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ON JORDAN STRUCTURE IN SEMIPRIME RINGS 

RAM AWTAR 

A remarkable theorem of Herstein [1, Theorem 2] of which we have made 
several uses states: If R is a semiprime ring of characteristic different from 2 
and if U is both a Lie ideal and a subring of R then either U C Z (the centre 
of R) or U contains a nonzero ideal of R. In a recent paper [3] Herstein extends 
the above mentioned result significantly and has proved that if R is a semi-
prime ring of characteristic different from 2 and V is an additive subgroup 
of R such that [V, U] C V, where U is a Lie ideal of R, then either [V, U] = 0 
or V 3 [Af, R] 5* 0 where AT is an ideal of R. In this paper our object is to 
prove the following. 

THEOREM. Let R be a semiprime ring of characteristic different from 2 and 
V be an additive subgroup of R such that [U, V] (Z V} where U is a Jordan ideal 
of R. Then either [V, U] = 0 or V D [M, R] 9e 0, where M is an ideal of R. 

Throughout this paper a ring will mean an associative ring. We say that a 
ring R is semiprime if it contains no nonzero nilpotent ideal. Z will denote the 
centre of R. For x, y G R, [x, y] = xy — yx and x o y = xy + yx. For any 
two given subsets A and B of R, [A, B] denotes the additive subgroup of R 
generated by ab — ba for a G A and b £ B and A o B denotes the additive 
subgroup of R generated by ab + ba for a G A and b G B. An additive sub­
group U of R is said to be a Lie ideal (or Jordan ideal) of R if [U, R] C U (or 
(UoRC U). 

We start this paper with the following theorem which may have some 
independent interest. 

THEOREM 1. Let R be a semiprime ring of characteristic different from 2, and 
U a Jordan ideal of R. Suppose that t G R commutes with u2 for all u G U. 
Then t commutes with every element of U. 

Proof. For r G R, let d(r) = tr — rt; by hypothesis d(u2) = 0 for every 
u G U. On linearization, we get d(uv + vu) = 0 for u, v G U, which yields 
on expansion 

(1) ud(v) + d(u)v + vd(u) + d(v)u = 0 for u, v G U. 

In (1), replace v by ur + ru, r G R. Then we have 

(2) ud(u)r + u2d(r) + ud(r)u + urdiu) + d{u)ur + d(u)ru + urd(u) 
+ rudiu) + d(u)ru + ud(r)u + d(r)u2 + rd{u)u = 0 

for M G t/, r G i?. 
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Replace r by ru in (2) and use (2) to get 

(3) (u2r + 2uru + ru2)d(u) = 0 for u G [/, r Ç R. 

For u £ U and r G i^ it follows that wr + ru Ç Z7 and uu + uu = 2u2 £ [/. 
But 

\.uru = 2{u(ur + rw) + (ur + ru)u] — {(2u2)r + r(2u2)}. 

The first and the second term on the right hand side are in U. Hence 4uru £ U. 
Therefore, if we replace v by kuru in (1), where r Ç R, then 

4:{ud(u)ru + u2d(r)u + u2rd(u) + d(u)uru + urud(u) + d(u)ru2 

+ ud(r)u2 + urd(u)u) = 0 

Since the characteristic of i? is different from 2, we get 

(4) ud(u)ru + u2d(r)u + u2rd(u) + d(u)uru + urud(u) + d(u)ru2 

+ ud(r)u2 + urd(u)u = 0 îor u £ U, r £ R. 

Replace r by m in (4) and use (4) to get 

(5) (w2ra + uru2)d(u) = 0 îor u £ U, r £ R. 

Since 0 = d(w2) = ud(u) + d(u)u, it follows that ud(u) = — d(u)u. Multi­
plying on the right of (3) by w, we obtain (w2rw + 2uru2 + ruz)d(u) = 0. 
Subtracting Equation (5) from the last equation, we have 

(6) 0 = (wra2 + rud)d(u) = (ur + ru)u2d(u) for w £ £/, r G i£. 

In (6) write r by rs where 5 G R; since w(Vs) + (rs)w = [u, r]s + r(u o s), 
we get {[u, r]s -\- r(u o s)}u2d(u) — 0. But again in view of (6) we get 
[u, r]Ru2d(u) = 0. Replace r by d(u) and use the fact that ud(u) = — d(u)u 
(by hypothesis) to conclude that 2ud(u)Ru2d(u) = 0, as a consequence of 
which, we get u2d(u)Ru2d(u) = 0. This says that [Ru2d(u)]2 = (0). Since R 
is semiprime, we get 

(7) u2d(u) = 0 ioxu 6 U. 

In (7) replace w by u + z> where v £ U and use (7). Then 

u2d(v) + v2d(u) + (aw + vu){d(u) + d(fl)} = 0. 

Replace y by — y to obtain 

— u2d(v) + v2d(u) + (#*> + vu){—d(u) + d(z>)} = 0. 

Adding last two equations and dividing by 2, we have 

v2d(u) + (wz; + vu)d(v) = 0 

for all u, v G Z7. Replace v by 2v2; by hypothesis d(v2) = 0, so that 4v*d(u) = 0 
from which we get 

(8) vH(u) = 0 for u, v G £/. 
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For u G C/and r G R,uo (ru — ur) = ru2 — u2r G Uand so 2(m2 — w2r) G U. 
Since 2w2 G £/, 2(ru2 + w2r) G [/. It follows that \u2r and 4ru2 are in [/. 
Therefore, replacing u by 4w2r where r ^ R in (8), we obtain 4z;4{^2d(>) + 
d(u2)r\ = 0 for all u, v G J7 and r G i?. In view of (8), 2vAd(u2) = 0. Hence 
4^%2d(V) = 0. In particular, 

(9) uH{r) = 0 (or u £ U,r e R. 

Let I = | x G i?|xd(» = 0 for all r G R}. Clearly Mis a left ideal of R. 
Now, if w É M and x £ R, then for any r £ R, 0 = md(xr) = mxd(r) + 
md(x)r = mxd(r). Hence M is an ideal of R. Let R = R/M. Clearly, the 
characteristic of R is different from 2, because the characteristic of R is 
different from 2. Now we shall show that R is semiprime. Let N be a nilpotent 
ideal of R with iV* = (5), that is, N% C M\ where iV is an ideal of R and the 
inverse image of N. Hence N'd(r) = 0. But (Nd(r))1 = Nd(r)Nd(r) . . . 
Nd(r) C Nld(r) = 0. Therefore Nd(r) is a nilpotent left ideal of i?, hence 
iVd(r) = (0), that is iV C M and N = (Ô). Hence J? = R/M is semiprime. 
By (9), 0 = 0 for all û £ U, where [7 is a Jordan ideal of ^ . 

We shall show that if u6 = 0 for all u G £/, where £/ is a Jordan ideal of a 
semiprime ring i^ of characteristic different from 2, then u = 0 for all u £ U. 
For w G [/ and r Gi^ we have 2w2 G £/, and so (2w2)(2tt2) + (2u2)(2u2) = 
8w4 G £/. Therefore 8(«V + rw4) G Z7 and hence 0 = 86(w4r + ™4)6. Multi­
ply on the right by uAr to obtain 86(w4r)7 = 0. Hence (uAr)7 = 0. If for some 
u, uA 9e 0, then uAR is a nonzero right ideal of R, in which the seventh power 
of every element is zero. By Levitzki's theorem [2, Lemma 1.1] R would have 
a nonzero nilpotent ideal, which is impossible for a semiprime ring. Hence 
uA = 0 for all u G U. By repeating the above argument twice we can show 
that u = 0 for all u G U. Hence £/ = 0. 

By the above argument we conclude that V = 0, that is, U C M and, by 
definition of M, ud(r) = 0 for u G Z7 and r £ R. Replace r by rx for x £ R; 
then ttita(r) = 0. As £R C R, utRd{r) = 0. But tuRd(r) = 0. Thus we con­
clude that d(u)Rd(r) = 0 for r G i£, u G Z7. In particular, d{u)Rd(u) — 0 
for u £ U. This says that [d(w)i?]2 = (0) which implies that d(w) = 0 for all 
u G U, because R is semiprime. Hence / commutes with every element of U, 
and this completes the proof of Theorem 1. 

Now we shall prove the following corollaries of the above theorem. 

COROLLARY 1. Let R be a semiprime ring of characteristic different from 2 
and, U a Jordan ideal of R. If [U, U] C Z, then U C Z. 

Proof. If [U,U] = 0, then for / G R, v(to + vt) = (tv + vt)v for all v G U; 
that is, tv2 = v2t. Hence by Theorem 1, / commutes with every element of U. 
Since / is an arbitrary element of R, [R, U] = 0; that is, U Ç_ Z. Thus suppose 
that [£/, U] 9^ 0, so we can find an a G [U, U] C Z such that a 9e 0 and 
a = uv — vu for some u, v G U. For r G R, let d(r) = ur — ru. So d(v) = 
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a (?^0) G Z. For x £ R, ud(x) + d(x)u = u(ux — xu) + (ux — xu)u = 
u(ux + xu) — {ux + xu)u G [[/, U] C Z. Hence wd(x) + d(x)u G Z for all 
x £ R. Replace x by v; then w^(^) + d(z;)^ = 2au G Z. On commuting this 
by z>, we get 2a[u, v] = 0; that is, a2 = 0. However, a G Z and is nilpotent, 
which is a contradiction in semiprime rings. Hence a = 0, which proves the 
corollary. 

COROLLARY 2. Le/ R be a semiprime ring of characteristic different from 2 
and U be a Jordan ideal of R. Suppose that t G R commutes with every element 
°f [U, U]. Then t commutes with every element of U. 

Proof. For u,v G U and r G R, (uv + vu)r — r(uv + vu) = {u(vr + n;) — 
(vr + n;)w} + {fl(wr + ru) ~~ (ur + >^)W- Thus, 

(10) [J7o C/,i2] C [17, U]. 

Again, for u, v G f/ and r £ R, (uv — vu)r — r(uv — vu) = [u(vr + n/) + 
(z/r + rv)u\ — {v(ur + rw) + (ur + r^)^}, which gives that 

(11) [[U,U],R]CUoU. 

Let T = UoU + [U, U], which is clearly an additive subgroup of R. In 
view of (10) and (11), we get 

[T,R] = [Uo U+ [U, U],R] = [Uo U,R] 

+ [[U, U],R]C[U, U]+ UoU= T. 

Hence T is a Lie ideal of R. Equation (10) and the hypothesis yield 

[[UoU,t],t]C[[U, U],t] = (0) 

Therefore, [[T, t], t] = [[U o U], t], t] + [[U, U], t]t] = 0. It follows from 
Theorem 1 of Herstein [3], that [*, T] = 0. But [t, U o U] C [/, [U, U] + 
Uo U] = (0). Hence for u G U, [t, 2u2] = 0; that is, [t, u2] = 0. Therefore, 
by Theorem 1, we conclude that [/, u] = 0 for all u G U and so t commutes 
with every element of U. 

We now prove the main theorem of this paper. 

THEOREM 2. Let R be a semiprime ring of characteristic different from 2 and 
V be additive subgroup of R such that [V, U] C V, where U is a Jordan ideal 
of R. Then either [V, U] = 0 or there exists an ideal M of R such that 

VD [M,R] * (0). 

Proof. Consider T = [ U, U] + U o U. We know in the proof of Corollary 2 
that T is a Lie ideal of R. Using the Jacobi identity and [V, U] C V, we get 

[V, T] = [V,[U, U]+ UoU] 

= [V,[U, U]] + [V, UoU] 

C [[7, U], U] + [V, U] 

C[V,U]+ VCV+VCV. 
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Thus [V, T] C V. Hence by Theorem 5 of Herstein [3], either [V, T] = 0 or 
V D [M, R] ?* 0, where M is a nonzero ideal of R. Suppose that [V, T] = (0) ; 
then [7, U o U] C [F, [[/, £7] + f/o f/] = [F, T] = (0). Thus [F, Uo U] = 
(0) and so for all u £ U, [V,2u2] = 0; that is, [V,u2] = (0). Hence, by 
Theorem 1, [V, u] = 0, for u G U. Hence [V, U] = (0), which proves the 
theorem. 

We close this paper by proving a generalization of a well known result of 
Herstein, namely: Let R be a semiprime ring of characteristic different from 2. 
If t Ç R such that [t, [t, r]] = 0 for all r Ç R, then t G Z ([2, p. 5]). The generali­
zation to Jordan ideals of the just mentioned result is as follows: 

THEOREM 3. Let R be a semiprime ring of characteristic different from 2, and 
U a Jordan ideal of R. If t G R such that [t, [t, U]] = 0 for all u G U, then t 
commutes with every element of U. 

Proof. For r G R, let d(r) = tr — rt; by hypothesis, d2(u) = 0 for all 
u G U. If u G U and r G R, then ur + ru G Z7 and 0 = d2(ur + ra) = 
^2(V) + 2d{u)d{r) + d2(*0>- + rd2(u) + 2d(r)d(u) + d2{r)u or, 

(12) W2(r) + 2d(u)d{r) + 2d(r)d(u) + d2(r)u = 0 for r G i? and u G C/. 

Replace r by rt in (12) and use d(t) = 0, to obtain 

(13) ud2(r)t + 2d(u)d(r)l + 2d(r)td(u) + d2(/-)^ = 0 for r G i?, w G £/. 

Multiply on the right hand side of (12) by / and subtract Equation (13) from 
the resulting expression to get 2d(r)(d(u)t — td(u)) + d2(r)(ut — tu) — 0; 
that is, 2d{r)d2(u) + d2(r)d{u) = 0. But d2{u) = 0, so that 

(14) d2(r)d(u) = 0 for r G R, u G £/. 

In (14), replace u by w(x^) + (xy)u, where x and y are in i?, then 

0 = d2(r)d(u o xy) 

= d2 (r)d{[u, x]y + x(u o y)} 

= d2(r){d([u, x] )y + \u, x]d(y) + d (x) (u o y) + xd(u o y)\. 

Replace x by d(v) where v G £/. By (14), the fourth term is zero, while by 
hypothesis, d2{u) — 0 for all u G U. Thus the third term is zero and the first 
term is equal to 

d2(r)d([u,d(v)]).y = d2(r){[d(u),d(v)] + [u,d2(v)]}y 

= d2(r)[d(u),d(v)]y. 
Therefore, we get 

d2(r){[(d(u),d(v)]y + (ud(v) - d(v)u)d(y)\ = 0. 

In view of (14) the last equation reduces to 

(15) d2(r)ud(v)d(y) = 0 for r, y G R, and u,v G U 
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Replace y by xy in (15) for x G R and use (15), to obtain d2(r)ud(v)Rd(y) = 0. 
This says that [d2(r)ud(v)R]2 = 0. Since R is semiprime, it follows that 

(16) d2(r)ud(v) = 0 for r G R, u and v G £/. 

Replace r by rw, where w G U in (14). Then 

{d2(r)w + 2d(r)d(w) + rd2(w)}d{u) = 0. 

By (16) the first term is zero, while by (14) the third term is zero. Therefore, 
2d(r)d(w)d(u) = 0, that is, d(r)d(w)d(u) = 0, for all r G R and u, w G £/. 
Replace r by rx for x £ R. Then d(r)Rd(w)d(u) = 0, which gives that 
[d(w)d(w)J?]2 = (0)- Since i? is semiprime, we get 

(17) d(w)d(u) = 0 for all u, w G Z7. 

We have seen in the proof of Theorem 1 that for u G U and r £ R, \.u2r and 
4rw2 are in £/. Therefore, if we replace u by 4wV in (17), then d(w) {4w2d(r) + 
d(4z/2)r} = 0. But by (17), d(w)d(2u2) = 0 and so d(w)u2d(r) = 0 for 
u, w G U and r £ R. Replace r by rx for x £ R. Then d(w)u2Rd(x) = 0; in 
particular, d(w)u2Rd(w) = 0 and so [d(zt>)w2i^]2 = (0) which implies that, 
as R is semiprime, 

(18) d(w)tt2 = 0 for all w and u G £/. 

Replace w by 4rz;2 for y G £7 in (18) and use (18) to get 

0 = {d(r)(±v2) + rd(4v2)}u2 = U{r)v2u2, 

as a consequence of which we get 

(19) d(r)uA = 0 for all u G U and /- G R. 

By using the parallel argument, which we have used in passing from Equation 
(9), during the proof of Theorem 1, we get d(u) = 0 for all u G U. Hence t 
commutes with every element of U. This proves the theorem. 

The author is grateful to the referee for pointing out a few errors. 
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