Cambridge Core

The new home of Cambridge Journals

cambridge.org/core
Cambridge is a world leading publisher in pure and applied mathematics, with an extensive programme of high quality books and journals that reaches into every corner of the subject.

Our catalogue reflects not only the breadth of mathematics but also its depth, with titles for undergraduate students, for graduate students, for researchers and for users of mathematics.

We are proud to include world class researchers and influential educators amongst our authors, and also to publish in partnership with leading mathematical societies.

For further details visit: cambridge.org/core-mathematics
SUBSCRIPTIONS
The Journal of Fluid Mechanics (ISSN 0022-1120) is published semimonthly in 24 volumes each year by Cambridge University Press, University Printing House, Shaftesbury Road, Cambridge CB2 8BS, UK/Cambridge University Press, 1 Liberty Plaza, Floor 20, New York, NY 10006, USA. The subscription price (excluding VAT but including postage) for volumes 810–833, 2017, is £240 or $7760 (online and print) and £3774 or $6611 (online only) for institutions; £1166 or $2161 (online and print) and £1174 or $1928 (online only) for individuals. The print-only price available to institutional subscribers is £4055 (US $7137 in USA, Canada and Mexico). Single volumes cost £194 (US $342 in the USA, Canada and Mexico) plus postage. Orders, which must be accompanied by payment, should be sent to any bookseller or subscription agent, or direct to the publisher: Cambridge University Press, University Printing House, Shaftesbury Road, Cambridge CB2 8BS. Subscriptions in the USA, Canada and Mexico should be sent to Cambridge University Press, Journals Fulfillment Department, 1 Liberty Plaza, Floor 20, New York, NY 10006, USA. EU subscribers (outside the UK) who are not registered for VAT should add VAT at their country’s rate. VAT registered subscribers should provide their VAT registration number. Japanese prices for institutions are available from Kinokuniya Company Ltd, PO Box 55, Chitose, Tokyo 156, Japan. Prices include delivery by air. Copies of the Journal for subscribers in the USA, Canada and Mexico are sent by air to New York. Periodicals postage is paid at New York, NY, and at additional mailing offices. POSTMASTER: send address changes in USA, Canada and Mexico to Journal of Fluid Mechanics, Cambridge University Press, 1 Liberty Plaza, Floor 20, New York, NY 10006, USA. Claims for missing issues can only be considered if made immediately upon receipt of the subsequent issue. Copies of back numbers are available from Cambridge University Press.

COPYING
The Journal is registered with the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. Organizations in the USA which are also registered with CCC may therefore copy material (beyond the limits permitted by sections 107 and 108 of US copyright law) subject to payment of the per-copy fee of $16.00. This consent does not extend to multiple copying for promotional or commercial purposes. Code 0022-1120/2017/$16.00.

Information on Journal of Fluid Mechanics is available on cambridge.org.

Information on Journal of Fluid Mechanics is available on cambridge.org/FLM. For further information on other Press titles access cambridge.org.

Readers should note that where reference is made to a Web site for additional material relating to an article published in Journal of Fluid Mechanics this material has not been refereed and the Editors and Cambridge University Press have no responsibility for its content.

This journal issue has been printed on FSC-certified paper and cover board. FSC is an independent, non-governmental, not-for-profit organization established to promote the responsible management of the World’s forests. Please see www.fsc.org for information.

Printed in the UK by Bell & Bain Ltd.

The picture on the cover is based on figure 1 of ‘Role of overturns in optimal mixing in stratified mixing layers’, by A. Mashayek, C. P. Caulfield and W. R. Peltier.

S indicates supplementary data or movies available online.

636 An asymptotic approach to the crenulation instability
C. Camporeale

651 Internal layer sheets from librating objects
S. Le Dizès & M. Le Bars

676 Buoyant miscible displacement flows in rectangular channels
S. M. Taghavi, R. Nolkaabbsai & V. Scilliaire

714 Direct numerical simulations of the flow around wings with spanwise waviness
D. Serson, J. R. Meneghini & S. J. Sherwin

732 Numerical and experimental investigation of oblique shock wave reflection off a water wedge
Q. Wan, H. Jeon, R. Deiterding & V. Elissas

759 Velocity distribution around a sphere descending in a linearly stratified fluid
S. Okino, S. Akiyama & H. Hanazaki

781 Note on optimum propulsion of heaving and pitching airfoils from linear potential theory
R. Fernandez-Feria

5797 Asymmetric viscous interfacial oscillations – theory and simulations
P. K. Farsoiya, S. Y. Maya & R. Dasgupta

819 Experimental study on a sinusoidal air/SF\(_{6}\) interface accelerated by a cylindrically converging shock
F. Lei, J. Ding, T. Si, Z. Zhao & X. Luo

JFM Rapids (online only)

R1 Two-dimensional energy spectra in high-Reynolds-number turbulent boundary layers
D. Chamdran, R. Baidya, J. P. Mony & I. Marusic

R2 Viscous fingering and dendritic growth under an elastic membrane
L. Duclos, A. L. Hazel, D. Pihler-Puzovic & A. Juel

R3 The Landau–Squire plume
E. Secchi, S. Marbach, A. Niguès, A. Siria & L. Bocquet

830 Stability and sensitivity of a cross-flow-dominated Falkner–Skan–Cook boundary layer with discrete surface roughness
M. Brynjell-Rahkola, N. Shahriari, P. Schlatter, A. Hanifi & D. S. Henningson

851 Scaling of separated shear layers: an investigation of mass entrainment
F. Stella, N. Mazellier & A. Kourta

888 Stochastic modelling and diffusion modes for proper orthogonal decomposition models and small-scale flow analysis
V. Resseguier, E. Mémin, D. Heitz & B. Chapron

918 Collapse of a neutrally buoyant suspension column: from Newtonian to apparent non-Newtonian flow regimes
A. Bougonin, L. Lacaze & T. Bonometti

942 A nonlinear dynamic model for unsteady separated flow control and its mechanism analysis
G. Huang, W. Lu, J. Zhu, X. Fu & J. Wang

975 Fractal structures in freezing brine
S. Alyav, E. Kelleysgirl, J. M. Nordhotten & I. S. Pop

996 Intrusive features of flow past three square prisms in side-by-side arrangement
Q. Zheng & M. M. Alam

1034 Finite-amplitude gravity waves in the atmosphere: travelling wave solutions
M. Schiltow, R. Klein & U. Achatz

1066 Asymmetric buoyant–thermocapillary flow in sessile and hanging droplets
S. Massoudi & H. C. Kuhlmann

R4 Inversed linear stability analysis of two vertical columns of different densities in a gravitational acceleration field
A. H. Prathama & C. Pantano

R5 Near-wall statistics of a turbulent pipe flow at shear Reynolds numbers up to 40,000

R6 Coherent structures, uniform momentum zones and the streamwise energy spectrum in wall-bounded turbulent flows
T. Saxton-Fox & R. J. McKeon
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ultrasound rays in droplets: the role of viscosity and caustics in acoustic streaming</td>
<td>H. Bruus</td>
</tr>
<tr>
<td>5</td>
<td>Direct numerical simulation of stratified flow past a sphere at a subcritical Reynolds number of 3700 and moderate Froude number</td>
<td>A. Pal, S. Sarkar, A. Posa & E. Balaras</td>
</tr>
<tr>
<td>32</td>
<td>Two- and three-dimensional wake transitions of an impulsively started uniformly rolling circular cylinder</td>
<td>F. Y. Houdrége, T. Leweke, K. Hourigan & M. C. Thompson</td>
</tr>
<tr>
<td>60</td>
<td>The excitation of Görzler vortices by free stream coherent structures</td>
<td>L. J. Dempsey, P. Hall & K. Deguchi</td>
</tr>
<tr>
<td>97</td>
<td>Non-wetting impact of a sphere onto a bath and its application to bouncing droplets</td>
<td>C. A. Galeano-Ríos, P. A. Milewski & J.-M. Vanden-Broeck</td>
</tr>
<tr>
<td>128</td>
<td>Linear stability of two-layer Couette flows</td>
<td>A. Mohammadi & A. J. Smits</td>
</tr>
<tr>
<td>158</td>
<td>Surfactant and gravity dependent instability of two-layer Couette flows and its nonlinear saturation</td>
<td>A. L. Frenkel & D. Halper</td>
</tr>
<tr>
<td>205</td>
<td>On the noise prediction for serrated leading edges</td>
<td>B. Ryu & M. Arzajeyavand</td>
</tr>
<tr>
<td>235</td>
<td>Initial development of a free-surface wall jet at moderate Reynolds number</td>
<td>R. E. Khayat</td>
</tr>
<tr>
<td>270</td>
<td>Biglobal instabilities of compressible open-cavity flows</td>
<td>Y. Sun, K. Taira, L. N. Cuttabesta III & L. S. Ukeiley</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>335</td>
<td>Oscillatory and streaming flow between two spheres due to combined oscillations</td>
<td>D. Kong, A. Penkova & S. S. Sadhal</td>
</tr>
<tr>
<td>363</td>
<td>Passive pitching of splitters in the trailing edge of elliptic cylinders</td>
<td>Y. Jin & L. P. Channor</td>
</tr>
<tr>
<td>376</td>
<td>Stability of plane Poiseuille–Couette flow in a fluid layer overlying a porous layer</td>
<td>T.-Y. Chang, F. Chen & M.-H. Chang</td>
</tr>
<tr>
<td>421</td>
<td>Simulation of turbulent boundary layer wall pressure fluctuations via Poisson equation and synthetic turbulence</td>
<td>N. Hu, N. Reiche & R. Ewert</td>
</tr>
<tr>
<td>455</td>
<td>Self-similar rupture of thin films of power-law fluids on a substrate</td>
<td>Y. Garg, P. M. Kamat, C. R. Anthony, S. S. Thete & O. A. Basaran</td>
</tr>
<tr>
<td>484</td>
<td>Onset of convection induced by centrifugal buoyancy in a rotating cavity</td>
<td>D. B. Pitz, O. Marzen & J. W. Chew</td>
</tr>
<tr>
<td>522</td>
<td>Harmonics generation and the mechanics of saturation in flow over an open cavity: a second-order self-consistent description</td>
<td>P. Meliga</td>
</tr>
<tr>
<td>553</td>
<td>Role of overturns in optimal mixing in stratified mixing layers</td>
<td>A. Mashayek, C. P. Caulfield & W. R. Peliter</td>
</tr>
<tr>
<td>583</td>
<td>Natural convection and thermal drift</td>
<td>A. Ablati & J. M. Floryan</td>
</tr>
<tr>
<td>615</td>
<td>Braginskii magnetohydrodynamics for arbitrary magnetic topologies: coronal applications</td>
<td>D. MacTaggart, L. Vergori & J. Quinn</td>
</tr>
</tbody>
</table>