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ON JORDAN STRUCTURE IN SEMIPRIME RINGS

RAM AWTAR

A remarkable theorem of Herstein [1, Theorem 2] of which we have made
several uses states: If R is a semiprime ring of characteristic different from 2
and if U is both a Lie ideal and a subring of R then either U C Z (the centre
of R) or U contains a nonzero ideal of R. In a recent paper [3] Herstein extends
the above mentioned result significantly and has proved that if R is a semi-
prime ring of characteristic different from 2 and V is an additive subgroup
of R such that [V, U] C V, where U is a Lie ideal of R, then either [V, U] = 0
or VD [M, R] ## 0 where M is an ideal of R. In this paper our object is to
prove the following.

THEOREM. Let R be a semiprime ring of characteristic different from 2 and
V be an additive subgroup of R such that [U, V] C V, where U is a Jordan ideal
of R. Then either [V, U] = 0o0r V D [M, R] # 0, where M is an ideal of R.

Throughout this paper a ring will mean an associative ring. We say thata
ring R is semiprime if it contains no nonzero nilpotent ideal. Z will denote the
centre of R. For x,y € R, [x,y] = xy — yx and x oy = xy 4+ yx. For any
two given subsets A and B of R, [4, B] denotes the additive subgroup of R
generated by ab — ba for a € A and b € B and 4 o B denotes the additive
subgroup of R generated by ab + ba for a € A and b € B. An additive sub-
group U of R is said to be a Lie ideal (or Jordan ideal) of R if [U, R] C U (or
(UoR C D).

We start this paper with the following theorem which may have some
independent interest.

THEOREM 1. Let R be a semiprime ring of characteristic different from 2, and
U a Jordan tdeal of R. Suppose that t € R commutes with u® for all u € U.
Then t commutes with every element of U.

Proof. For r € R, let d(r) = ir — rt; by hypothesis d(u?) = 0 for every
# € U. On linearization, we get d(uv + vu) = 0 for u,v € U, which yields
on expansion
1) ud@) + dw)v + vd(u) + d@)u =0 foru,v € U.

In (1), replace v by ur + ru, r € R. Then we have
2)  wud@)r + ud(r) + ud(r)u + urd(u) + dw)ur + d(u)ru + urd(u)
+ rud(u) + d(w)ru + ud(r)u + d(r)u? + rd(u)u = 0
foru € U,r € R.
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Replace 7 by 7« in (2) and use (2) to get
3) (u¥ 4+ 2uru + ru?)d(u) =0 foru € U,r € R.

For u € U and r € R it follows that ur + ru € U and uu + uu = 2u® € U.
But
duru = 2{u(ur + ru) + (ur + ru)u} — {Qu2)r + r(2u?)}.

The first and the second term on the right hand side are in U. Hence 4uru € U.
Therefore, if we replace v by 4uru in (1), where r € R, then

A{udw)ru + wd()u + u?rd(u) + dw)uru + wrud () + d(u)ru?
+ ud(r)u? + urd(u)u} = 0
Since the characteristic of R is different from 2, we get
4) wudw)ru + ud(Mu + ud(u) + d(w)uru + uwrud(u) + d(u)ru?
4+ ud(r)u? + urd(u)u =0 foru € U,r € R.
Replace r by ru in (4) and use (4) to get
5)  (wru 4+ wru2)d(u) =0 foru € U,r € R.

Since 0 = d(#?) = ud(u) + d(u)u, it follows that ud(u) = —d(u)u. Multi-
plying on the right of (3) by u, we obtain (u?*u + 2uru? + ru®)d(u) = 0.
Subtracting Equation (5) from the last equation, we have

®) 0= (uru? + rud)d(w) = (ur + ru)u*d(u) foru € U,r € R.

In (6) write r by rs where s € R; since u(rs) + (rs)u = [u,r]s +r(u os),
we get {[u,7]s + r(wos)}ud(u) = 0. But again in view of (6) we get
[u, r]Ru2d(u) = 0. Replace r by d(x) and use the fact that ud(u) = —d(u)u
(by hypothesis) to conclude that 2ud(u)Ru?d(u) = 0, as a consequence of
which, we get u?d(u)Ru?d(u) = 0. This says that [Ru?d(u)]? = (0). Since R
is semiprime, we get
(7Y u¥du) =0 forue U.
In (7) replace u by # + v where v € U and use (7). Then

ud(v) + v2d(u) + (uv + vu){d(u) + d@)} = 0.
Replace v by —v to obtain

—u?d(v) + v}d(u) + (wv + vu){—d(u) + d(@)} = 0.
Adding last two equations and dividing by 2, we have

v2d(u) + (uv + vu)d(®) =0
forall u,» € U. Replace v by 2v%; by hypothesis d (v?) = 0, so that 4v*d(u) = 0

from which we get

8) 94d(u) =0 foru,ve U.
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Foru € Uandr € R,uo (ru — ur) = ru? — u?> € Uandso 2(ru — u?r) € U.
Since 2u® € U, 2(ru® 4+ u?r) ¢ U. It follows that 4u? and 4ru? are in U.
Therefore, replacing u by 4u? where r € R in (8), we obtain 4v*{u2d(r) +
dw?)r} =0 for all u,o € Uand r € R. In view of (8), 2v*d(u2) = 0. Hence
4v*u%d(r) = 0. In particular,

9) ubd(r) =0 foruc U,r € R.

Let M = {x € R|xd(r) = 0 for all r € R}. Clearly M is a left ideal of R.
Now, if m € M and x € R, then for any r € R, 0 = md(xr) = mxd(r) +
md(x)r = mxd(r). Hence M is an ideal of R. Let R = R/M. Clearly, the
characteristic of R is different from 2, because the characteristic of R is
different from 2. Now we shall show that R is semiprime. Let N be a nilpotent
ideal of R with N* = (0), that is, N* C M, where N is an ideal of R and the
inverse image of N. Hence N'd(r) = 0. But (Nd(r))* = Nd(»)Nd(r) ...
Nd(r) C Nd(r) = 0. Therefore Nd(r) is a nilpotent left ideal of R, hence
Nd(r) = (0), that is N C M and N = (0). Hence R = R/M is semiprime.
By (9), 4% = 0 for all @ ¢ U, where U is a Jordan ideal of R.

We shall show that if #¢ = 0 for all # € U, where U is a Jordan ideal of a
semiprime ring R of characteristic different from 2, then v = 0 for all u € U.
For u € U and r € R we have 2u? € U, and so (2u?)(2u?®) 4+ (2u?) (2u?) =
8ut € U. Therefore 8(ur + ru*) € U and hence 0 = 8% (u?r + ru*)s. Multi-
ply on the right by u* to obtain 8%(u%)” = 0. Hence (u*)" = 0. If for some
u, u? # 0, then %R is a nonzero right ideal of R, in which the seventh power
of every element is zero. By Levitzki's theorem [2, Lemma 1.1] R would have
a nonzero nilpotent ideal, which is impossible for a semiprime ring. Hence
ut = 0 for all u € U. By repeating the above argument twice we can show
that # = 0 for all u € U. Hence U = 0.

By the above argument we conclude that U = 0, that is, U C M and, by
definition of M, ud(r) = 0 for u € U and r € R. Replace r by rx for x € R;
then uRd(r) = 0. As tR C R, utRd(r) = 0. But tuRd(r) = 0. Thus we con-
clude that d(u)Rd(r) = 0 for r € R, u € U. In particular, d{(u)Rd(u) = 0
for u € U. This says that [d(#)R]? = (0) which implies that d(z) = 0 for all
u € U, because R is semiprime. Hence { commutes with every element of U,
and this completes the proof of Theorem 1.

Now we shall prove the following corollaries of the above theorem.

CoROLLARY 1. Let R be a semiprime ring of characteristic different from 2
and, U a Jordan ideal of R. If (U, Ul C Z, then U C Z.

Proof. If [U, U] = 0, then for t € R, v(tv + vt) = (tv + ot)v for all v € U;
that is, v?* = v%. Hence by Theorem 1, { commutes with every element of U.
Since ¢ is an arbitrary element of R, [R, U] = 0; thatis, U C Z. Thus suppose
that [U, U] # 0, so we can find an o € [U, U] C Z such that a % 0 and
a = uv — vu for some u,v € U. For r € R, let d(r) = ur — ru. So d{v) =
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a (#0) € Z. For x € R, ud(x) +dx)u = u(ux — xu) + (ux — xu)u =
w(ux 4+ xu) — (ux + xu)u € [U, U] C Z. Hence ud(x) + d(x)u € Z for all
x € R. Replace x by v; then ud(v) + d(@)u = 2au € Z. On commuting this
by v, we get 2a[u, v] = 0; that is, a2 = 0. However, « € Z and is nilpotent,
which is a contradiction in semiprime rings. Hence @ = 0, which proves the
corollary.

COROLLARY 2. Let R be a semiprime ring of characteristic different from 2
and U be a Jordan ideal of R. Suppose that t € R commutes with every element
of (U, U]. Then t commutes with every element of U.

Proof. For u,v € U and r € R, (uv 4+ vu)r — r(uv + vu) = {u(or 4+ rv) —
(or + ro)u} + {v(ur + ru) — (ur + ru)v}. Thus,
(10) [UoU,R)C[U, U]

Again, for u,v € U and r € R, (uv — vu)r — r(uv — vu) = {u(vr + rv) +
(or + r)u} — {v(ur + ru) + (ur + ru)v}, which gives that

(11) [[U,ULR]CUoU.
Let T'= Uo U+ [U, U], which is clearly an additive subgroup of R. In
view of (10) and (11), we get
[T\R]=[Uo U+ [U,U],R] = [Uo U, R]
+ U, ULRICU, U+ UoU=T.
Hence T is a Lie ideal of R. Equation (10) and the hypothesis yield
[[Uo U, 4, CIU, U], ] = (0)

Therefore, [[T,¢t],¢] = [[Uo U], ¢],t] + [[U, U], t}{] = 0. It follows from
Theorem 1 of Herstein [3], that [, 7] = 0. But [¢, Uo U] C [, [U, U] +
U o U] = (0). Hence for u € U, [t, 2u?] = 0; that is, [¢, #?] = 0. Therefore,
by Theorem 1, we conclude that [¢, u] = 0 for all # € U and so { commutes
with every element of U.

We now prove the main theorem of this paper.
THEOREM 2. Let R be a semiprime ring of characteristic different from 2 and

V be additive subgroup of R such that [V, U]l C V, where U is a Jordan ideal
of R. Then either [V, U] = 0 or there exists an ideal M of R such that

V DO [M, R] # (0).
Proof. Consider T" = [U, U] + U o U. We know in the proof of Corollary 2
that 7T is a Lie ideal of R. Using the Jacobi identity and [V, U] C V, we get
[V, T] =[V,[U U]+ Uo U]
=[V,[U, U]+ [V,Uo U]
cCllv,u), U1+ [V, U]
cCv,ul+vCv4+VvCV.
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Thus [V, T] C V. Hence by Theorem 5 of Herstein [3], either [V, T] = 0 or
V D [M, R] # 0, where M is a nonzero ideal of R. Suppose that [V, T] = (0);
then [V, Uo Ul C [V,[U, U]+ Uo U] = [V, T] = (0). Thus [V, Uo U] =
(0) and so for all uw € U, [V,2u?] = 0; that is, [V, «?] = (0). Hence, by
Theorem 1, [V, u] = 0, for u € U. Hence [V, U] = (0), which proves the
theorem.

We close this paper by proving a generalization of a well known result of
Herstein, namely: Let R be a semiprime ring of characteristic different from 2.
Ift € Rsuchthat[t, [t,7]] = O0forallr € R, thent € Z ([2, p. 5]). The generali-
zation to Jordan ideals of the just mentioned result is as follows:

THEOREM 3. Let R be a semiprime ring of characteristic different from 2, and
U a Jordan ideal of R. If t € R such that [t, [t, U]] = 0 for all u € U, then t
commutes with every element of U.

Proof. For r € R, let d(r) = tr — rt; by hypothesis, d?(x) = 0 for all
u€ U If ue€ Uand r € R, then ur +ru € U and 0 = d2(ur + ru) =
ud?(r) + 2d(w)d(r) + d*(u)r + rd2(u) + 2d(r)d(u) + d*(r)u or,

(12) ud?*(r) + 2d(u)d(r) + 2d(r)d(u) + d?(r)u = 0 forr € Rand u € U.
Replace r by 7¢ in (12) and use d(¢) = 0, to obtain
(13)  ud?(r)t + 2d(u)d(r)t 4+ 2d(r)td(u) + d*(r)tu = 0 forr € R,u € U.
Multiply on the right hand side of (12) by ¢ and subtract Equation (13) from
the resulting expression to get 2d(r)(d(u)i — td(u)) + d*(r) (ut — tu) = 0;
that is, 2d(r)d?(u) + d*(r)d(u) = 0. But d*(u) = 0, so that
(14) d*(r)d(u) =0 forr € R,u € U.
In (14), replace u by u(xy) + (xy)u, where x and y are in R, then
0 = d?(r)d(u o xy)
= d*(r)df[u, x]y + x(w 0 y)}
= d*(r){d([u, x])y + [u, x]d(y) + d(x)(w o y) + xd(u o y)}.

Replace x by d(v) where v € U. By (14), the fourth term is zero, while by
hypothesis, d*(#) = 0 for all # € U. Thus the third term is zero and the first
term is equal to

a*(r)d([u, d@)]). y = d*("){[d(u), d@)] + [u, d*(@)]}y

= d*(r)[du), d@)]y.
Therefore, we get

() {l@dm), d@)]y + (ud(®) — d(@)u)d(y)} = 0.
In view of (14) the last equation reduces to

(15) & (r)ud(@)d(y) =0 forr,y € R,and u,v € U
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Replace y by xyin (15) for x € R and use (15), to obtain d?(r)ud (v)Rd(y) = 0.
This says that [d?(r)ud(v)R]? = 0. Since R is semiprime, it follows that
16) d*(r)ud(w) =0 forr € R,uandv € U.
Replace 7 by rw, where w € U in (14). Then
{d2(rw + 2d(r)d(w) + rd*(w)}d(u) = 0.

By (16) the first term is zero, while by (14) the third term is zero. Therefore,
2d(r)d(w)d(u) = 0, that is, d(r)d(w)d(u) = 0, for all » € R and u,w € U.
Replace r by rx for x € R. Then d(r)Rd(w)d(u) = 0, which gives that
[d(w)d(u)R]? = (0). Since R is semiprime, we get

(17) dw)d(u) =0 forall u,w € U.

We have seen in the proof of Theorem 1 that for u € U and r € R, 4u?r and
4ru? are in U. Therefore, if we replace # by 4u?r in (17), then d(w) {4u?d (r) +
d(4u?)r} = 0. But by (17), d(w)d(2u?) = 0 and so d(w)u?d(r) =0 for
u, w € Uand r € R. Replace r by rx for x € R. Then d(w)u?Rd(x) = 0; in
particular, d(w)u?Rd(w) = 0 and so [d(w)u?R]? = (0) which implies that,
as R is semiprime,

(18) d(w)u? =0 forall wand u € U.

Replace w by 4rv2 for v € U in (18) and use (18) to get
0 = {d(r)(4v®) + rd(4v?)}u? = 4d(r)vu?,

as a consequence of which we get

(19) d(r)u* =0 forallu € Uandr € R.

By using the parallel argument, which we have used in passing from Equation
(9), during the proof of Theorem 1, we get d(x) = 0 for all u € U. Hence ¢
commutes with every element of U. This proves the theorem.

The author is grateful to the referee for pointing out a few errors.
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