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We consider the problem of a rigid plate, inclined at an angle α ∈ (0, π/2) to the
horizontal, accelerating uniformly from rest into, or away from, a semi-infinite strip
of inviscid, incompressible fluid under gravity. Following on from Gallagher et al.
(J. Fluid Mech., vol. 841, 2018, pp. 109–145) (henceforth referred to as GNB), it is of
interest to analyse the well-posedness and stability of the principal flow with respect
to perturbations in the initially horizontal free surface close to the plate contact point.
In particular we find that the solution to the principal unperturbed problem, denoted by
[IBVP] in GNB, is well-posed and stable with respect to perturbations in initial data
in the region of interest, localised close to the contact point of the free surface and the
plate, when the plate is accelerated with dimensionless acceleration σ >−cotα, while
the solution to [IBVP] is ill-posed with respect to such perturbations in the initial
data, when the plate is accelerated with dimensionless acceleration σ < −cotα. The
physical source of the ill-posedness of the principal problem [IBVP], when σ <−cotα,
is revealed to be due to the leading-order problem in the innermost region localised
close to the initial contact point being in the form of a local Rayleigh–Taylor problem.
As a consequence of this mechanistic interpretation we anticipate that, when the plate
is accelerated with σ < −cotα, the inclusion of weak surface tension effects will
restore well-posedness of the problem [IBVP] which will, however, remain temporally
unstable.

Key words: instability, waves/free-surface flows

1. Introduction
In Gallagher, Needham & Billingham (2018) (henceforth referred to as GNB) we

considered the problem of the two-dimensional, irrotational flow generated by the
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A uniformly accelerated plate. Part 2 147

FIGURE 1. Definition sketch showing the displacement of the plate and free surface at
time t.

uniform acceleration of a flat, rigid plate, inclined at an angle α ∈ (0, π/2) to the
horizontal, into or away from a uniform, horizontal strip of inviscid fluid under gravity.
This work followed on from that of King & Needham (1994), Needham, Billingham
& King (2007), Needham, Chamberlain & Billingham (2008) and Needham (2012),
a discussion of which can be found in GNB. In GNB we established that the
structure of the solution to this principal free surface flow is characterised in terms
of the parameters α and µ (where µ= 1+ σ tan α, with σ being the dimensionless
acceleration of the plate), with a bifurcation in structure as µ changes sign. This
change in local structure leads us to question the well-posedness and stability of
the principal flow, and specifically, on short time scales (�

√
h/g), with respect to

perturbations in the initially horizontal free surface close to the plate contact point
and this question is examined in detail in this companion paper to GNB.

The structure of this paper is as follows. In § 2 we formulate the mathematical
problem through the introduction of initial perturbations in the horizontal free
surface, close to the initial plate contact point. Subsequently §§ 3 and 4 consider
the well-posedness and stability of the principal flow (formulated as [IBVP] in GNB)
determined by [IBVP] for plates inclined at all angles α ∈ (0, π/2) with constant
acceleration σ .

2. Problem statement

As discussed in the introduction, it is the purpose of this paper to address the
well-posedness and stability of the principal flow described in detail in GNB. A
definition sketch of the principal flow in GNB is given in figure 1. To this end
we adopt all of the notation and terminology established in GNB without repetition
(except where it is highlighted by (†) that a re-definition has been introduced, as,
for example, after (3.31)). The principal flow was described in GNB by the initial
boundary value problem denoted by [IBVP]. To analyse the well-posedness and
stability of the problem [IBVP] with respect to initial perturbations in the horizontal
free surface, close to the contact point, we introduce a perturbation on the zero initial
data in [IBVP] in the following form, so that the initial conditions in [IBVP] are
modified to

φ(x, y, 0)= 0, (x, y) ∈D(0); η(x, 0)= δη0

(
x
δm

)
, x> 0, (2.1a,b)
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148 M. T. Gallagher, D. J. Needham and J. Billingham

with 0< δ� 1 and m> 0, whilst

η0(z)=
{
η0(z), 06 z6 1,
0, z> 1, (2.2)

where η0(z) is continuous with continuous derivative, and η0(0)= η0(1)= η0,z(1)= 0.
The form of the initial perturbation is chosen to localise the disturbance in an inner
region close to the initial contact point, as it is the main purpose of this paper to
examine the rapid localised interaction at the initial contact point between the surface
perturbation and its principal development and, since the outer region will be passive
in this evolution, the form (2.2) is used to eliminate the need for consideration of a
perturbed form of the passive outer problem. The objective of interest is to study the
evolution of the perturbation close to the initial contact point, within the innermost
regions of the structure of the principal solution to [IBVP], as detailed in GNB.
We will choose m> 0 in (2.1) to achieve this end most effectively. Specifically, the
principal flow problem [IBVP] studied in GNB will be referred to as well-posed
when the solution to the perturbed problem approaches the solution to [IBVP] as
δ→ 0, uniformly on Sτ =∪τ∈[0,T](D(τ )× {τ }) for each T > 0 where τ is time scaled
on a short time scale associated with δ, as given in (3.2) or (4.3). In addition,
when [IBVP] is well-posed, we refer to [IBVP] as stable when the solution to the
perturbed problem approaches the solution to [IBVP] as τ→∞, uniformly in D(τ );
otherwise [IBVP] is said to be unstable. The structure of the solution to [IBVP], as
detailed in GNB, determines that there are two cases to consider, which we address
in turn. Specifically, as we shall see in what follows, we are interested in the initial
dynamics of the flow and free surface close to the initial contact point, and we shall
see that this flow develops rapidly on a time scale t = O(δα/π) as δ→ 0. Therefore
the questions of stability and well-posedness must be addressed on the short time
scale t=O(δα/π), and, in particular, consider when local (to the initial contact point)
well-posedness and stability properties emerge for t� O(δα/π) (even though, in the
bulk flow t� 1). This becomes formally clear in the rescalings that follow.

3. The case (α, µ) ∈ {(0,π/2)×R}\{(π/4,π/2)× {0}}
Following an examination of the inner asymptotic regions of [IBVP], as t→ 0+,

presented in GNB (see GNB (4.1), (4.3) and (4.7)), for the initial perturbation in the
free surface to interact with the inner asymptotic region of the solution to [IBVP] as
t→ 0+, we require tπ/α ∼ δ and t2

∼ δm, which, as δ→ 0, determines

t=O(δα/π) with m=
2α
π
. (3.1)

In what follows, we will refer to the initially perturbed modification of [IBVP] as
[IBVP]′, and we will address [IBVP]′ as δ→ 0 with t=O(δα/π). Thus we write

t= δα/πτ , (3.2)

where τ = O(1) as δ→ 0. We can now write [IBVP]′ in terms of x, y, φ, η, τ and
δ, which becomes

∇
2φ = 0, (x, y) ∈D(τ ), τ > 0 (3.3)

∇φ · n̂= δα/πτ(µ− 1) cos α, y=−x tan α, xp(τ ) < x< cot α, τ > 0; (3.4)
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φy = 0, y=−1, x> cot α, τ > 0; (3.5)
ητ + [δ

α/πφx − δ
2α/πτ(µ− 1) cot α]ηx − δ

α/πφy = 0,
y= η(x, τ ), x> xp(τ ), τ > 0; (3.6)

φτ − δ
2α/πτ(µ− 1) cot αφx + δ

α/π 1
2 |∇φ|

2
+ δα/πη= 0,

y= η(x, τ ), x> xp(τ ), τ > 0; (3.7)
η+ xp(τ ) tan α = 0, x= xp(τ ), τ > 0; (3.8)

η→ 0, as x→∞, τ > 0; (3.9)
|∇φ|→ 0, as x→∞, uniformly for −16 y6 η(x, τ ), τ > 0; (3.10)

φ(x, y, 0)= 0, (x, y) ∈D(0); (3.11)
η(x, 0)= δη0(δ

−2α/πx), x> 0; (3.12)

where η0 :R→R is given by (2.1) and n̂ is the unit vector normal to the plate pointing
into the fluid region. Note that throughout ṡ(t) = σ t and σ has been eliminated in
favour of µ.

The structure of the solution to [IBVP] as t→ 0+ (as discussed in GNB) indicates
that there will be two asymptotic regions in the solution to [IBVP]′ as δ→ 0 when
τ =O(1). In the outer asymptotic region we have (x, y)(∈D(τ ))=O(1) and τ =O(1)
as δ→ 0, and we consider this first.

3.1. Outer region for [IBVP]′ when τ =O(1) as δ→ 0

We begin in an outer region in which (x, y)(∈D(τ ))=O(1) and τ =O(1) as δ→ 0,
after which we will require an inner region, in which (x, y)= o(1) and τ = O(1) as
δ→ 0, in order to capture the initial interaction between the plate and the perturbed
fluid free surface. We first observe that the initial conditions (3.11) and (3.12) require
that η, φ = o(1) as δ→ 0 in the outer region. Specifically, conditions (3.4) and (3.6)
require that φ=O(δα/π) and η=O(δ2α/π) as δ→ 0. Thus we introduce the asymptotic
expansions

φ(x, y, τ )= δα/π(µ− 1) cos αφ′(x, y, τ )+O(δ2α/π), (3.13)
η(x, τ )= δ2α/πη′(x, τ )+O(δ3α/π), (3.14)

as δ → 0 in the outer region, with the factor (µ − 1) cos α in (3.13) included for
algebraic convenience at a later stage. Here we note that the notation ′ is not to
be confused with the indication of dimensionality in GNB, nor does it refer to
differentiation. Substituting the expansions (3.13) and (3.14) into [IBVP]′, we obtain
the leading-order evolution problem in the outer region for φ′, namely

∇
2φ′ = 0, (x, y) ∈D(0), τ > 0; (3.15)

∇φ′ · n̂= τ , y=−x tan α, 0< x< cot α, τ > 0; (3.16)
φ′y = 0, y=−1, x> cot α, τ > 0; (3.17)

φ′τ = 0, y= 0, x> 0, τ > 0; (3.18)
|∇φ′|→ 0 as x→∞, uniformly for −16 y6 0, τ > 0; (3.19)

φ′(x, y, 0)= 0, (x, y) ∈D(0); (3.20)

with η′ then given by

η′τ (x, τ )=
1
2(µ− 1) cos αφ′y(x, 0, τ ), x> 0, τ > 0; (3.21)

η′(x, 0)= 0, x> 0. (3.22)
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Note that the free surface perturbation is absent in (3.22) as the perturbation is
localised in the inner region. We next introduce φ

′

(x, y) and η′(x) by writing

φ′(x, y, τ )= τφ
′

(x, y), η′(x, τ )= τ 2η′(x). (3.23a,b)

The resulting problem for φ
′

and η′, obtained after substituting (3.23) into (3.15)–
(3.22), is the same as the outer region problem which was solved and discussed in
GNB, and as such details are omitted here. We thus have that φ

′

is given, for some
real constants An, Bn and Cn(n= 0, 1, 2, . . .), by

φ
′

(r, θ)=
r sin θ
cos α

+

∞∑
n=0

Anr(n+1/2)π/α sin ((n+ 1/2)πθ/α), (3.24)

for 06 r< cosecα, −α 6 θ 6 0, where x= r cos θ and y= r sin θ , whilst

φ
′

(ρ, θ)=
ρ cos θ
sin α

+

∞∑
n=0

Bnρ
nπ/(π−α) cos

(
nπθ

π− α

)
, (3.25)

for 06 ρ < 1, 06 θ 6π−α, where x− cotα= ρ cos θ , and y+ 1= ρ sin θ , and finally

φ
′

(x, y)=
∞∑

n=0

Cne−(n+1/2)πx sin((n+ 1/2)πy), (3.26)

for x> cot α, −16 y6 0. It then follows from (3.21), (3.24) and (3.26), that

η′(x)=
1
2
σ tan α +

1
2
σ sin α

∞∑
n=0

(n+ 1/2)
π

α
Anx(n+1/2)π/α−1, (3.27)

for 06 x< cosecα, and

η′(x)=
1
2
σ sin α

∞∑
n=0

(n+ 1/2)πCne−(n+1/2)πx, (3.28)

for x> cosecα. We observe from (3.24) and (3.27) that, as (x, y)→ (0, 0),

φ
′

(r, θ) =
r sin θ
cos α

+ A0(α)rπ/2α sin
πθ

2α
+O(r3π/2α),

as r→ 0+, with −α 6 θ 6 0, (3.29)

η′(x) =
1
2
(µ− 1)+ A0(α)

π

4α
(µ− 1) cos αxπ/2α−1

+O(x3π/2α−1),

as x→ 0+, (3.30)

where r and θ are the polar coordinates defined above, and A0(α)(<0) as given in
GNB (see GNB (3.10)). Equation (3.30) reveals a weak singularity in η′x(x) as x→ 0+.
This singular behaviour as x→ 0+ is compounded in higher-order terms in the outer
expansions (3.13) and (3.14), and so the regularity conditions (see GNB (2.16)) fail
to be satisfied by the outer region asymptotic expansions in a neighbourhood of
the initial intersection point of the plate and the free surface, where (x, y)= o(1) as
δ→ 0. Therefore, in order to capture the full regularity in the neighbourhood of the
intersection point of the plate and the free surface, the introduction of an inner region
is required.
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3.2. Inner region for [IBVP]′ when τ =O(1) as δ→ 0
We have (x, y)=O(ν(δ)), with ν(δ)= o(1) as δ→ 0 in the inner region. It then
follows from (3.14), (3.23) and (3.30) that η=O(δ2α/π) as δ→ 0 in the inner region,
so that, to capture the free surface in the inner region, we must take ν(δ)=O(δ2α/π)
as δ→ 0; therefore, without loss of generality, we set ν(δ)= δ2α/π. An examination
of (3.13), (3.23), and (3.29) then requires that φ =O(δ2α/π) as δ→ 0 in the inner
region. Thus we introduce scaled inner region coordinates (X, Y) by

x= δ2α/πX, y= δ2α/πY, (3.31a,b)

with (X, Y)=O(1) as δ → 0 (†). The plate is located in the inner region at
Y =−X tan α, with the contact point denoted by (X, Y)= (Xp(τ ), Yp(τ )), where
xp(τ )= δ

2α/πXp(τ ) and yp(τ )= δ
2α/πYp(τ ) (†). We now write the free surface and

velocity potential in the inner region as

η(X, τ )= δ2α/πηI(X, τ ), X > Xp(τ ), τ > 0; (3.32)

φ(X, Y, τ )= δ3α/πφI(X, Y, τ ), X > Xp(τ ),−X tan α 6 Y 6 ηI(X, τ ), τ > 0; (3.33)

where ηI(X, τ ), φI(X, Y, τ )=O(1) as δ → 0 (†). The inner region expansions are
introduced as

ηI(X, τ )= η̃′0(X, τ )+ δ
1−2α/πη̃′1(X, τ )+ o(δ1−2α/π), (3.34)

φI(X, Y, τ )= φ̃′0(X, Y, τ )+ δ1−2α/πφ̃′1(X, Y, τ )+ o(δ1−2α/π), (3.35)

as δ→ 0 with (X, Y)=O(1), where the form of the correction terms have been
deduced from (3.31), together with (3.14), (3.23) and (3.30). It follows from (3.31)
and (3.34) that the free surface in the inner region is located at

Y(X, τ )= η̃′0(X, τ )+ δ
1−2α/πη̃′1(X, τ )+ o(δ1−2α/π), X > Xp(τ ), τ > 0, (3.36)

Hence we must expand

Xp(τ )= X0(τ )+ δ
1−2α/πX1(τ )+ o(δ1−2α/π), τ > 0, (3.37)

as δ→ 0, after which Yp(τ )=−Xp(τ ) tan α (†).
We now write [IBVP]′ in terms of the inner variables and substitute from (3.34)

and (3.35). The problem obtained at leading order, when supplemented with matching
conditions to the outer region (obtained through Van Dyke’s matching principle (Van
Dyke 1964)), has the solution

φ̃′0(X, Y, τ ) = τ(µ− 1)Y + 1
6τ

3(1−µ)(2µ− 1),

X > X0(τ ),−X tan α 6 Y 6 1
2τ

2(µ− 1), τ > 0; (3.38)

η̃′0(X, τ )=
1
2τ

2(µ− 1), X > X0(τ ), τ > 0; (3.39)

X0(τ )=−
1
2τ

2(µ− 1) cot α, τ > 0. (3.40)

It follows from (3.38) and (3.39), with (3.31)–(3.35), that the regularity conditions (see
GNB (2.16)) are satisfied at leading order in the inner region. We now formulate the
problem at O(δ1−2α/π), where it is convenient to introduce the coordinates (X, Y) as

X =− 1
2τ

2(µ− 1) cot α + X, Y = 1
2τ

2(µ− 1)+ Y, (3.41a,b)
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which is simply a shift of origin from the original inner coordinates (X, Y). We next
write

η̃′1(X, τ )= η̃
′

1(X, τ )|0+H′(X, τ ), φ̃′1(X,Y, τ )= φ̃
′

1(X,Y, τ )|0+Φ
′(X,Y, τ ), (3.42a,b)

where η̃′1|0 and φ̃′1|0 are given by

η̃′1(X, τ )|0 = A0(α)(µ− 1) cos ατπ/α−2η̂

(
X
τ 2

)
, X > 0, τ > 0, (3.43)

φ̃′1(X, Y, τ )|0 = A0(α)(µ− 1) cos ατπ/α−2φ̂

(
X
τ 2
,

Y
τ 2

)
,

X > 0,−X tan α 6 Y 6 0, τ > 0, (3.44)

and η̂ and φ̂ are solutions to the boundary value problem in GNB (see (3.10)–(4.16))
when written in the similarity coordinates (X, Y)→ τ−2(X, Y). Rewriting the problem
at O(δ1−2α/π) in terms of H′ and Φ ′ we obtain

∇
2
Φ ′ = 0, X > 0,−X tan α < Y < 0, τ > 0; (3.45)
∇Φ ′ · n̂= 0, X > 0, Y =−X tan α, τ > 0; (3.46)

H′τ −Φ
′

Y = 0, X > 0, Y = 0, τ > 0; (3.47)

Φ ′τ +µH′ = 0, X > 0, Y = 0, τ > 0; (3.48)
Φ ′(R, θ, τ )→ 0 as R→∞,−α < θ < 0, τ > 0; (3.49)

H′(X, τ )→ 0 as X→∞, τ > 0; (3.50)
Φ ′(R, θ, 0)= 0, R> 0,−α 6 θ 6 0; (3.51)

H′(X, 0)= η0(X), X > 0. (3.52)

Here ∇ = (∂/∂X, ∂/∂Y) and we have, for convenience, introduced polar coordinates
(R, θ), given by X=R cos θ , Y=R sin θ (†). We begin our investigation of the problem
(3.45)–(3.52) in the case (α, µ) ∈ (0,π/2)× (R\{0}). We seek solutions of the form

Φ ′(X, Y, τ )= e−λτΦ
′

(X, Y), H′(X, τ )= e−λτH′(X), (3.53a,b)

where λ∈C, which leads to a decoupled linear harmonic boundary value problem for
Φ
′

, given by

∇
2
Φ
′

= 0, X > 0,−X tan α < Y < 0; (3.54)

∇Φ
′

· n̂= 0, X > 0, Y =−X tan α; (3.55)

Φ
′

Y − kΦ
′

= 0, X > 0, Y = 0; (3.56)

Φ
′

,∇Φ
′

bounded as R→∞, uniformly for − α < θ < 0; (3.57)

where k=−λ2/µ (for µ 6= 0). Although unnecessary, if required we obtain H′ from

H′(X)=
λ

µ
Φ
′

(X, 0), X > 0. (3.58)
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Here, according to the regularity conditions (see GNB (2.16)), we require that
solutions to (3.54)–(3.57), Φ

′

: G∞→C, have regularity

Φ
′

∈C1(G∞)∩C2(G∞), (3.59)

where
G∞ = {(X, Y) : −X tan α < Y < 0, X > 0}. (3.60)

The linear harmonic problem (3.54)–(3.57) is a spectral problem with spectral
parameter k ∈C. We henceforth refer to this spectral problem as [SP(k)]. It is
clear that [SP(k)] has the trivial solution for each k ∈C. Further, let Φ

′

k : G∞→C be
a non-trivial solution to [SP(k)], then it is straightforward to establish the following.

(i) When k ∈R+

Φ
′

k(R, θ) = (ckeikR cos θ
+ dke−ikR cos θ)ekR sin θ

+ ak
1

Rπ/2α sin
π

2α
θ +O

(
1

Rπ/2α+1

)
, (3.61)

as R → ∞ uniformly for −α 6 θ 6 0. Here, ck, dk, ak ∈ C are not all zero
constants.

(ii) When k= 0

Φ
′

0(R, θ)= a0 + b0
1

Rπ/α
cos

π

α
θ +O

(
1

R2π/α

)
, (3.62)

as R→∞ uniformly for −α6 θ 6 0. Here a0, b0 ∈C are not both zero constants.
(iii) When k ∈C\(R+ ∪ {0})

Φ
′

k(R, θ)= ak
1

Rπ/2α sin
π

2α
θ +O

(
1

Rπ/2α+1

)
, (3.63)

as R→∞ uniformly for −α 6 θ 6 0. Here, ak ∈C is a non-zero constant.

Our objective now is to classify the spectrum of [SP(k)]. We define the spectrum
of [SP(k)] to be S, where

S= {k ∈C : [SP(k)] has a non-trivial solution}. (3.64)

The set of eigenvalues of [SP(k)] is Sd, where

Sd
= {k ∈C : ∃ a non-trivial solution to [SP(k)] with Φ

′

→ 0 as R→∞}, (3.65)

and the continuous spectrum of [SP(k)] is Sc, where

Sc
= {k ∈C : ∃ a non-trivial solution to [SP(k)] with Φ

′9 0 as R→∞}, (3.66)

with the limits as R→∞ considered as uniform for −α 6 θ 6 0. We observe that

S= Sc
∪ Sd. (3.67)
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Following Needham (2012), together with the use of (3.61)–(3.63) above we can
establish that (see appendix A)

Sc
=R+ ∪ {0}, Sd

=∅, (3.68a,b)

and so
S=R+ ∪ {0}. (3.69)

We now introduce Sλ ⊆C, where

Sλ = {λ ∈C : λ2
=−µk, k ∈ S}. (3.70)

Following (3.69), for µ> 0, we have

Sλ = S+λ = {λ ∈C : λ=±i
√
µk1/2, k ∈R+ ∪ {0}}, (3.71)

and, for µ< 0, we have

Sλ = S−λ = {λ ∈C : λ=±
√
(−µ)k1/2, k ∈R+ ∪ {0}}. (3.72)

Now, the linear evolution problem (3.45)–(3.52) has a solution represented as a Fourier
type integral with respect to λ over the elementary solutions (3.53), with λ ∈ S+λ
(µ> 0) or λ∈ S−λ (µ< 0) and density functions chosen to satisfy the initial conditions
(3.51) and (3.52). We conclude that the linear evolution problem (3.45)–(3.52) is:

(i) well-posed and stable when Re(λ)> 0 for all λ ∈ Sλ;
(ii) well-posed and unstable when there exists M ∈ R such that Re(λ) > M for all
λ ∈ Sλ, and there exists λ∗ ∈ Sλ such that Re(λ∗) < 0;

(iii) ill-posed when there exists a sequence {λn}n∈N, with λn ∈ Sλ for all n ∈ N, and
such that Re(λn)→−∞ as n→∞.

It now follows directly from (3.71) and (3.72) that the linear evolution problem
(3.45)–(3.52) is:

(i) well-posed and stable when µ> 0;
(ii) ill-posed when µ< 0.

We conclude that [IBVP] is well-posed and stable when (α, µ) ∈ (0, π/2) × R+,
whilst [IBVP] is ill-posed when (α, µ) ∈ (0, π/2) × R−. We should note here that
the time scale for ill-posed growth or stable decay for the perturbation close to the
initial contact point corresponds to τ � 1, which in the original time variable has
t�O(δα/π).

We next consider the problem (3.45)–(3.52) in the case (α, µ) ∈ (0, π/4] × {0},
where it is straightforward to show that the only solution is given by

Φ ′(X, Y, τ )= 0, X > 0,−X tan α 6 Y 6 0, τ > 0, (3.73)
H′(X, τ )= η0(X), X > 0, τ > 0, (3.74)

and thus the linear evolution problem (3.45)–(3.52) is well-posed and stable for all
pairs (α, µ) ∈ (0,π/4] × {0}. We conclude that [IBVP] is well-posed and stable when
(α, µ) ∈ (0,π/4] × {0}.

It remains to consider the well-posedness and stability of [IBVP] for those pairs
(α, µ) ∈ (π/4,π/2)× G(δ), with G(δ) being an o(1) neighbourhood of µ = 0
as δ→ 0.
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4. The case (α, µ) ∈ (π/4,π/2)× G(δ)
We now investigate the well-posedness and stability of the problem [IBVP] with

respect to perturbations in the initial data for those pairs (α, µ) ∈ (π/4, π/2)× G(δ),
with G(δ) being an o(1) neighbourhood of µ= 0 as δ→ 0. We write

µ= ε(δ)µ, (4.1)

where µ = O(1) and ε(δ) = o(1) as δ → 0. Here the gauge function ε(δ) will be
determined in the course of the analysis. Following an examination of the inner–inner
region asymptotic expansions given in GNB (see (5.2) and (5.3)), we require tγ ∼ δ
and tγ ∼ δm, which, as δ→ 0, requires

t=O(δ1/γ ), with m= 1, (4.2)

where γ =1/(1−π/4α). Hereafter we will refer to the initially perturbed modification
of [IBVP] as [IBVP]′′, and we will address [IBVP]′′ as δ→ 0 with t=O(δ1/γ ). Thus
we write

t= δ1/γ τ , (4.3)

where τ =O(1) as δ→ 0. We can now write [IBVP]′′ in terms of x, y, φ, η, τ and
δ, which becomes

∇
2φ = 0, (x, y) ∈D(τ ), τ > 0 (4.4)

∇φ · n̂= δ1/γ τ(ε(δ)µ− 1) cos α, y=−x tan α, xp(τ ) < x< cot α, τ > 0; (4.5)
φy = 0, y=−1, x> cot α, τ > 0; (4.6)

ητ + [δ
1/γφx − δ

2/γ τ(ε(δ)µ− 1) cot α]ηx − δ
1/γφy = 0,

y= η(x, τ ), x> xp(τ ), τ > 0; (4.7)

φτ − δ
2/γ τ(ε(δ)µ− 1) cot αφx + δ

1/γ 1
2 |∇φ|

2
+ δ1/γη= 0,

y= η(x, τ ), x> xp(τ ), τ > 0; (4.8)
η+ xp(τ ) tan α = 0, x= xp(τ ), τ > 0; (4.9)

η→ 0, as x→∞, τ > 0; (4.10)
|∇φ|→ 0, as x→∞, uniformly for −16 y6 η(x, τ ), τ > 0; (4.11)

φ(x, y, 0)= 0, (x, y) ∈D(0); (4.12)
η(x, 0)= δη0(δ

−1x), x> 0. (4.13)

The structure of the solution to [IBVP] as t→ 0+ (see GNB) indicates that there will
be three asymptotic regions in the solution to [IBVP]′′ as δ→ 0 when τ =O(1). In the
outer region we have (x, y)∈D(τ )=O(1) as δ→ 0 when τ =O(1), and we consider
this first.

4.1. Outer region for [IBVP]′′ when τ =O(1) as δ→ 0

We begin in an outer region in which (x, y)∈D(τ )=O(1), when τ =O(1) as δ→ 0,
after which we will require two additional regions, in which (x, y)= o(1) as δ→ 0,
in order to capture the initial interaction between the plate and the free surface. We
observe that conditions (4.5) and (4.7) require φ =O(δ1/γ ) and η=O(δ2/γ ) as δ→ 0
in the outer region. Thus we introduce the asymptotic expansions

φ(x, y, τ )=−δ1/γ cos αφ′′(x, y, τ )+O(δ2/γ ), (4.14)
η(x, τ )= δ2/γη′′(x, τ )+O(δ3/γ ), (4.15)
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as δ→ 0 in the outer region, with the factor −cosα in (4.14) included for algebraic
convenience at a later stage. Substituting the expansions (4.14) and (4.15) into
[IBVP]′′ we obtain, at leading order, a problem equivalent to (3.15)–(3.22) in the
case µ= 0. It follows that, after writing

φ′′(x, y, τ )= τφ
′′

(x, y), η′′(x, τ )= τ 2η′′(x), (4.16a,b)

then φ
′′

and η′′ are given (for some real constants An, Bn and Cn) by (3.24)–(3.28).
The form of φ

′′

and η′′ as (x, y)→ (0, 0) is given by (3.29) and (3.30), where we
again have singular behaviour as (x, y)→ (0, 0), which motivates the introduction of
an inner region in which (x, y)= o(1) as δ→ 0.

4.2. Inner region for [IBVP]′′ when τ =O(1) as δ→ 0
We set (x, y)=O(ν(δ)) with ν(δ)= o(1) as δ→ 0 in the inner region. It follows from
(4.15), and (4.16), along with (3.23) and (3.30), that η = O(δ2/γ ) as δ → 0 in the
inner region, and so, in order to capture the free surface in the inner region, we must
take ν(δ)=O(δ2/γ ) as δ→ 0; thus without loss of generality, we set ν(δ)= δ2/γ . An
examination of (4.14), together with (3.23) and (3.29), then requires that φ =O(δ3/γ )

as δ→ 0 in the inner region. Thus we introduce scaled inner region coordinates (X,Y)
by

x= δ2/γX, y= δ2/γY, (4.17a,b)

with (X, Y) = O(1) as δ → 0 in the inner region (†). The location of the plate in
the inner region is given by Y = −X tan α, whilst the contact point is denoted by
(X, Y)= (Xp(τ ), Yp(τ )), where xp(τ ) = δ

2/γXp(τ ) and yp(τ ) = δ
2/γYp(τ ) (†). We now

write the free surface and velocity potential in the inner region as

η(X, τ )= δ2/γηI(X, τ ), X > Xp(τ ), τ > 0; (4.18)

φ(X, Y, τ )= δ3/γφI(X, Y, τ ), X > Xp(τ ),−X tan α 6 Y 6 ηI(X, τ ), τ > 0; (4.19)

where ηI(X, τ ), φI(X, Y, τ )=O(1) as δ→ 0 (†). The inner region expansions are then
introduced as

ηI(X, τ )= η̃′′0(X, τ )+ δ
(π/α−2)/γ η̃′′1(X, τ )+ o(δ(π/α−2)/γ ), (4.20)

φI(X, Y, τ )= φ̃′′0 (X, Y, τ )+ δ(π/α−2)/γ φ̃′′1 (X, Y, τ )+ o(δ(π/α−2)/γ ), (4.21)

as δ→ 0 where (X, Y)=O(1), with the form of the correction terms having been
deduced from (4.17), together with (3.14), (3.23) and (3.30). It also follows from
(4.17) and (4.20) that the free surface in the inner region is located at

Y = η̃′′0(X, τ )+ δ
(π/α−2)/γ η̃′′1(X, τ )+ o(δ(π/α−2)/γ ), X > Xp(τ ), τ > 0, (4.22)

and hence we must expand

Xp(τ )= X0(τ )+ δ
(π/α−2)/γX1(τ )+ o(δ(π/α−2)/γ ), τ > 0, (4.23)

as δ→ 0, after which Yp(τ )=−Xp(τ ) tan α (†).
We can now write [IBVP]′′ in terms of the inner variables and substitute from (4.20)

and (4.21). The problem obtained at leading order, when supplemented with matching
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conditions to the outer region (via Van Dyke’s matching principle, (Van Dyke 1964)),
has the solution

φ̃′′0 (X, Y, τ )=−τY − 1
6τ

2, X > X0(τ ),−X tan α 6 Y 6− 1
2τ

2, τ > 0; (4.24)

η̃′′0(X, τ )=−
1
2τ

2, X > X0(τ ), τ > 0; (4.25)

X0(τ )=
1
2τ

2 cot α, τ > 0. (4.26)

It follows from (4.24) and (4.25), using (4.17)–(4.21), that the regularity conditions
(see GNB (2.16)) are satisfied at leading order in the inner region. We now formulate
the problem at O(δ(π/α−2)/γ ), where it is convenient to introduce the coordinates (X,Y)
according to

X = 1
2τ

2 cot α + X, Y =− 1
2τ

2
+ Y, (4.27a,b)

which is simply a shift of origin from the original inner region coordinates (X, Y) (†).
We now obtain the problem for φ̃′′1 , η̃′′1 and X1, as

∇
2
φ̃′′1 = 0, X > 0,−X tan α < Y < 0, τ > 0; (4.28)

∇φ̃′′1 · n̂= 0, X > 0, Y =−X tan α, τ > 0; (4.29)

η̃′′1,τ − φ̃
′′

1,Y = 0, X > 0, Y = 0, τ > 0; (4.30)

φ̃′′1,τ = 0, X > 0, Y = 0, τ > 0; (4.31)

φ̃′′1 (R, θ)= τA0(α) cos αRπ/2α cos
π

α
(θ + α)+ o(Rπ/2α

)

as R→∞,−α < θ < 0, τ > 0; (4.32)

η̃′′1(X)=−τ
2A0(α)

π

4α
Xπ/2α−1

+ o(Xπ/2α−1
) as X→∞, τ > 0; (4.33)

φ̃′′1 (X, Y, 0)= 0, X > 0,−X tan α 6 Y 6 0; (4.34)
η̃′′1(X, 0)= 0, X > 0. (4.35)

Here ∇ = (∂/∂X, ∂/∂Y), (4.32) and (4.33) are the matching conditions with the
outer region, A0(α)(<0) is given in GNB (see (3.10)), and we have introduced polar
coordinates (R, θ), given by X = R cos θ , Y = R sin θ (†). Additionally we have

X1(τ )=−η̃
′′

1(0, τ ) cot α, τ > 0. (4.36)

It is straightforward to show that, in this degenerate case, the solution to the problem
(4.28)–(4.35), which has least singular behaviour at (X, Y) = (0, 0) is simply given
exactly by the far-field functions, that is

φ̃′′1 (R, θ, τ ) = τA0(α) cos αRπ/2α cos
π

2α
(θ + α),

R> 0,−α < θ < 0, τ > 0; (4.37)

η̃′′1(X, τ )=−τ
2A0(α)

π

4α
cos αXπ/2α−1

, X > 0, τ > 0. (4.38)

We see from (4.37) and (4.38) that a weak singularity in derivatives (that is η̃′′1,X , and
∇φ̃′′1 ) persists close to the contact point and, in particular, when (X, Y)=O(δ(π/α−2)/γ ).
This requires the introduction of an inner–inner region, in which (X, Y)= o(1) as
δ→ 0 and within which the full regularity conditions at the contact point are satisfied.
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4.3. Inner–inner region for [IBVP]′′ when τ =O(1) as δ→ 0

We set (X,Y)=O(1(δ)), with 1(δ)=O(1) as δ→0. It then follows from (4.20), (4.25)
and (4.38) that the free surface is located at Y = τ 2/2+ ηI =O(δ(π/α−2)/γ1(δ)π/2α−1)
as δ → 0 in the inner–inner region. Therefore, to capture the free surface in the
inner–inner region, we must take 1(δ)=O(δπ/2α−1), and so, without loss of generality,
we set 1(δ) = δπ/2α−1. We introduce scaled inner–inner region coordinates (x̃, ỹ) by

X = δπ/2α−1x̃, Y = δπ/2α−1ỹ, (4.39a,b)

where (x̃, ỹ)=O(1) as δ→ 0 in the inner–inner region (†). The location of the plate
in the inner–inner region is given by ỹ = −x̃ tan α, with the plate and contact point
denoted by (x̃, ỹ)= (x̃p(τ ), ỹp(τ )), with x̃p(τ )= δ

π/2α−1Xp(τ ) and ỹp(τ )= δ
π/2α−1Yp(τ )

(†), where

Xp(τ )= Xp(τ )−
1
2τ

2 cot α, Yp(τ )= Yp(τ )+
1
2τ

2. (4.40a,b)

An examination of (4.20), (4.21), (4.24), (4.25), (4.37) and (4.38) requires that ηI =

−τ 2/2 + O(δπ/2α−1) and φI = τ
3/3 − δπ/2α−1τ ỹ + O(δπ/α−2) as δ→ 0. We thus write

the free surface and velocity potential in the inner–inner region as

ηI(x̃, τ )=− 1
2τ

2
+ δπ/2α−1ηII(x̃, τ ), x̃> x̃p(τ ), τ > 0; (4.41)

φI(x̃, ỹ, τ ) = 1
3τ

3
− δπ/2α−1τ ỹ+ δπ/α−2φII(x̃, ỹ, τ ),

x̃> x̃p(τ ),−x̃ tan α 6 ỹ6 ηII(x̃, τ ), τ > 0; (4.42)

where ηII , φII =O(1) as δ→ 0 (†). The inner–inner region asymptotic expansions are
then introduced as

ηII(x̃, τ )= η̂′′0(x̃, τ )+ o(1), φII(x̃, ỹ, τ )= φ̂′′0 (x̃, ỹ, τ )+ o(1), (4.43a,b)

as δ→ 0, where (x̃, ỹ)=O(1). It follows from (4.39) and (4.43) that the free surface
in the inner–inner region is located at

ỹ(τ )= η̂′′0(x̃, τ )+ o(1), x̃> x̃p(τ ), τ > 0, (4.44)

and hence we must expand

x̃p(τ )= x̃0(τ )+ o(1), τ > 0, (4.45)

as δ→ 0, after which ỹp(τ )=−x̃p(τ ) tan α (†). An examination of the plate boundary
condition (4.5), (4.39) and (4.42), together with (4.1), then requires that the gauge
function ε(δ) = O(δπ/2α−1) (from which it follows that G(ε) = O(δπ/2α−1)), and so,
without loss of generality, we set ε(δ)= δπ/2α−1. We are now able to write [IBVP]′′ in
terms of the inner–inner region variables and substitute from (4.43). It is convenient
to first introduce the dependent variables Φ ′′ and H′′, according to

φ̂′′0 (x̃, ỹ, τ )=Φ ′′(x̃, ỹ, τ )+µτ ỹ− 1
3µ

2τ 3, η̂′′0(x̃, τ )=H′′(x̃, τ )+ 1
2µτ

2, (4.46a,b)

along with the translated coordinates (x̂, ŷ), according to

x̂= x̃+ 1
2µτ

2 cot α, ŷ= ỹ− 1
2µτ

2, (4.47a,b)
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which is simply a shift of origin from the original inner–inner coordinates (x̃, ỹ) (†).
The variable changes (4.46) and (4.47) have been chosen for algebraic convenience at
a later stage. We obtain at leading order the following nonlinear harmonic evolution
free boundary problem for Φ ′′, H′′ and x̂0, namely

∇̂
2Φ ′′ = 0, x̂> x̂0(τ ),−x̂ tan α < ŷ<H′′(x̂, τ ), τ > 0; (4.48)

∇̂Φ ′′ · n̂= 0, x̂> x̂0(τ ), ŷ=−x̂ tan α, τ > 0; (4.49)
H′′τ +Φ

′′

x̂ H′′x̂ −Φ
′′

ŷ = 0, x̂> x̂0(τ ), ŷ=H′′(x̂, τ ), τ > 0; (4.50)

Φ ′′τ +
1
2 |∇̂Φ

′′
|
2
+µH′′ = 0, x̂> x̂0(τ ), ŷ=H′′(x̂, τ ), τ > 0; (4.51)

H′′(x̂0(τ ), τ )=−x̂0(τ ) tan α, τ > 0; (4.52)
Φ ′′(x̂, ŷ, 0)= 0, x̂> 0,−x̂ tan α < ŷ<η0(x̂); (4.53)

H′′(x̂, 0)= η0(x̂), x̂> 0; (4.54)

Φ ′′(̂r, θ, τ )= τA0(α) cos αr̂π/2α cos
π

2α
(θ + α)+ o(̂rπ/2α)

as r̂→∞,−α < θ < 0, τ > 0; (4.55)

H′′(x̂, τ )=−τ 2A0(α)
π

4α
cos αx̂π/2α−1

+ o(x̂π/2α−1) as x̂→∞, τ > 0; (4.56)

where
x̂0(τ )= x̃0(τ )+

1
2µτ

2 cot α. (4.57)

Here ∇̂ = (∂/∂ x̂, ∂/∂ ŷ), A0(α)(< 0) is as given in GNB (see (3.10)), and we have
introduced polar coordinates (̂r, θ) as x̂= r̂ cos θ , ŷ= r̂ sin θ (†). The initial boundary
value problem (4.48)–(4.56), henceforth referred to as [EBVP], can now be solved
numerically using a boundary integral method, which follows the approach discussed
in GNB, with implicit time stepping to evolve the solution in time τ .

The first thing to observe concerning [EBVP], is that in the case when η0(x̂) = 0
for x̂> 0, then the solution to [EBVP] has the similarity structure

Φ ′′(x̂, ŷ, τ )= τΓ Φ̂ ′′
(

x̂
τΓ
,

ŷ
τΓ

)
, x̂> ĉτΓ ,−x̂ tan α < ŷ< τΓ Ĥ′′

(
x̂
τΓ

)
, τ > 0;

(4.58)

H′′(x̂, τ )= τΓ Ĥ′′
(

x̂
τΓ

)
, x̂> ĉτΓ , τ > 0; (4.59)

x̂0(τ )= ĉτΓ , τ > 0; (4.60)

where ĉ is the constant satisfying Ĥ′′(ĉ)+ ĉ= 0 and Γ as in GNB (see (5.1)). This is
anticipated from, and conforms with, the details in GNB (§ 5). We now proceed with
the numerical solution of [EBVP].

In solving [EBVP] numerically we must specify the initial free surface profile. For
the following results we have taken H′′(x̂, 0) as

H′′(x̂, 0)= η0(x̂)=
{

0.02(1− cos 2πx̂), 06 x̂6 1,
0, x̂> 1. (4.61)
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FIGURE 2. Graph of the evolution of H′′(x̂, τ ) (related to the free surface displacement
through (4.46), (4.43), (4.41) and (4.18)) against x̂ for the numerical solution of [EBVP],
for τ = 0, τ = 0.75, τ = 1.5, τ = 2.25, τ = 3, τ = 3.75, τ = 4.5, τ = 5.25 and τ = 6, (a–i)
where µ= 1 and α= 1.4. In each plot a dash-dot line shows the location of the plate, a
dotted line shows the solution for the case of zero initial data and a solid line shows the
solution when the initial data are as given in (4.61).

We note that the original free surface displacement is then given by

η=− 1
2δ

2/γ τ 2
+ δ

(
H′′ + 1

2µτ
2
)
+ o(δ) as δ→ 0. (4.62)

Numerical solutions of [EBVP] are plotted in figures 2–5. In figure 2 we present the
comparison between the free surface H′′(x̂, τ ) calculated with zero initial data (shown
in each plot as a dotted line) and the free surface H′′(x̂, τ ) calculated with the initial
free surface profile given in (4.61) (shown in each plot as a solid line) for the case
α = 1.4, with µ= 1. It is clear to see, as may be anticipated from § 3.2, that, when
initially perturbed, the free surface H′′(x̂, τ ) collapses to the free surface corresponding
to zero perturbation (which has the similarity solution (4.59)) as τ →∞, indicating
that the problem [EBVP] is well-posed and stable in this case. This behaviour is
typical of all pairs (α, µ) tested in the range (α, µ) ∈ (π/4, π/2) × R+, and of all
initial free surface profiles η0(x̂) tested. As we decrease µ and take values with µ< 0
we are unable to obtain numerically any converged solutions to [EBVP]. This indicates
that the problem [EBVP] is ill-posed, which may also be anticipated from the theory
presented in § 3.2. In figure 3 we present the comparison between the free surface
H′′(x̂, τ ) calculated with zero initial data (shown in each plot as a dotted line) and
the free surface H′′(x̂, τ ) calculated with the initial free surface profile given in (4.61)
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FIGURE 3. Graph of the evolution of H′′(x̂, τ ) (related to the free surface displacement
through (4.46), (4.43), (4.41) and (4.18)) against x̂ for the numerical solution of [EBVP],
for τ = 0, τ = 0.13, τ = 0.25, τ = 0.38, τ = 0.5, τ = 0.63, τ = 0.75, τ = 0.88 and τ = 1,
(a–i) where µ = 0 and α = 1.4. In each plot a dash-dot line shows the location of the
plate, a dotted line shows the solution for the case of zero initial data and a solid line
shows the solution when the initial data are as given in (4.61).

(shown in each plot as a solid line) for the case α= 1.4, with µ= 0. The case µ= 0
separates the regions on the (α,µ) plane where the problem [EBVP] is well-posed and
stable (µ> 0) from ill-posed (µ< 0), with µ= 0 falling into the well-posed and stable
case. Finally, figures 4 and 5 demonstrate the agreement of the numerical solution with
the far-field asymptotic form in [EBVP] (4.56), at least to the graphical scales shown.

5. Conclusion

In this paper we have studied the well-posedness and stability of the problem
[IBVP]. In particular, concerning the early stage motion close to the contact point,
which was examined in detail in GNB, with respect to perturbations of amplitude
δ � 1 in initial data, located in the innermost asymptotic region of the solution to
[IBVP] as t→ 0+, for each pair (α, µ) ∈ (0, π/2)× R, where µ= 1+ σ tan α. This
has enabled us to draw the following conclusions.

(i) (α, µ) ∈ (0,π/2)×R+

Here, the initial boundary value problem [IBVP] is well-posed and stable with
respect to perturbations in the initial data located in the inner region of the
solution to [IBVP]. The time scale for decay is t�O(δα/π).
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FIGURE 4. Graph of the evolution of H′′(x̂, τ ) (related to the free surface displacement
through (4.46), (4.43), (4.41) and (4.18)) against x̂, showing agreement with the far-field
asymptotic form (4.56) for the numerical solution of [EBVP], for τ = 0, τ = 0.75, τ = 1.5,
τ = 2.25, τ = 3, τ = 3.75, τ = 4.5, τ = 5.25 and τ = 6, where µ= 1, and α= 1.4. Here τ
increases reading from the bottom of the figure to the top. The dash-dot line shows the
location of the plate, solid lines show the numerical solution when the initial data are as
given in (4.61), and dotted lines plot the far-field asymptotic form (4.56).
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FIGURE 5. Graph of the evolution of H′′(x̂, τ ) (related to the free surface displacement
through (4.46), (4.43), (4.41) and (4.18)) against x̂, showing agreement with the far-field
asymptotic form (4.56) for the numerical solution of [EBVP], for τ =0, τ =0.13, τ =0.25,
τ = 0.38, τ = 0.5, τ = 0.63, τ = 0.75, τ = 0.88 and τ = 1, where µ= 0 and α= 1.4. Here
τ increases reading from the bottom of the figure to the top. The dash-dot line shows the
location of the plate, solid lines show the numerical solution when the initial data are as
given in (4.61), and dotted lines plot the far-field asymptotic form (4.56).

(ii) (α, µ) ∈ (0,π/2)×R−
Here, the initial boundary value problem [IBVP] is ill-posed with respect to
perturbations in initial data located in the inner region of the solution to [IBVP]
with the time scale for the growth due to ill-posedness being t�O(δα/π).

In the above case (ii), when the solution to the unperturbed problem [IBVP] is
ill-posed with respect to initial perturbations localised close to the contact point, we
anticipate that the inclusion of weak surface tension effects in the model, leading
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to the problems [IBVP], [IBVP]′ and [IBVP]′′, will restore well-posedness, with the
problem [IBVP] then becoming well-posed but unstable. The physical source of the
ill-posedness of the problem [IBVP], is revealed on making the following observation.
Returning to GNB (see §§ 4 and 5) we observe in the innermost regions that the
leading-order displacement of the free surface has

η(X, t)∼ 1
2σ t2 tan α, X >− 1

2σ , (5.1)

when O(δα/π) � t � 1. This represents a horizontal free surface accelerating
vertically downwards, with dimensionless uniform acceleration of −σ tan α. With
the dimensionless acceleration due to gravity on this localised block of fluid
being unity, the situation is analogous to a local Rayleigh–Taylor problem (see,
for example, Sharp 1984), which (in the absence of surface tension effects) would
predict the horizontal free surface to be well-posed and stable to perturbations when
1 > −σ tan α, but ill-posed when 1 < −σ tan α. Recalling that µ = 1 + σ tan α, this
precisely accords with the cases above emerging from the detailed theory. This further
supports our contention that the inclusion of weak surface tension effects will restore
well-posedness in case (ii). In a more general context, we should note that, in both
parts I and II of this pair of papers, the inner regions are driven principally by the
matching conditions with the outer region, and in particular through the constant
A0(α). Thus, the local flow structure, close to the initial contact point, in the early
stages, will be the same for more general shaped surface piercing bodies which
advance or retreat into an expanse of initially stationary fluid under gravity. Here α
will represent the body slope at the initial contact point when motion is initiated, and
the detailed body shape is simply encompassed in the value of A0(α).
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Appendix A. Classification of the spectrum of [SP(k)]
This appendix details the classification of the spectrum of [SP(k)]. In § 3.2 we

define the spectral problem [SP(k)] to be given by

∇
2
Φ
′

= 0, X > 0,−X tan α < Y < 0; (A 1)
∇Φ · n̂= 0, X > 0, Y =−X tan α; (A 2)

Φ
′

Y − kΦ
′

= 0, X > 0, Y = 0; (A 3)

Φ
′

,∇Φ bounded as R→∞, uniformly for −α < θ < 0; (A 4)

with k =−λ2/µ (for µ 6= 0), and we require that solutions to [SP(k)], Φ
′

: G∞→ C,
have regularity given by (3.59). We define the spectrum of [SP(k)] to be given by

S= {k ∈C : [SP(k)] has a non-trivial solution}. (A 5)

The set of eigenvalues of [SP(k)] is Sd, where

Sd
= {k ∈C : ∃ a non-trivial solution to [SP(k)] with Φ

′

→ 0 as R→∞}, (A 6)
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and the continuous spectrum of [SP(k)] is Sc, where

Sc
= {k ∈C : ∃ a non-trivial solution to [SP(k)] with Φ

′9 0 as R→∞}, (A 7)

with the limits as R→∞ considered as uniform for −α6 θ 6 0. Finally, we observe
that

S= Sc
∪ Sd. (A 8)

We now determine S. Following Needham (2012), we obtain the following results.

THEOREM 1.
S⊆ {k ∈C : Re(k) > 0} ∪ {0} = R+. (A 9)

Proof. The proof requires that, for each k ∈C\R+, we establish that [SP(k)] has only
the trivial solution. Let k ∈C\R+, and let Φ

′

:G∞→C be a solution to [SP(k)]. Take
any R0 > 0 and set GR0 = G∞\(R0,∞)× [−α, 0], and ∂G = {(R, θ) : 06 R6 R0, θ =
0} ∪ {(R, θ) :R=R0,−α<θ < 0} ∪ {(R, θ) : 06R6R0, θ =−α}, then Green’s Theorem
(see, for example, Kaplan (2002)), along with the regularity (3.59) and (A 1), gives∫

GR0

∫
{∇Φ

′∗

· ∇Φ
′

}R dR dθ =
∫
∂G
{Φ
′∗

(∇Φ
′

· n̂)} dS, (A 10)

where superscript ∗ denotes complex conjugation. It follows from (A 10) and (A 2) that

∫
GR0

∫ (
|Φ
′

R|
2
+

∣∣∣∣ 1RΦ ′θ
∣∣∣∣2
)

R dR dθ =
∫ 0

−α

(RΦ
′∗

Φ
′

R)R=R0
dθ +

∫ R0

0

(
Φ
′∗ 1

R
Φ
′

θ

)
θ=0

dR,

(A 11)
which becomes, using (A 3),∫

GR0

∫ (
|Φ
′

R|
2
+

∣∣∣∣ 1RΦ ′θ
∣∣∣∣2
)

R dR dθ − k
∫ R0

0
(|Φ

′

|
2)θ=0 dR=

∫ 0

−α

(RΦ
′∗

Φ
′

R)R=R0
dθ,

(A 12)
for each R0 > 0. We now introduce u and v, where

u(R, θ)=Re[Φ
′

(R, θ)], v(R, θ)= Im[Φ
′

(R, θ)], (A 13a,b)

after which we obtain from (A 12)∫
GR0

∫ (
|Φ
′

R|
2
+

∣∣∣∣ 1RΦ ′θ
∣∣∣∣2
)

R dR dθ − k
∫ R0

0
(|Φ

′

|
2)θ=0 dR

=
1
2

R0
d

dR0

{∫ 0

−α

(|Φ
′

|
2
R=R0

dθ)
}
+ iR0

∫ 0

−α

(uvR − uRv)R=R0
dθ. (A 14)

Taking the real part of (A 14) gives∫
GR0

∫ (
|Φ
′

R|
2
+

∣∣∣∣ 1RΦ ′θ
∣∣∣∣2
)

R dR dθ −Re(k)
∫ R0

0
(|Φ

′

|
2)θ=0 dR

=
1
2

R0
d

dR0

{∫ 0

−α

(|Φ
′

|
2
R=R0

) dθ
}
, (A 15)
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for each R0 > 0. Using (3.63) we can now write the right-hand side of (A 15), in the
limit R0→∞, as

1
2

R0
d

dR0

{∫ 0

−α

(|Φ
′

|
2
R=R0

dθ)
}

=
1
2

R0
d

dR0

{∫ 0

−α

(
|ak|

2 1

Rπ/α

0

cos2 π

2α
(θ + α)+O

(
1

Rπ/α+1
0

))
dθ
}

=−
π

4
|ak|

2 1

Rπ/α

0

+O
(

1

Rπ/α+1
0

)
, (A 16)

which is bounded as R0→∞. Since Re(k)6 0, it then follows from (A 15) that∫
GR0

∫ (
|Φ
′

R|
2
+

∣∣∣∣ 1RΦ ′θ
∣∣∣∣2
)

R dR dθ 6
1
2

R0
d

dR0

{∫ 0

−α

(|Φ
′

|
2
R=R0

dθ)
}
, (A 17)

and so the left-hand side of (A 17) is bounded and non-decreasing as R0→∞, and
thus has a finite non-negative limit as R0→∞, so that

lim
R0→∞

∫
GR0

∫ (
|Φ
′

R|
2
+

∣∣∣∣ 1RΦ ′θ
∣∣∣∣2
)

R dR dθ = β, (A 18)

for some β > 0. However, it now follows from (A 16) to (A 18) that β 6 0, and so
we conclude that β = 0. We then have from (A 18) that∫

GR0

∫ (
|Φ
′

R|
2
+

∣∣∣∣ 1RΦ ′θ
∣∣∣∣2
)

R dR dθ = 0, (A 19)

for all R0 > 0. The condition (A 19) (along with regularity (3.59)) then requires
that Φ

′

(R, θ) = C for all (R, θ) ∈ [0,∞)× [−α, 0], for some constant C ∈ C.
However, since k 6= 0, we have from (A 3) that C = 0, so that Φ

′

(R, θ) = 0 for all
(R, θ) ∈ [0,∞)× [−α, 0], which is the trivial solution, and the proof is complete. �

THEOREM 2.
S⊆R+ ∪ {0}. (A 20)

Proof. Let k ∈ R+\(R+ ∪ {0}), and Φ
′

: G∞→ C be a solution to [SP(k)]. We must
show that Φ

′

is the trivial solution. We have from (3.63) that

Φ
′

(R, θ)= a
1

Rπ/2α cos
π

2α
(θ + α)+O

(
1

Rπ/2α+1

)
, (A 21)

as R→∞, uniformly for −α6 θ 6 0, with a∈C being a non-zero constant. We also
have from (A 14), that

Im(k)
∫ R0

0
(|Φ

′

|
2)θ=0 dR+ R0

∫ 0

−α

(uvR − uRv)R=R0
dθ = 0 (A 22)
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and ∫
GR0

∫ (
|Φ
′

R|
2
+

∣∣∣∣ 1RΦ ′θ
∣∣∣∣2
)

R dR dθ −Re(k)
∫ R0

0
(|Φ

′

|
2)θ=0 dR

=
1
2

R0
d

dR0

{∫ 0

−α

(|Φ
′

|
2)R=R0

dθ
}
. (A 23)

Now, via (A 21), we have that

lim
R0→∞

R0

∫ 0

−α

(uvR − uRv)R=R0
dθ = 0. (A 24)

Since Im(k) 6= 0 it then follows from (A 22) that

lim
R0→∞

∫ R0

0
(|Φ

′

|
2)θ=0 dR= 0, (A 25)

and so ∫ R0

0
(|Φ

′

|
2)θ=0 dR= 0, (A 26)

for all R0 > 0. Next, considering (A 23), (A 26), and (A 16), we have that

lim
R0→∞

∫
GR0

∫ (
|Φ
′

R|
2
+

∣∣∣∣ 1RΦ ′θ
∣∣∣∣2
)

R dR dθ = 0. (A 27)

It then immediately follows that Φ
′

(R, θ)= 0, for all (R, θ)∈ [0,∞)× [−α, 0], which
is the trivial solution, and the proof is complete. �

In fact S = R+ ∪ {0}. Clearly, 0 ∈ S, since when k = 0, Φ
′

(R, θ) = 1 for all
(R, θ) ∈ [0,∞)× [−α, 0], solves [SP(0)]. Moreover John (1948) has established that
k ∈ S for all k ∈R+, and in addition that, Sc

=R+ ∪ (0) whilst Sd
=∅.
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