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ABSTRACT

In this paper, we will cover the bonus-malus system in automobile insurance.
Bonus-malus systems are based on the distribution of the number of car
accidents. Therefore, the modelling and fitting of that distribution are consid-
ered. Fitting of data is done using the Poisson inverse Gaussian distribution,
which shows a good fit. Building the bonus system is done by minimizing the
insurer's risk, according to LEMAIRE'S (1985) bonus system.
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As LEMAIRE (1976) put it, bonus-malus systems are based on the random
variable number of claim N (frequency), irrespective of their amount. To begin
with, we must adapt a Poisson process which is not homogeneous. The
heterogeneity aspect is introduced by mixing the Poisson distribution. The
parameter X in the Poisson distribution is considered a random variable. A
similar contention is made by BESSON and PARTRAT (1992).

Let us assume that the expected frequency of claims varies within the
portfolio. Let us further assume that any particular risk in the portfolio has a
Poisson distribution of claim frequencies with mean A, where A is itself a
random variable with distribution representing the expected risks inherent in
the given portfolio. The distribution function of A is given by U(A) and the
unconditional distribution of claim frequencies of an individual drawn from the
portfolio is mixed Poisson. N has a Poisson distribution with probability
function

e-A— n = 0,1,2, . . .
\n\

with
E(N) = E(A) Var (N) = Var (A) + E(A)

It is obvious that mixed Poisson variates have a variance exceeding the mean
(unlike the Poisson where mean and variance are equal). This state of fact,
which is usually the case in practical situations, is normally desirable from the
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insurer's standpoint in that mixed distribution can be thought of as being
"safer" than the original Poisson.

One interesting distribution for A is the inverse Gaussian. It has thick tails
and it also provides the advantage of having closed form expression for the
moment generating function. It is a reasonable distribution for modeling in
many insurance situations. The probability density function of an inverse
Gaussian distribution is,

f(X) = M e~ \~W

The distribution function is,

X > 0

<px
where <£(•) is the standard Normal (with mean 0 and variance 1) distribution
function.
The mean and variance are

E(A) = (i Var (A) = fi0

The Poisson mixed over the inverse Gaussian is thus obtained and called the
Poisson inverse Gaussian. One can obtain the probabilities from the probabil-
ity generating function which is

P(z) = efi

The mean and variance are thus obtained,

E(N) = fi
Var(JV) = /i (1+0)

The Poisson inverse Gaussian has two parameters.
Regarding the particular case of liability policies (private cars) which have

had k claims, we shall use the results found by PANJER and WILLMOT (1987).
BUHLMANN (1970) published the data that had been gathered in Switzerland in
1961 (see Table 1.1).

We will use the maximum likelihood estimator to estimate a parameter
6 = (#i, 62, •.., dp) from our set of independent and identically distributed
data (Xx, X2, ..., Xk) with probability function pn(6).

According to PANJER and WILLMOT (1987), the likelihood function is
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TABLE 1.1

CLAIM FREQUENCY DATA

Number of claims
per policy

(*)

Number of
policies

Fitted
Values

0
1
2
3
4
5
6

Total

103,704
14,075

1,766
255
45

6
2

119.853

103,710.03
14,054.65
1,784.65

254.49
40.42

6.94
1.26

119.852.44

The log-likelihood is defined to be

1(0) = log L(0)= X Nk-\ogpk(d)

where Nk = {number of X,'s for which X,• = k}, k = 0, 1,2, ... are the
observed frequencies. The maximum likelihood estimator is the random
variable 9 for which the likelihood (or equivalently the log likelihood) is a
maximum.

The values of the maximum likelihood estimator of fi and ft are fi. = 0,15514
and P = 0.15527. Then, multiplying the probabilities by 119,853 yields the
fitted values of Table 1.1.

The value of x is 0.15514 and s2 is 0.24174.
The goodness of fit statistic D Chi-squared distributed with (k — r — l) degrees

of freedom (k intervals and r parameters) defined as

the value of which is 0.78 on 3 degrees of freedom, yielding a significance level
of 85%, which is good. This is a better fit than the Poisson-Gamma model, as
one can compare with BICHSEL'S (1964) results calculated on the same set of
data.

We have now a frequency distribution, the Poisson inverse Gaussian, that is
fitted to our data. We can now build our bonus-malus system in the same
manner than LEMAIRE (1985) did. We will minimize the average total risk of
the insurer, since the insurer is at risk. Let us consider an insured observed
during / years and let us call rij the number of accidents in fault reported during
the yth year. For each insured, we have the information vector («1; . . . ,« , ) .
Each rij is a realization of the random variable Nj, for which we assumed
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independent and identical distributions. For each observation set nx, ..., n, we
have to relate a number Xt+X(nx,...,«,), which is the best estimator of A at
time t+l. We also choose a quadratic loss function (Ar+1-A)2 which yields

Xl+X(nx, . . . ,» , ) = E(A\nx, . . . ,« , )

Hence, we need to determine the posterior mean of A. We already know that
fi (A) is an inverse Gaussian with parameters /? and /x. We had NjX as Poisson
distributed, hence the likelihood distribution is

P{nx,...,nt\X) =
Xne~

n
7 = 1

where n = 2_, «;•

Next, the joint distribution of the number of accidents is

P ( « , , . . . , « , ) = f / > ( » , , . . . , « , | A ) - / J (A) </A
J o

The Bayes theorem for the posterior distribution of A is

Xne-a n -VkJ

n{X\nx, . . . , « , ) =

n K')
7 = 1

. -•«-{ ' 2/?;.

7JA

Â

One can see that the integral term is not a function of A once it is solved. We
can then find to which distribution fi{X\nx,...,«,) is proportional by omitting
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that constant term (the integral);

X" e\ 2H 2fix I efi
. . . , « , ) cc — — .

(2n/J)112 k"2

Similarly, we omit all terms that do not depend on k, since n{k\ti\, ..., nt) is a
function of k,

in which

3 A 1 ^

a = n — — b = c =
2 1 2/?

2/?

to obtain

u ...,n,)az ka

The above expression is the probability density function of Generalized inverse
Gaussian distribution, which can also be presented as

P(x) = - —— , x>0

7 2fxj

where fi' > 0, (? > 0, - oo < v < co and ATu(x) is the modified Bessel function
of the third kind with index u. JORGENSEN (1982) shows several results
concerning the Generalized inverse Gaussian. One of interest to us is the mean,
given by

in our case

1
v = a+ 1 = n — —

2
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± + 2,

fl' = fifTc = fl ,
I+ 2 fit

When the prior distribution of A is inverse Gaussian and the conditional
probability function {Ny, ..., N,) given A = X •& ^-dimension Poisson distribu-
tion, we then see that the posterior distribution of A is a Generalized inverse
Gaussian.

We already estimated fi and fi, then we can write

1
D = n — ~

2

f- '
6.44039 + 21

i = 0.15514 x
1+0.31054?

and

Xt+i ( « i , . . . , « r ) = fi '-^

JW//0
In our case, the pure premium to be charged is related to the frequency of
accidents. That is

Hence, we can now build a table of premiums to be charged as a function of
accidents («) and number of years (t). To estimate the modified Bessel
functions, we use

We estimate Q by a Newton Raphson approach. Then we normalize the
posterior premium in a way that the premium for a new insured is 100 (n = 0
and t = 0). We then obtain

P i ^ inn
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where

Vo = - _ y?0 = 0.15527 fi0 = 0.15514

But we realize that

is the mean of the prior distribution of A. The Generalized inverse Gaussian
includes the inverse Gaussian when X — —1/2. So

,(« , , . . . , / ! , ) = 100
0.15514

Table 1.2 gives the results for Pt+l for various t and n. We limited ourselves to
n = 10 since n > 10 accidents is most unlikely to occur. An APL program was
used (for further calculations also).

This is an equitable system: each insured always pays a premium propor-
tional to the estimation of his frequency of accidents, according to the
information accumulated during t years. For example, if our insured had
1 accident during his first year, he would have a surcharge of 67.72%
((163.72- 100) -f- 100). But if he had no accident during that first year, he is
entitled to a reduction of 12.65% ((100-87.35)-^ 100). Later, if he has 1
accident during the second year (and none in his first), he will be penalized
60.60% ((140.28-87.35) ± 87.35). Similarly, if he has no accident during the
second year (and 1 in the first year), he will be granted a bonus of 14.32%
((163.72- 140.28) -̂  163.72). This process can be continued indefinitely.

TABLE 1.2

BONUS-MALUS TABLE

(based on a Poisson inverse Gaussian frequency distribution)

\ "

t \

0
1
2
3
4
5
6
7
8
9
10
20
50
100

0

100
87.35
78.54
71.95
66.78
62.59
59.10
56.13
53.57
51.33
49.35
37.24
24.60
17.66

1

N/A
163.72
140.28
123.76
111.42
101.80
94.05
87.67
82.30
77.71
73.73
51.12
30.65
20.79

2

N/A
275.71
229.19
197.27
173.94
156.10
142.00
130.54
121.05
113.03
106.17
67.13
36.32
24.21

3

N/A
409.52
335.61
285.31
248.83
221.13
199.37
181.81
167.33
155.18
144.84
86.24
45.23
28.85

4

N/A
553.21
450.55
380.84
330.38
292.16
262.20
238.07
218.22
201.60
187.47
110.43
55.62
33.02

5

N/A
701.11
569.34
479.91
415.23
366.27
327.91
297.05
271.69
250.43
232.40
137.23
65.41
37.60

6

N/A
850.94
689.96
580.73
501.75
441.97
395.15
357.49
326.53
300.63
278.65
160.11
73.76
40.24

7

N/A
1001.76
811.55
682.49
589.17
518.56
463.25
418.76
382.20
351.62
325.66
185.51
84.42
44.31

8

N/A
1153.14
933.69
784.79
677.13
595.66
531.86
480.54
438.37
403.10
373.16
212.31
94.61
49.51

9

N/A
1304.88
1056.17
887.42
765.42
673.10
600.80
542.64
494.86
454.89
420.96
239.24
106.22
56.92

10

N/A
1456.85
1178.88
990.29
853.93
750.75
669.95
604.96
551.56
506.89
468.98
269.44
120.60
64.62
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Let us now introduce a utility function of the insurer, as LEMAIRE (1979)
did. The insurer assesses the risk according to a utility function ii{x), and
determines the premium by equating the utility function of his present situation
and the expected utility of the risk: that is, he is indifferent between his present
situation and being at risk.

H{R) = E{/u(R + P-x)} = I /i(R + P-x)dG(x)"I"
Jo

where R is the reserve of the insurer, P the premium to be charged and G(x)
the distribution function of claims in a portfolio. This null utility principle has
numerous interesting properties when one uses an exponential utility func-
tion,

H(x) = - {\-e~cx), c > 0 .
c

The parameter c characterizes the risk aversion of the insurer. We can then
evaluate the premium

- -> - f" -
Jo c

— (1—c~CJ() = I -(l-e-c(R+F~x))dG(x)
c

which yields

P = - log M(c)
c

where M(c) is the moment generating function of the claims distribution. In
our situation of a bonus-malus system based on a Poisson inverse Gaussian, we
have

f
Jo

P = log I M(c,X)dU(X)
c

where

M{c,X) = eHe'~l)

is the moment generating function of the Poisson distribution, and U(X) is
inverse Gaussian. Then

- log [ f
c L Jo

P = - log e^~l) — ^ e\ W / dk

The expression in brackets is the moment generating function of the inverse
Gaussian distribution valued at ec -1. For the Generalized inverse Gaussian,
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we have

M(z) = (1 -2J8Z) 2 z <
2fS

and in particular for the inverse Gaussian when X = - 1 / 2 . Hence, we replace
in P

Kx l^jl-
P = - log

c

This formula is valid for all values of parameters X, /? and /u, and in particular
for our values of o, /?' and / / of the posterior distribution. So,

, (« ! , . . . ,« , ) = - l o g
c

P
'IP')

This premium is a non-decreasing continuous function of c. A choice of
c = 0.25 (risk aversion) yields a reasonable initial premium Px = 0.18032;
since the pure premium is 0.15514, it corresponds to a safety loading of about
16%. The results are in Table 1.3.

TABLE 1.3

BONUS-MALUS TABLE

(based on a Poisson inverse Gaussian frequency distribution)
(with exponential utility function, c = 0.25)

\ "

/ \

0
1
2
3
4
5
6
7
8
9
10
20
50
100

0

100
86.87
77.84
71.15
65.93
61.72
58.22
55.25
52.70
50.47
48.50
36.51
24.08
17.28

1

N/A
164.15
139.89
122.99
110.44
100.72
92.92
86.51
81.14
76.55
72.59
50.16
30.01
20.33

2

N/A
277.80
229.47
196.67
172.89
154.82
140.58
129.07
119.54
111.52
104.67
69.26
37.81
23.47

3

N/A
413.55
336.66
284.93
247.70
219.60
197.63
179.95
165.42
153.26
142.92
89.63
45.21
27.32

4

N/A
559.18
452.35
380.63
329.13
290.35
260.07
235.78
215.85
199.20
185.08
111.75
54.47
31.76

5

N/A
708.98
571.85
479.84
413.81
364.12
325.36
294.28
268.80
247.53
229.51
134.89
64.08
36.79

6

N/A
860.68
693.15
580.76
500.13
439.46
392.16
354.23
323.14
297.20
275.22
158.72
73.11
39.97

7

N/A
1013.36
815.39
682.60
587.34
515.67
459.79
414.99
378.28
347.65
321.70
183.61
83.32
43.31

8

N/A
1166.59
938.18
784.98
675.08
592.39
527.92
476.25
433.90
398.57
368.64
209.27
94.47
48.92

9

N/A
1320.16
1061.31
887.68
763.14
669.43
596.38
537.82
489.84
449.80
415.88
236.41
106.03
55.28

10

N/A
1473.90
1184.66
990.61
851.42
746.70
665.05
599.61
545.98
501.24
463.33
264.95
118.19
63.24
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The Table 1.3 slightly differs from the preceding one (Table 1.2). It can be
shown that even for very unreasonable values of c, the differences are small.
Finally, these results compare favourably with LEMAIRE'S (1985) results where
he used a Negative Binomial distribution (A was Gamma distributed).
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