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BIORDERED SETS ARE BIORDERED SUBSETS
OF IDEMPOTENTS OF SEMIGROUPS
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Abstract

A new arrow notation is used to describe biordered sets. Biordered sets are characterized as biordered
subsets of the partial algebras formed by the idempotents of semigroups. Thus it can be shown that in
the free semigroup on a biordered set factored out by the equations of the biordered set there is no
collapse of idempotents and no new arrows.

1980 Mathematics subject classification (Amer. Math. Soc): 20 M 05, 20 M 10, 20 M 30, 06 A 99.

1. Introduction

The concept of a biordered set was introduced by Nambooripad in [2], where he
proves (Theorem 1.1) that the idempotents of a semigroup form a partial algebra
in a natural way which satisfies the axioms for a biordered set. The question then
is whether all biordered sets arise from semigroups in this way, for then the
biordered set concept will be a characterization of those partial algebras of
idempotents of semigroups.

In this paper we show that all biordered sets arise as biordered subsets of the
idempotents of semigroups. To do this we use a construction introduced in [1]
which is the biordered set analogue of an idempotent-separating representation of
semigroups.

The author does not know whether all biordered sets are the biordered sets of
semigroups. A natural approach is to consider the free semigroup on the elements
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[2 ] Biordered sets 259

of a given biordered set factored out by all the relations of the biordered set, and
then attempt to show the biordered set of the semigroup obtained in this way
coincides with the original. This breaks up into three problems: showing (i) there
is no collapse of elements of the original biordered set under the factoring out by
relations; (ii) no new arrows (see below) are created in the biordered set; (iii) no
new idempotents are created. The main result of this paper enables (i) and (ii) to
be proved; it is still not known whether (iii) occurs in general.

We begin by describing biordered sets using an arrow notation, -» and =— , to
replace the more commonly used wr and «'.

2. Preliminaries

Let £ be a set with a partial multiplication with domain DE c E X E. Define
relations -> and >— C E X E by

e -»/if and only if ( / , e) 6 D £ andfe = e,

e>—/if and only if {e, / ) £ DE and ef = e.

Note that e -» / and e —< / together imply e = /.
Suppose E satisfies the following axioms.

and > are quasi-orders and

= -* u>— u( ^ u ^ ) " 1 ,

e -*f
=*(B21) e - » / • $

ef

(B21)* e > — f+ \

e
(B22) / \ =

f> 9

(B22)*
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260 David Easdown (3]

(B31) e-+f-+g -»

(B31)* e^-f>-g =* f(ge) =

(B32) / ^ _ f c

e
(B32)* / \

Note that successive axioms rely on previous axioms for their sense: for
example in (B21), if e -> /then by (Bl) (e, / ) E D£ so that e/is defined; in (B31),
if e - » / -» g then e -»g by the transitivity of -> , due to (Bl), so by (B21)
eg <-» e ->/, so eg-> f, so that (eg)/ is defined. Each axiom can be made
self-contained by requiring the appropriate products to be defined in E, but this
is not necessary since E will always be assumed to satisfy all these axioms.

Note that a duality exists, obtained by interchanging arrowtypes, -> with >— ,
and reversing the orders of products, so that (Bl) is self-dual and an axiom
superscripted by * is the dual of the axiom without the superscript.

F o r e , / £ £ define

Me> / ) = { ? £ £ : g ^ - e a n d g - * / } .

Define

He, / ) = {A E M( e, / ) : Vg E M(e, f)eg - eh a n d g / ^ hf),

the sandwich set of e and / . We call E a biordered set if, in addition to the above
axioms, E also satisfies

e
/ \ and fe >— <7e

(«) ' 9

"* 3 / ' eue/z fcfcat / \ and / ' e = /e.

V and "eg

(B4)* ^ ^

=* 3 f such that / \ and ef1 = ef.
f'-^g

If E and E' are biordered sets and 6: E -» £ ' is a mapping, then 0 is called a
morphism if 0 is a morphism of the partial algebras, that is, if 0 satisfies

(M) (e,f)EDE=>(e8,f6)EDE. and
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[4] Biordered sets 261

A subset E' of E is called a biordered subset of E if E' is a partial subalgebra of
£, in the sense that if e, f G £ ' and (e, / ) G Z>£ then (e, / ) G DE,, and further
£ ' satisfies all the biordered set axioms with respect to the restrictions of -» and
s— to £'. It is easy to see that if J?' is a partial subalgebra of a biordered set E
then E' is a biordered subset if and only if £ ' satisfies (B4) and (B4)*.

The following is straightforward and proved in [2] as part of Theorem 1.1.

THEOREM 1. Let S be a semigroup, and E(S) the set of idempotents of S. Then
E(S) forms a biordered set by restricting the semigroup multiplication to

= {{e,f)£SXS:ef=eoref = forfe = eorfe=f}.

PROPOSITION 1 [2, Proposition (2.4)]. Let E satisfy (Bl), (B21), (B21)*, (B22),
(B22)*, (B31), (B31)*, (B32) and (B32)*. Then E satisfies (B4) if and only if for all
e,f,geE

(B4') / \ =* S<f,g)e = S(fe,ge).
f 9

E satisfies (B4)* // and only if for all e, f, g G E

(B4')* / \ - eS{ftg) = S(ef,eg).
f 9

In the next section we use (B4') and its dual rather than (B4) and its dual.

LEMMA 1. (Part of Proposition 2.3 of [2]). Let E be a biordered set and e, f,
g £ £ . Then

LEMMA 2. Let E be a biordered set and e,f,gE. E. Then

e
f \ and fe>-<ge together imply f>-<g.

f> g

PROOF.

8f={gf)g (since gf^ g by (B21)*)

= [(gf)e]g (by (B31), sincegf ^ g-+e)

= [(ge)(fe)]g (by(B32))
= {ge)g (since ge^fe)
-g (since ge <-+gby (B21)).
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3. The construction and the main result

Let £ be a biordered set. Observe that >-< and «-» are equivalence relations on
£, which we call £ and <3l respectively, in accordance with the usage of [2]. Let
E/t [£ /&] denote the set of £ [<3l ]-classes of E. Let L [R] denote an arbitrary
member of £ / £ [E/%], and Le [Re] the £ [<3l]-class containing e E E.

Denote the full transformation semigroup on a set X by 'S(X), and the dual
transformation semigroup by <$*(X). If a £ ^i(X), then a* denotes the corre-
sponding element of <5*{X). Suppose oo £ £ / £ U E/%. Put A = £ / £ U {oo}

5/&LI {oo}.
Define
(i) p: £ -» 5*(v4) where

Lxe if x -» e for some* £ L,
oo otherwise,

00 h* 00.

where

Rex if x >— e for some x £ /?,
oo otherwise,

00 l-» 00.

(iii) <f>: £ -»<5T(y4) X ?T*(5) where

Note that p and A are well-defined by (B22) and (B22)*.

REMARK, p is the analogue of a semigroup representation. Let S be a semi-
group, £ and & the usual Green's relations on 5. Denote the set of regular
£-classes of S by X. define p: S -» S"(Z U {oo}) by

JL^ if x^lxy for some x e L,
oo otherwise,

00 l-» 00.

Then it is straightforward to prove p is a representation of S (see [1]). Dually A is
the analogue of a semigroup anti-representation.

By the following lemma, p and A* are morphisms of £ into E(^)(A)) and
E{!5*(B)) respectively.

LEMMA 3. Let E be a biordered set and e,f £ £. Then

(e,f)eDE^Pef=pePf and \*f=\*\J.
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[ 6 ] Biordered sets 263

PROOF. Suppose (e, / ) £ DE. The argument falls into two cases, each with two
subcases.

(i) Suppose e -> /. We first show pe( = pfe) = pfpe. Let L G E/fc.
Suppose Lpe =£ oo, so x -> e for some x £ L . Then Lpe = Lxe and

L(X/)e> since by transitivity of -» and by (B21) we have

-» e

f

But (xf)e = xe by (B31), so Lpe - Lpfpe.
Suppose LpfPe =£ oo, so x -> / for some JC G L and >> -» e for some

that by (B21) and transitivity of the arrows we have
G Lxf, so

x Xf: •y

In particular y^*f<-x and y = yf+-> xf, so by (B4') and (B21) we have, for some
y' G £

y'f-y'-
f

•h
• X .

Since}''/ ̂  xf, we havey' -̂= x, by Lemma 2. But

/ « - > • / / = > ' - > * ,

so y' -» e, and so Lpe = Ly'e # oo. Hence if Lpe = oo then Lpfpe = oo, and
hence pe = pfpe.

Now we show pef = pepf. Suppose Lpef ¥= oo, so x -> ef for some x G L. Then

- • xe

i
ef
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264 David Easdown [7]

so

Lpepf = Lxepf = L(xe)f = Lx(ef) (by Lemma 1)

Suppose LpePj ̂  oo, so x -* e for some x £ t , and so

ef

so that Lpel # oo. Hence pe^ = pep^.
(ii) Suppose e>—f. We first show pe(= pef) = pepf. Suppose Lpe =£ oo, so

x -» e for some x £ L. Hence

ar

xe > < fixe )

so Lpepf = Lxepf = Lf(xe) = Lxe = Lpe.
If Lpepj =£ oo then Lpe ¥= oo. Hence pe — pepf.
Now we show pfe = pfpe. Suppose Lpfe i= oo, so x -* fe for some x £ L . Then

In particular xf^>f *- e and xf = f(xf) -»/e, so by (B4')* and (B21)* we have
for some x' B E

x'
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xe

But
f(x'e) = (fx')(fe) (by(B32)*)

= (*/)(/*)
= x(fe) (by(B3l))

so LpfPe = Lxfpe = Lx,e = Lf{x.e) = Lx(fe) = Lpfe.
Suppose Lpspe ^ oo, s o x - » / for some x G L and y -» e for some y G Lxf.

Hence

so in particular

f

so by (B4'), (B21) and Lemma 2 we have for some/ e £

y'f=fy
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By (B22)* >, so

David Easdown [91

s X

and so Lpfe ^ oo. Hence pfe = pfpe.
Thus we have shown (e, f) E DE=> pef = pep^. By the dual argument we also

have (e, f) EDE=> Xef = XfXe, that is X*f = X*XJ.

LEMMA 4. Let E be a biordered set and e,fE E. Then

•My = <k =• e — / and <t>f<t>e = <k=*e ->f.

PROOF. Suppose <kfy = <j>e, so p ^ = pe. Then Le = Lepe = Lepep7 = L.p^, so
x - » / for some x £ L ( , and L ^ = Le. Hence

A

a; «

so e
If

/.
= <f>e then X*A* = A*, so XeXf= Xe, and by dual reasoning we have

THEOREM 2. </> is an injective morphism from E into E(^(A) X fT*(2?)). £</> is a
biordered subset of E(5(A) X ?f *(£)) and E s= E<j> as biordered sets.

PROOF. By Lemma 3, <j> is a morphism from E into £(!T(^) X <5"*(fi)). If
<j>e = <fy then by Lemma 4, e >-c / and e «-»/, so e = f. Hence <J> is injective.

We show E<j> is a partial subalgebra of E(^)(A) X 9"*(5)).
Let (f>?, ty E E<j>. If </>e;:̂ <#y then, by Lemma 4, e=—/, so by Lemma 3,

(fy^ = </ye G £(̂ >. Similarly if ^>e -* fy then <j>ety E E<j>. Thus £</> is a partial
subalgebra.

Let (/>"': £<#> -» £ denote the map <j>e i-> e. If (<f>e, <^) G Z)£<() then by Lemma 4,
(e, / ) G DE, so by Lemma 3, (^fy)^-1 = (^)<f>~' = ef= (<j>e)(t>~x(<t>f )</>"', so (>"'
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[io] Biordered sets 267

is a morphism of partial algebras, that is <j> is an isomorphism of partial algebras.
Hence E<j> s E as partial algebras, so E<j> is a biordered set, and hence a biordered
subset of E0(A) X

Thus we have the following characterization of biordered sets.

COROLLARY 1. Biordered sets are biordered subsets of the biordered sets of
semigroups.

The author does not know whether a stronger result holds, namely whether
biordered sets are precisely biordered sets of semigroups. Consider the free
semigroup on the elements of a given biordered set, factored out by the relations
of the biordered set; is the biordered set of this semigroup isomorphic to the
original biordered set? If the answer is yes then the stronger result will be true,
and for any given biordered set we will have produced the freest semigroup with
that biordered set.

Let £ be a biordered set and F the free semigroup on elements of E. Let
p = {(z, xy): (x, y) £ DE and xy = z}, and denote the smallest congruence on F
containing p by p*. To show E = E(F/p*) is would be sufficient to show three
things:

(i) e, f E E and ep*/ => e = /(no collapse);
(ii) e -»/<=» ep*fe, and e >- f <=> ep*ef (no new arrows);
(iii) w E F and w2p#w => wp#e3e E E (no new idempotents).
Corollary 1 gives us

COROLLARY 2. With notation as in the preceding paragraph, conditions (i) and (ii)
hold.

PROOF. By Corollary 1, £ is a biordered subset of E(S), for some semigroup S,
where we can suppose <S = (E), so S = F/a for some congruence a. If (x, y) E
DE and xy = z, then zoxy in F, so a D p. Thus a D p*. Hence if e, f E E with
ep*f then eaf, in F, so e = f, which proves (i). If ep*fe then eafe, in F, so e = /e,
and so e -»/. Likewise if ep*e/ then e >- / , which proves (ii).

The question remains whether (iii) holds. In other words, are no new idempo-
tents created upon taking the free semigroup on a biordered set factored out by
the relations of the biordered set? If (iii) holds then E will be the biordered set of
F/p*, and F/p* will coincide with the free construction E* of Pastijn [3].

If el,...,enE E and the product el---en is defined in E with a given
bracketing, then, since (i) above is true, any other bracketing yielding a defined
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product gives the same product. The proof of this relies on Theorem 2, whose
proof uses the fact that E satisfies (B4') and its dual, or equivalently (B4) and its
dual. Without requiring (B4') or its dual, it is straightforward to show that if
(ele2)eJ and e,(e2e3) are defined products in E then (e]e2)e3 = e,(e2e3). Note
that since £ is a partial algebra this does not imply associative products where
n > 3. The author has looked at some special cases with n > 3 and, with some
difficulty, shown associativity in these cases without relying on (B4') or its dual. A
question then is whether associativity can be shown for any n in a partial algebra
E satisfying only (Bl), (B21), (B22), (B31), (B32) and their duals. If not, precisely
what role do (B4') and (B4')* play?
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