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ON A NONLINEAR HYDROMAGNETIC CONVECTION
UNDER A
ROTATIONAL CONSTRAINT
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Abstract

Nonlinear hydromagnetic convection in a horizontal layer of fluid rotating about the
vertical axis is investigated using the mean field approximation. The boundary layer
method is used assuming large Rayleigh number R for different ranges of the
Chandrasekhar number Q and the Taylor number Ta. The heat flux F is determined
for the value of the horizontal wave number « which maximizes F. It is shown that, for
certain regions of the parameter space (R, Q, Ta), F and « change discontinuously for
Ta greater than some critical value (given R and Q). Thus, for Ta about this critical
value, wave numbers and heat fluxes of two different values will be predicted
simultaneously. Also, for certian regions of the parameter space, the field can facilitate
convection, but rotation can facilitate convection only for sufficiently large Ta.

1. Introduction

The effect on nonlinear Rayleigh—Benard convection of either rotation alone
(Hunter and Riahi [7], Riahi [8] and Chan [3], henceforth referred to as I) or a
magnetic field alone (Van der Borght et al. [10] and Riahi [9], henceforth referred to
as II) has recently been studied, and these studies provide further insights into the
subject of nonlinear convection with the effect of rotation and magnetic field acting
separately. These studies have confirmed that an impressed magnetic field or
rotation can significantly modify the convective flow and the total heat transport.
However, contrary to expectations, the linear theory (Chandrasekhar [4]) predicts
that when both a magnetic field and rotation act together, they may have conflicting
tendencies.

The present study concerns the combined effect of a magnetic field and rotation
on nonlinear thermal convection at large Rayleigh numbers and it is hoped that it
provides a deeper insight into the subject of hydromagnetic convection in a rotating
fluid.
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We shall study the nonlinear problem subject to the so-called mean field
equations for the magnetic field, momentum and heat. Briefly, these equations are
derived by ignoring the interaction between the fluctuation quantities, but the
interaction between the mean and the fluctuation quantities is retained. For a more
detailed discussion of these equations and their derivation, we refer to the papers by
Herring [5] and Busse [1]. Previous studies of these equations for the case of
thermal convection have shown that, for moderate or large values of the Prandtl
number Pr, the derived results, as far as the statistical properties of motion are
concerned, do not differ appreciably from the experimental results based on the full
convection equations.

As in II, we are interested in finding the solution which maximizes the heat
transport F. It is known from recent studies of Benard convection with and without
rotation (Chan [2] and Hunter and Riahi [7]) that the flow that maximizes F subject
to the mean field equations is the same as that which gives an upper bound to F in
the limit of large Pr for the full convection equations. The flow that maximizes F for
the mean field equations of hydromagnetic convection is believed to represent
adequately the flow which gives an upper bound to F for the full hydromagnetic
convection equations at least in the limit of large Pr and diffusivity ratio t (ratio of
magnetic diffusivity to thermal diffusivity). The success of the previous upper bound
studies of thermal convection, which have compared reasonably well with
observation, encouraged us to undertake the present study, which we hope will
provide us with a deeper insight into the nature of the combined effects of rotation
and magnetic field on nonlinear convection, something which is of prime
importance in many geophysical and astrophysical problems.

2. Governing equations

We consider a horizontally infinite layer of fluid of depth d, bounded above and
below. The upper and lower surfaces are maintained at temperatures T, and
T, +AT,, with AT > 0, respectively. The fluid is rotating about the vertical with
angular velocity Q and is permeated by an imposed magnetic field in the vertical
direction. The magnetic field, M = (M,, M,, M,), can be written as M = M+h,
where a bar above denotes a horizontal average. Since M is only a function of the
vertical variable and V. M = 0, M, must be a constant and takes on the value of the
impressed field. If this value is taken as a unit of the field strength, then M = k+h,
where k is the unit vector in the vertical direction. The mean field equations of the
hydromagnetic convection are derived from the Boussinesq equations for momen-
tum, magnetic field and heat when all nonlinear terms are neglected with the
exception of the one which enters the equation for the horizontally averaged
temperature (Busse [1]). The nondimensional steady-state forms of these equations,
after eliminating the pressure and horizontal velocity components, are
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v+ 2,09 o, (1a)

g§+TV2 ¢ =0, (1b)

V* W+ RV?2 T+1QV? %ﬁzl—%% =0, (1c)
gvzv V2h, =0, (1d)

V2T+(1 = WTH+{WTH)W=0, (1e)

where W, h,, S and C are the vertical components of velocity, magnetic fluctuation,
vorticity and curl of magnetic fluctuation, respectively. Also, T'is the deviation of
temperature from its horizontal average, E = v/d’Q is the Ekman number,
R = BgATd?fxv is the Rayleigh number, Q = M2%d?/up, v is the Chandrasekhar
number, T = 5/« is the ratio of magnetic diffusivity to thermal diffusivity, u is the
magnetic permeability, p, is the reference density (constant), v is the kinematic
viscosity, f§ is the coefficient of thermal expansion, g is the acceleration due to
gravity, angle brackets denote a total volume average over the whole layer, and V7 is
the horizontal Laplacian.
We shall rescale our dependent variables so that

=(FR)™*W, 0=R/FPT,
. . @
H =(FR) *th,, S=(FR)™%S, C=(FR)™*<C,
where F = (WT) is the heat flux. The governing equations are now
2 £3
V2 S +(Ta) 0Z+QaZ (3a)
FrA +V*C =0, (3b)
2 2 0H 4+ 0S as
Viw+Vi0+QV? 5> —(Ta) 5 (3c)
9 L v2H =0, (3d)
0Z
A vioi(1-a0+1)w=0 (3¢)
FR F -

where Ta = 4/E? is the Taylor number.

https://doi.org/10.1017/50334270000002241 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000002241

164 N. Riahi [4]

We shall use the following constraint to determine F,

_1-R7I(]VO|D
F=—a=wnny > @

which is derived by multiplying equation (3e) by 6 and taking the total average over
the whole layer.
As in II, the boundary conditions to be considered for free surfaces at z = 0, 1 are

o 0§ oC

The basic equations (3) are separable and admit solution of the form
(@,6,H,8,C) = [0(2),0(2), H (Z), $,(Z), C{Z)] ¢(x, y)» (6a)
where
Vig=—o?o. (6b)
In equations (6), « is the horizontal wave number and ¢ is the planform of the cellular

pattern with horizontal scale of the order of & ~'. The unit subscripts will now be
omitted for simplicity, so that

(d—dzif )S+(T )* +QdZ 0, (7a)
j-}(zf—zz,_az)c _o, (7b)
<dizzr—a2> w—0 9+Q< g )?1121 —(Ta )idZ 0, (7c)
Z—g+(2dz—zz-—a2>H =0, (7d)
%((%——az)0+<l—w0+%)w=0, (7e)

with boundary conditions
w=‘%‘;=9=H g; Zg 0 atzZ=0,1. 8)

Equations (7) and (8) must then be solved subject to (4). We shall obtain the solutions
by using the boundary layer method, treating R as a large parameter.
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3. Boundary layer solutions

3.1 Rotational and magnetic effects are unimportant

The range in which rotational and magnetic effects are unimportant is found to
be Ta < 1 and Q < 1. The solution in this case is essentially that given by Howard
[6]for @ = 0and Ta = 0. The boundary layer structure is unaffected by the field and
consists of a nonuniform interior and a thin thermal layer of thickness proportional
to R~ 17 closed to each boundary. The heat flux F is proportional to R'/3 and « is of
order one.

3.2. Rotational effects are unimportant

Rotational effects do not become significant immediately after Ta becomes
nonzero, but they can initially be regarded as small perturbations to the solution
without rotation. The range in which rotational effects are unimportant is found to
be Ta < 1, and the solution is essentially that given in II for Ta = 0. We shall briefly
review the main results derived in II and refer the reader to that paper for details on
the subject.

According to the results derived in I, it is appropriate to divide the parameter
space into four different regions :

(i) The range 1 < Q < R*. The solution is qualitatively the same as in the case
described in Section 3.1, except that a is now proportional to Q. Since « is large,
there exists also an intermediate layer of thickness « ~*. The interior is now uniform.
The heat flux F is proportional to R!/3, but the proportionality factor depends on Q
and decreases as Q increases.

(i) The range R* < Q < R3*(log R). The boundary layer structure consists of a
uniform interior, an inner layer of thickness Q% /%, an intermediate layer of thickness
a~ ! and a thermal layer of thickness of order F~ . The wave number « and the heat
flux are proportional to R** and R* Q~'3(log QR %), respectively. (Specifically,
a = (R/9)'%) ‘

(iii) The range R**(log R) < Q < (Rlog R)*’>. This case is essentially that of case
(i), except that the thermal layer merges with the intermediate layer. The quantities «
and F are both proportional to RQ~!(log Q**R™1).

(iv) The range (Rlog R)*> < Q < R. This case is essentially that of case (iii),
except that the thermal layer is now thicker than the intermediate layer. The
thickness of the thermal layer, « and F are proportional to F~!, Q!'* and
RQ ™ '(log RQ 1), respectively.

3.3. Magnetic effects are unimportant

Magnetic effects do not become significant immediately after Q becomes nonzero,
but they can initially be regarded as small perturbations to the solution without the
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field. The range in which magnetic effects are unimportant is found to be Q < 1, and
the solution is essentially that given in I for Q = 0. Here we briefly review the main
results derived in I and refer the reader to that paper for details on the subject.

It is found to be appropriate to divide the parameter space into three different
regions :

(i) The range 1 € Ta <€ R. The solution is qualitatively the same as in the case
described in Section 3.1, except that a is now proportional to Ta'/4. (Chan in I
incorrectly states that « is proportional to R'/4.) Since o is large, there exists also an
intermediate layer of thickness a ~'. The interior is now uniform. The heat flux F is
proportional to R'/3, but the proportionality factor depends on Ta and decreases as
Ta increases.

(i) The range R < Ta < R''/'°(log TaR™?'). The boundary layer structure con-
sists of a uniform interior, an inner layer of thickness Ta*/a3, and a thermal layer of
thickness of order F~!. In addition, there is an intermediate layer of thickness o ™!
(between the inner layer and the thermal layer) which adjusts the solution to satisfy
the correct boundary condition on H; such a layer does not exist in the case @ = 0.
We have that

F = 2%3(1.062) 43 5=3/3R213 Tq=13(log TaR™Y)'* and o« = (R/5)"*.
The expression for F is slightly different from the one obtained in I (Q = 0) which is
F =2.37131.062)"43 5753 R*3 Tq~*(log Ta®? R™*)'3.

This difference is caused mainly by the intermediate layer which exists only in the
case Q # 0.

(iii) The range R**(log R) < Ta < R*?. This case is essentially that of case (ii),
except that the thermal layer is now thicker than the intermediate layer. In this case
F = (4/m)* 5732 R3? Ta~'(log R*? Ta~"'). The expression for F derived in I has
incorrectly an additional factor of 4.

3.4. Magnetic field is dominant

The solutions for this case are essentially those discussed in Section 3.2, except for
the following differences obtained in each of the four different ranges for Q :

(i) The range 1 < Q < R} The Taylor number Tz must be in the range
1l < Ta < Q>

(i) Therange R* < Q < R**log R). The Taylor number Ta must be in the range
1 < Ta < QRY.

(iif) The range R**(logR) < Q < (R log R)**. The Taylor number Ta must be in
the range 1 < Tu < R2Q " !(log @32 R~ )2,

(iv) Therange (Rlog R)*"> < Q < R. The Taylor number Ta must be in the range
1 <« Ta < Q32
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3.5. Magnetic field is marginally dominant

(i) Therange1 < Q < R*. The Taylor number Ta is proportional to Q2. The rest
of the results are essentially the same as those discussed for this range in Section 3.2.

(il) The range R* < Q < R3%logR). The boundary layer structure consists of
four distinct regions: the interior, an inner layer of thickness ¢ = Ta*/a®, an
intermediate layer of thickness o ~!, and a thermal layer. Without loss of generality,
we shall restrict ourselves to the discussion of the boundary layer structure near the
lower boundary, since the boundary layer structure near the upper boundary is
essentially the same as the one near the lower boundary.

In the interior, z is of order one. The wave number a is supposed to be large (which
can be justified a posteriori), so that the convection cells are narrow. Equations (7)

then yield
do .dC
— a2 } Juhadd > =
o* S+(Ta) dZ+QdZ 0, (9a)
ds
LY o ek
o C_dZ’ (9b)
dH ds
—0 " 20—-a"20— 42
w—a"*0-a de (Ta)* a 17 0, (9¢)
dw
2 ==
o H—dz, (9d)
o2
“FR 0+(1—wb)w =0. (9e)
It is assumed that
a* < FR, Q<a* and Ta<ab. (10)

Using (7) and (10) in (9), we find that the interior is uniform and isothermal. The
solutions are

w=a"!, =0 and H=C=S=0. (11)

Thus in the interior the vorticity does not modify the velocity field and the fluid
motion is essentially vertical. The magnetic field in this region is essentially the same
as the imposed external field.

In the inner layer of thickness ¢, we define i = z/¢ as the variable in this layer. It is
assumed that

a lge<l (12)

and the conductive term is not yet important.
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Using (12), the governing equations (7) yield
Tatdw Q dC

_S+P—EW+EZ_W=O’ (13a)
ds
2 = =2
o 8c_da//’ (13b)
_ytg_Q dH _Tatds _
O IR Sy R PP AL (13¢)
dw
2 =
o aH—d!/j, (13d)
wf = 1. (13e)
It is then found that we must have the following conditions:
Q> a? (14a)
and
Ta = p2a?Q, (14b)

where f is a constant of order one. Using (14b) and (12), we find the following
necessary condition which must hold when both rotation and the field are dominant

032 < Ta < Q> (15)

We find from (13), after applying matching conditions (matching the solutions to the
corresponding solutions in the interior), that as ¢y —» 0

= fu” " Y(2logy ),

H=pa 3¢ '2logy Y,

S = exp(—BY)— BY?(2™ logy ),

¢ = —[exp(—pyY)+pY(2logy~"Hla"2e7 1.

In the intermediate layer of thickness a ™!, we define n = az as the variable in this
layer. Since conductive terms are not yet important, (13e) is still valid in this layer.
We then find from (7), after applying matching conditions (matching the solutions to
the corresponding solutions in the inner layer), that the governing equations reduce

(16)

to
dC _dS
—d; = z;" = 0, (173)
d? dH
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d_w+ & —1]H=0. (17¢)
dn " \dn?

Equations (13e) and (17) then yield

S:l, =—a_28‘1, 0=CL)-1,
(18)
w=Pa"2e logae)tn, H = Pa~3c '(2logae) [1—exp(—n)].

In the thermal layer, we define t = z/y as the variable in this layer, where y is the
thickness of the layer. It is assumed that

y<a L (19)

We then find from (7) and (19), after applying matching conditions (matching the
solutions to the corresponding solutions in the intermediate layer), that the
governing equations reduce to

d*w d*H _dC _d*S

a* ~df —da - az ° (20a)
and
a0
G tl-wdw =0, (20b)

where it is found that we should have the following conditions
FRy*’D?=1 and D= pa~'e~'y(2logas)t. (21)
Equation (20) then yields

w=Dt, H=a"'Dt, C=—a"2g7!,

S=1 and 0=+~ 1(l—fz)‘”“exp g dt. (22)
2D |, 2 )%

To determine F, we evaluate the expression < | V8|?> and {(1 ~w0)? in (4) and,
after a formal procedure to maximize F (Chan, [2]), we find that

F =4I YHY33"3RQ "3 (log TaR™!)!73, (23a)
y=(I4"1H'"3R" Q' 3(log TaR™ ")~ 13, (23b)
o =(R/9)"*, where I = 1.062. (23¢c)

The conditions (14), (15) and (19) yield the following results:
Ta = O(QR?Y), (24a)
R < Q < R**logR, (24b)

https://doi.org/10.1017/50334270000002241 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000002241

170 N. Riahi (103

R < Ta < R5*logR. (24¢)

(iti) The range R**logR) < Q < (RlogR)*®>. The boundary layer structure
discussed in the previous range was based essentially on the condition that

« < R <y, 25)

It was found indeed that the value of « which maximizes F is proportional to R'/%.
Now, as Q further increases beyond the range (24b), we have a new condition that

a<y 'RV (26)

Consequently, F is now maximized by the largest possible value of o. These results
indicate that there exists a new boundary layer solution for the case in which
y = O(a~ ). The interior and the inner layer of this new boundary layer structure are
the same as those discussed in the previous range. In the thermal layer (which is now
merged with the intermediate layer of thickness o~ !), we define # = z/6 as the layer
variable. We find from (7), after applying matching conditions (matching the
solutions to the corresponding solutions in the inner layer), that (17) holds and that ¢
must be found as the solution of

<%27—1>0+(1 ~wf)w =0 27)

forwhich @ = 0atn = 0and @ ~ 5~ ! as n — co0. The solutions for S, C, H and w are
given in (18), and the solution for (27) is found to be

1 2
_n -1 _nt
0 ZDJ:, (1+1) exp( . )dt. (28)

To determine F, we use the same procedure as before and find that

a=(2J)"'RQ ™ '[log(RTa"34)], (29a)
F =J"2RQ ™ '[log(RTa"?"*)], {29b)
where J = 1.77.
The present analysis assumes that

a '« Tata™3 < 1. (30

Using (14b), (25), (29) and (30), we find the following results
Ta = O[R?*Q " (log RTa~3/%)], (31a)
R3/*(log R) < Q < (Rlog R)*3, (31b)
(Rlog R)*/5 < Ta < R%*(log R). (31¢)
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(iv) The range (Rlog R}*’> < Q < R. For Q larger than the order of (Rlog R)*/>,
(30) is no longer valid, and we must have a new condition in which

a v« d < Tata 3. (32)

The boundary layer structure consists of four regions : the interior, the inner layer of
thickness Ta*« ™3, the thermal layer, and a thinner layer of thickness a~!. The
interior and the inner layer are essentially the same as those discussed in the range
(24b). In the thermal layer of thickness 8, we define { = z/6 as the layer variable. We
find from (7) and (32), after matching the solutions to the corresponding solutions in
the inner layer, that

dC_dS_dH _o op do o po

T-T - @ =0, ad*H = a a*0 = FR(1 —wl)w (33a)
and

FRD? = a2, where D, = a?6[2Ta"'log(Tata ™35~ ))*. (33b)

The solutions are

H=D15—la_2, w=D1C1 0=[DI(I+C2)]_IC’ (34)
S=1 and C=—a 2™

The solutions for w, 8, S and C satisfy the required boundary conditions at { = 0. A
thinner layer is then needed to adjust the solution to satisfy the correct boundary
condition on H. This is a layer of thickness o = ! with # = z« asits variable. Itis thena
simple matter to find that

H=D,6'a"?[1—exp(—n)). (35)

The maximization of F with respect to o proceeds as before, and we find that

F= (%) RQ ™ !(log RTa~2), (36a)

5= (%)R" Q(log RTa~23)1, (36b)

o« = 22904, (36¢)

Ta = 0(Q>?), (36d)
(RlogR)** < Q < R. (36¢)
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3.6. Rotation is dominant

The solutions for this case are essentially those already discussed in Section 3.3,
except the differences to be given below in each of the three different ranges for Ta:

(i) The range | < Ta < R. The heat flux Q must be in the range 1 < Q < Tat.

(i) The range R < Ta < R''*%(log TuR ™). The heat flux Q must be in the range
1<Q<TaR™ %

(iii) The range R**log R) < Ta < R*?. The heat flux Q must be in the range
1<Q<TuR™%

4. Discussion

The problem of combined effects of rotation and magnetic field on thermal
convection presents some very unexpected features. The linear theory
(Chandrasekhar [4]) predicts, for example, that the critical Rayleigh number for the
onset of linear instability, for certain ranges of Tu and Q, has two minima. Also, the
critical wave number for the onset of convection decreases discontinuously for Q less
than some critical value Q.. Thus for Q near Q,, cells of two very different sizes will
appear simultaneously. The results of the nonlinear problem studied in this paper
present some more unexpected features. The results in the range (ii) of Section 3.5
indicate that the magnetic effects are marginally dominant, since, for Tu larger than
the order of QR?, rotation replaces the field and becomes dominant. Therefore, for -
Ta greater than some critical value Ta, (given R and Q), the expressions for F and «
given by (23a, c) change discontinuously to the expressions given in the range (ii) of
Section 3.3, with « suddenly increasing and F decreasing. However, it must be noted
that this feature holds only for Ta in the range (ii} of Section 3.3. For Ta outside this
range and Ta » QR? there is nosolution because the single mode analysis of thermal
convection with rotation alone (I) does not predict any boundary layer solution in
the range R''/*°(log TaR ') < Ta < R**(log R). The feature discussed above can
also be stated in the following form. For Ta about the critical value Ta. wave
numbers and heat fluxes of two different values will be predicted simultaneously. As
Ta increases and passes through Ta,, the horizontal scale of the cells suddenly
decreases, and the magnetic field indicates that it can facilitate convection. The
results in the range (iv) of Section 3.5 also indicate that the magnetic effects are
marginally dominant since, for Ta larger than the order of Q3/2, rotation replaces the
field and becomes dominant. Thus, for Ta greater than some critical value Ta,. (given
R and @), the expressions for F and « given by (36a, c) change discontinuously to the
expressions given in the range (iii) of Section 3.3, with « and F suddenly increasing.
However, it must be noted that this feature holds only for Ta in the range (iii) of
Section 3.3. For Ta outside this range and Ta » Q3 there is no solution because
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there is no boundary layer structure for the nonlinear convection with rotation
alone (I) in the range for Ta given above. The feature described here can also be
stated in the following form. For Ta about the critical value Ta, wave numbers and
heat fluxes of two very different values (qualitatively) will be predicted simul-
taneously. As Ta increases and passes through Ta,, the horizontal scale of the cells
suddenly decreases, and rotation indicates that it can facilitate convection.

The boundary layer structure for the case in which rotation is dominant is very
much similiar to the corresponding structure for the case in which the magnetic field
is dominant. In the former case, rotation first becomes important in the inner layer of
thickness E, = Ta* a 3. In the latter case, the field first becomes important in the
inner layer of thickness E,, = Q*«~2. When E, » E,,, rotation is dominant, the inner
layer is of thickness E, and the E,, layer disappears. For E, > O(E,), the field is
dominant, the inner layer is now of thickness E,, and the E, layer either disappears or
merges with the E,, layer. It is interesting to note that while rotation cannot become
marginally dominant, the magnetic field can become marginally dominant. The
reason lies in the special form of the Lorentz force in the equations of motion which
is essential in determining the asymptotic solutions in the E,, layer, even for the
special case in which the Coriolis force is of comparable order of magnitude to that
of the Lorentz force.

Van der Borght and Murphy [11] considered the combined effect of rotation and
magnetic field on finite amplitude thermal convection using the mean field
approximation. They assumed the fiow is laminar and has a single mode only. They
investigated three special cases: (A) Q@ = 0(1), Ta = 0(1), (B) Q = 0(1), Ta » 1,
and (C) Tz = O(1), Q » 1. For case A, they find that F is proportional to R/, just as
in the nonrotation case. However, the proportionality constant depends on Q, Ta
and o and decreases as Q or Ta increases. Cases B and C are just the cases in which
rotation alone and the field alone are dominant, respectively. Their general result
that an increase in the field strength can facilitate convection is in agreement with the
present study.
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