%.
For PCS2 the proportion was 74%. Hence, when drop-
ping either of the PCS strategy implementations from the
analysis the former user of this strategy were almost all
classified as user of the remaining PCS strategy. Hence,
the general result seems to be largely independent of the
specific assumptions about the form of the transformation
function that relates subjective cue usage ratings to links
in the mental representation networks.

6.2.4 Analysis of confidence and time predictions
conditional on strategy use

Besides an overall measure of fit, the MM-ML method
provides individual tests of whether the confidence and
decision time predictions of the respective strategy con-
tributed to explaining the data of each individual. These
measures are relevant to our third hypothesis. They can
be used to learn more about the underlying processes and
to improve aspects of models (Glöckner, 2009). Specif-
ically, within each MM-ML estimation for each person
and each strategy, we can ask whether the contrast co-
efficients for time and confidence are significantly dif-
ferent from zero using a z-test (i.e., whether the coeffi-
cient contributes significantly to explain the data). We
counted how often the time and confidence predictions
of the respective strategies contributed to explaining the
data of each individual at p < .05. We calculated overall
proportions for all subjects and proportions conditional
for people who (supposedly) used the respective strategy
(Table 4). Considering all subjects, the time and con-

fidence predictions of PCS turned out to be significant
very often, whereas this was not the case for the RHe and
TTB predictions. These results are in line with the aggre-
gated analyses reported above. More importantly, even
when looking only at the subjects who supposedly used
the respective strategy (according to MM-ML), the pro-
portion of significant time and confidence predictions of
RHe and TTB remained rather low, whereas the propor-
tions were very high for PCS. This result suggests that
even for the few subjects who were classified as TTB
and RHe users might not have used the processes sug-
gested by the respective strategies, although their choices
were mainly in line with these strategies. Note, that this
result does not undermine the validity of the MM-ML
method, it just indicates that the process assumptions of
TTB and RHe should be rethought (Glöckner, 2009, p.
197). For both proportions p(time_sig) and p(conf_sig),
χ2-tests indicated that the observed differences in pro-
portions of significant predictions were different between
strategies, time: χ2(3; N=324) = 65.6, p < .001, and con-
fidence: χ2(3; N=324) = 91.1, p < .001. This difference
indicates that the fit of time and confidence predictions
with the data conditional on strategy usage are higher for
PCS than for RHe and TTB (cf. H3). To back this anal-
ysis up with more conventional measures of fit, we cor-
related confidence and time contrasts with the data for
each person. Median correlations are reported in Table
4 (unconditional on strategy usage). The results clearly
point in the same direction: the overall fit of decision time
and confidence with the predictions by RHe and TTB is
low whereas the correlation with the predictions of PCS
is considerably higher.

7 Discussion

In the current study we investigated the processing of
recognition information and further provided cue knowl-
edge. Specifically, we tested how well two versions of
a compensatory PCS model can account for decision be-
havior when analyzing choices, decision times and con-
fidence simultaneously, compared to RHe and TTB. We
show that the large majority of subjects’ (77.5%) inte-
grates information in a weighted compensatory manner
as predicted by PCS. Decision times and confidence rat-
ings of these subjects are well in line with the predictions
of the PCS model. Only for a very small proportion of
subjects’ (5%–7.5%) choice behavior can be explained
with RHe, which assumes that recognition is a special
cue that is always used first. Several subjects seemed to
use a TTB strategy with recognition information being
one of the cues (15%–17.5%). Hence, PCS accounts bet-
ter for choice behavior of the majority of subjects than
noncompensatory models in our experimental task.
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Table 4: Fine-grained analysis of time and confidence predictions. p(time_sig) is the proportion of significant time
contrasts for the respective strategy considering all subjects at p < .05; p(time_sig|strat use) is the same proportion for
users of the respective strategy only. p(conf_sig) and p(conf_sig|strat use) are the respective proportions for confidence
contrasts. MD(rtime) and MD(rconf) are median correlations of time and confidence contrasts with individuals’ data
vectors (unconditional on strategy use).

p(time_sig) p(time_sig|
strat use) p(conf_sig) p(conf_sig|

strat use) MD(rtime) MD(rconf)

RHe 0.06 0 0.11 0.25 0.02 0.03
TTB 0.14 0.25 0.20 0.50 0.05 0.05
PCS1 0.58 0.61 0.68 0.82 0.20 0.22
PCS2 0.36 0.71 0.67 0.75 0.11 0.25

A more fine-grained analysis of the considered pro-
cess models was conducted by investigating the fit of pre-
dicted and observed decision time and confidence ratings
separately for supposed users of the respective strategies.
For PCS users the fit was high whereas it was rather low
for RHe and TTB users. This indicates that RHe and
TTB users’ strategy classification was mainly driven by
the good fit of choices alone. The additional process as-
sumptions of RHe and TTB therefore do not appear to
describe the actual decision processes well.

Further research is needed to investigate alternative
models (see Marewski, et al., 2010). One plausible as-
sumption is that people may generally adopt the PCS
mechanism, but they sometimes feed noncompensatory
cue weights into it which mimics choices of noncompen-
satory rules (Glöckner & Hilbig, 2010).

7.1 Relation to previous findings on the
prevalence of RH

As discussed above, most previous research on RH was
not able to reliably detect how many people indeed
used RH. When using an unbiased strategy classifica-
tion method, particularly in contrast to methodologically
problematic estimations based on average adherence rates
of choices with RH-predictions, RH cannot account for
subjects’ decision behavior. As we mentioned above,
using a city-size paradigm, Pachur et al. (2008) found
that for roughly 50% of the subjects choices were per-
fectly in line with RH-predictions. Considering the dis-
cussed methodological concerns and taking into account
our findings, these results should not be interpreted as ev-
idence for 50% RH users in the former study. According
to our results, which include processing aspects, if RH is
applied at all, its prevalence rate seems to be much lower.

Parts of the differences might, of course, be attributed
to methodological differences. Whether our findings, for
instance, generalize to situations in which cue informa-

tion is retrieved from memory is an interesting question
for further research. For example, Bröder and Schiffer
(2003b; 2006) found more choices in line with a non-
compensatory TTB strategy when information had to be
retrieved from memory, and response times of presum-
able TTB users were in line with the predictions (Bröder
& Gaissmaier, 2007). Also, Pachur et al. (2008) found
a somewhat larger impact of additional cue knowledge
when cues were explicitly provided rather than retrieved
from subjects’ semantic memory. These results show
that there may be processing differences due to mem-
ory retrieval or demand effects induced by experimenter-
provided cues. Both factors may promote compensatory
decision making and hence, the massive preponderance
of PCS found in our task may be somewhat attenuated in
other situations that demand cue retrieval from memory.

Nevertheless, if strategies are selected based on pre-
vious learning of their performance in a certain domain
(Rieskamp & Otto, 2006), theoretically there should be
no difference in strategy application between decisions
from memory and decisions from givens. Assuming
(close to) perfect memory, the strategies’ performance —
and consequently also the result of strategy learning — is
of course independent of whether information is acquired
from memory or from a computer screen. We suspect
that previously observed high adherence rates (e.g., 95%
in Pachur et al., 2008, Exp. 3) might be mainly due to
the fact that decision tasks were selected that were not di-
agnostic for RH use in that PCS and RH made the same
predictions (Glöckner & Betsch, 2008a).

Our findings might at first glance appear to conflict
with recent results of Marewski et al. (2010). As men-
tioned above, Marewski et al. developed several mod-
els in which naturally available cues for the known op-
tion were assumed to override the recognition cue and
would lead to choices against recognition. For exam-
ple, the weighted-fluency heuristic predicted that people
find a known city to be smaller than an unknown city
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if recognition takes longer than a certain time threshold.
The take-one-cue heuristic assumed that for the recog-
nized option another cue is known and if the value of
this cue is below/above a certain threshold people choose
the unrecognized object. Marewski et al. (2010) found
similar or higher adherence rates for RH as compared to
these alternative models, concluding that the newly de-
veloped competitor heuristics performed worse than the
RH. A closer look indicates that the results do not con-
flict with our findings. Although Marewski et al. also in-
cluded simple compensatory models such as tallying-of-
negative-cues into the comparison, they did not include a
comprehensive weighted compensatory strategy in which
all relevant pieces of information (including recognition)
are integrated according to a weighted sum that would
be comparable to PCS. Furthermore, the fact that the au-
thors based their argument only on adherence rates might
weaken their conclusions concerning RH use (Hilbig,
2010). The adherence rates observed in their third study,
for instance, were similar to the ones in our experiment.
Our results highlight that fact that even such relatively
high adherence rates can be easily found if almost no-
body uses RH. The problem is of course not unique for
RH or RHe, and all conclusions concerning strategy use
based on adherence rates only should be made cautiously.
Furthermore, Marewski et al.’s observation of increased
choices for the recognized object in decisions in which
further cues supported the recognition cue was replicated
in our study and is exactly what PCS and other compen-
satory models would predict, while RH would predict no
influence (Hilbig, 2010; Pohl, 2006; but see Marewski, et
al., 2010, for a different interpretation).

7.2 Parallel Constraint Satisfaction as an
approach to decision making in differ-
ent domains

PCS has proven to be a good model to describe choices,
decision times and confidence in city-size tasks with
recognition knowledge. This result extends previous find-
ings showing that PCS can account well for probabilistic
inferences from memory (Glöckner & Hodges, in press)
and from givens (Glöckner, 2008; Glöckner & Betsch,
2008c). The recognition cue and the other cues are inte-
grated in a weighted compensatory manner, and the well-
specified spreading activation processes assumed by PCS
can capture these processes and choice outcomes well.

7.3 Methodological implications
Our findings again highlight the problems of using ag-
gregated data to evaluate process models and individ-
ual strategy use, especially if predictions from different
models are confounded and cannot be teased apart with

the method applied. This problem has been acknowl-
edged for a long time (e.g., Estes, 1956). From the ag-
gregated analyses of choices, one might have argued that
TTB performs almost as well as the compensatory strate-
gies in predictions and might be preferred as a model for
the data because it is simpler (Gigerenzer & Goldstein,
1999). Our analysis of choice showed that, on an ag-
gregated level, predictions of RH, RHe and TTB were
largely supported, whereas individual analyses lead to the
opposite results. Hence, considering choices on an ag-
gregated level only, the conclusions from the data would
have been blatantly wrong. This problem is hence rel-
evant for studies of behavioral decision making, also of
course for those who claim support for fast and frugal
heuristics (e.g., Brandstätter, et al., 2006).

To put our findings in perspective, we admit that the
recognition cue may still be one of the most power-
ful ones hitherto identified for certain inference tasks in
which it is valid. Nevertheless, its power does not suffice
to keep people from considering additional information
(as suggested by Goldstein & Gigerenzer, 2002). The re-
sult of the inference process will sometimes “look” non-
compensatory because subjects deliberately or automat-
ically scale down the importance of the additional in-
formation, but obviously, they are not ignoring it as the
choice and process data show.

One obvious limitation of the MM-ML method is that
conclusions are restricted to the strategy set investigated.
The best of a set of models is probably still not the “true”
model. However, this weakness is inherent in most sci-
entific endeavors that test sufficiently specific hypotheses
against each other. Of course, subjects may also use other
strategies or even mixes of strategies, but the classifica-
tion will yield only the model fitting closest to behavior
in terms of data likelihood. Hence, the strategy set might
be improved qualitatively or quantitatively in the future.12

In this study we found that PCS is an appropriate
model to account both for choices and underlying pro-
cesses reflected in decision times and confidence judg-
ments. Research on processing of recognition informa-
tion should move away from merely testing against the
RH and from testing decisions in the niche for which
RH is assumed to be applied according to its’ proponents
(e.g., memory-based decision with no further information
provided; in RU-cases only). Further research should fo-
cus on testing more complex models using rigorous strat-
egy classification methods, instead. With PCS we suggest
such a model in this paper and encourage researchers to
critically test against it.

12One generally plausible candidate would be an equal weight or tal-
lying strategy (EQW; i.e., choose the option with more positive cues).
Although we did not include EQW in the analysis the high correlations
of PCS predictions with decision time and confidence speak against the
application of EQW which would not predict differences in decision
times at all (Glöckner, 2010).
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Appendix A: Predictions of the Strategies

Predictions of RH and TTB

The predictions for RHe were calculated by implementing a RH strategy with afterwards applying a TTB strategy,
if necessary. The recognition cue was always used as the most valid cue and the other cues were ordered according
to subjects’ explicitly expressed ordering of cues (as indicated by assigned numbers 1 to 4; see methods section).
For the TTB strategy, all cues including the recognition cue were ordered according to individuals cue ordering. For
both strategies time predictions were derived based on the steps necessary to differentiate (Bröder & Gaissmaier, 2007;
Glöckner, 2001). Confidence predictions were derived from subjects’ evaluation concerning cue-validity (i.e., subjects
estimations concerning how many cities with a positive cue value are larger than cities without it; see methods section)
of the differentiating cue (Gigerenzer, et al., 1991).

Predictions of PCS

For the simulation of PCS we used the network model proposed by Glöckner and Betsch (2008b). Spreading activation
in the network is simulated by an iterative updating algorithm which uses a sigmoid activation function proposed by
McClelland and Rumelhart (1981; see also Read and Miller, 1998):

ait+1 = ait(1− decay) +

{
inputit

(ait
− floor) if inputit

< 0 ,

inputit(ceiling − ait) if inputit ≥ 0 .
(1)

with

inputit =
n∑

j=1

wijajt (2)

ait represents the activation of the node i at iteration t. The parameters floor and ceiling stand for the minimum and
maximum possible activation (in our model set to a constant value of −1 and +1). inputit is the activation node i
receives at iteration t, which is computed by summing up all products of activations and connection weights wij for
node i. Decay is a constant decay parameter.

The model was applied without free parameters. We used standard parameters from previous simulations (e.g.,
Glöckner, et al., in press) which are presented in Table A1. Cue values for city A and B were transformed into weights
of −.01 (negative prediction) or .01 (positive prediction). A priori cue validities were computed from individuals’
expressions of cue-use. The only difference between PCS1 and PCS2 was the transformation function for cue usage.
In PCS1 cue-usage was linearly transformed (divided by 100), whereas in PCS2 the result was squared. This captured
individuals’ differences in translating their cue-usage into numbers. Note that in PCS models the influence of cues
on choices follows a monotonically increasing but concave function. Hence the marginal influence of cues decreases
which is corrected for by squaring input values.

The option with the highest final activation is predicted to be chosen. The number of iterations to find the solution
is used as predictor for decision time, the absolute difference in activation between the two options is used as predictor
for confidence (Glöckner, 2010; Glöckner & Betsch, 2008b).

In some previous publications (Glöckner, 2006; Glöckner & Hodges, in press) we also used a slightly higher decay
(.10) and a lower inhibitory connection between the options (wo1-o2 =−.10) than in the current study (and in Glöckner,
et al., 2010). We have, however, found in a series of (yet unpublished) simulations that PCS predictions are robust
against such slight changes in parameters.

Finally, to test the stability of our findings and to rule out the objection that PCS might benefit from the fact that
it uses subjects’ cue-usage estimations instead of their cue-validity estimations — as it is the case for TTB and RH
— we recalculated choice predictions of PCS1 and PCS2 based on cue-validity estimations. We thereby used the
transformation functions w = ((v−50)/100) and w = ((v−50)/100)2 to scale the values between 50 and 100 down
to acceptable weights. The adherence rates for both strategies remained essentially stable but decreased slightly (all
cases: PCS1=.774; PCS2=.771; RU-cases: PCS1=.804, PCS2=.802). Also the correlations between aggregated choice
predictions of PCS and observed choices (see Figure B1) could be replicated (PCS1=.92, PCS2=.90). Correlations
between aggregated PCS time predictions and observed times (see Figure B2) decreased somewhat but remained
considerably higher than the correlations for RHe and TTB (PCS1=.48, PCS2=.16). The respective correlations for
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confidence predictions remained stable (PCS1=.60, PCS2=.55). Hence, the additional analysis demonstrates the ro-
bustness of the results. The slight drop in predictive performance, however, also indicates that measures of cue-usage
should be preferred over measures of cue-validity as input for PCS models, as one would expect on theoretical grounds.
Specifically, in the terminology of the classic lens model (Brunswik, 1955), PCS models the personal weighting of
these cues (i.e., the subjective part / the right side of the lens) instead of the objective relation between distal criterion
and cues (i.e., the left side of the lens). Both might on the long run converge in so called “kind environments” with
appropriate feedback (Hogarth, 2001).

Table A1: Model parameters for PCS simulations.

Value / Function Description

Decay .05 Decay parameter for node activation; influences the overall activation level of the
nodes, the higher the value the lower the final activation level.

wo1-o2 −.20 Inhibitory connection between options; influences the size of coherence shifts; the
stronger the inhibitory connection the stronger the coherence shifts.

wc-o .01/−.01 Connection between cues and options representing positive or negative cue pre-
dictions.

wv

PCS1: w=(v/100)
vs.

PCS2:
w=(v/100)2

Links between general validity node and cues representing a priori cue validity.
We divide the cue validities v (measured as peoples cue usage on a scale from 0
to 100) by 100. For PCS2 we take the result to the power of 2.

ceiling /
floor

1/−1 Upper and lower limit for cue activations.

Stability
criterion

10−6 The network was considered having reached a stable solution if there was no en-
ergy change in the network for 10 iterations which exceeded 10−6.
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Appendix B: Materials and further analyses
Table B1: US-American cities and cue patterns. Sources for city-sizes: http://de.wikipedia.org/wiki/
St%C3%A4dte_in_den_Vereinigten_Staaten; for diocese: http://www.katolsk.no/utenriks/namerika.htm; and for uni-
versity: http://www.utexas.edu/world/univ/state/ and the respective home pages of the universities.

No. City Inhabitants
(in 1000) Recognition State capital Diocese University

1 Hialeah 212 − − − −
2 Carson City 52 − + − −
3 Mobile 191 − − + −
4 Tempe 174 − − − +
5 Lansing 115 − + + +
6 Trenton 84 − + + −
7 Topeka 123 − + − +
8 Stockton 290 − − + +
9 Miami Beach 87 + − − −
10 Charleston 51 + + − −
11 Oklahoma City 274 + − + −
12 Bufallo 272 + − − +
13 Salt Lake City 181 + + + +
14 Richmond 200 + + + −
15 Albany 96 + + −* +
16 Orlando 228 + − + +

* This cue value was changed to fit the cue pattern. In reality Albany is a Diocese.

Figure B1: Correlation between observed and predicted choices by strategy. Values are collapsed by decision tasks
(i.e., averaging across subjects) resulting in a total of 120 data points per strategy. Graphs include a regression line and
the correlation between choice prediction and choice. Missing predictions were excluded. Graphs include all subjects
and are not conditional on strategy classification.
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Figure B2: Correlation between observed and predicted response times by strategy. Values are collapsed by decision
tasks (i.e., averaging across subjects). Graphs include a regression line and the correlation between strategy predictions
and time. Time scores are time-residual after partialling out order effects and log-transformation. Missing predictions
were excluded. Time predictions of strategies have different scales (i.e., PCS iterations are in the range of 50 to 200
whereas TTB / RHe calculation steps are in the range of 1 to 4). Graphs include mean values across all subjects and
are not conditional on strategy classification.
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Figure B3: Correlation between observed and predicted confidence by strategy. Values collapsed by decision tasks
(i.e., averaging across subjects). Graphs include a regression line and the correlation between strategy predictions and
confidence. Missing and zero predictions were excluded. Predictions of strategies have different scales (i.e., TTB
/ RHe cue validities are between 50 and 100 (out of 100); PCS confidence is calculated from differences in option
activations and ranges from 0 to 2). Graphs include all subjects and are not conditional on strategy classification.
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Figure B4: Adherence rates by strategy and by subject. Each set of four bars represents one subject and is calculated
over all 120 tasks. Tasks for which no predictions can be derived are dropped per strategy (see Table 2). Note that the
proportion of choices in line with a strategy should not be equated with the probability that a person used the strategy,
unless equal priors of the strategies are assumed. The likelihood of the data given the application of a certain strategy
is estimated by the Multiple-Measure Maximum Likelihood method (results see Table 3).
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