ON JORDAN STRUCTURE IN SEMIPRIME RINGS

RAM AWTAR

A remarkable theorem of Herstein [1, Theorem 2] of which we have made several uses states: If R is a semiprime ring of characteristic different from 2 and if U is both a Lie ideal and a subring of R then either $U \subset Z$ (the centre of R) or U contains a nonzero ideal of R. In a recent paper [3] Herstein extends the above mentioned result significantly and has proved that if R is a semiprime ring of characteristic different from 2 and V is an additive subgroup of R such that $[V, U] \subset V$, where U is a Lie ideal of R, then either $[V, U]=0$ or $V \supset[M, R] \neq 0$ where M is an ideal of R. In this paper our object is to prove the following.

Theorem. Let R be a semiprime ring of characteristic different from 2 and V be an additive subgroup of R such that $[U, V] \subset V$, where U is a Jordan ideal of R. Then either $[V, U]=0$ or $V \supset[M, R] \neq 0$, where M is an ideal of R.

Throughout this paper a ring will mean an associative ring. We say that a ring R is semiprime if it contains no nonzero nilpotent ideal. Z will denote the centre of R. For $x, y \in R,[x, y]=x y-y x$ and $x \circ y=x y+y x$. For any two given subsets A and B of $R,[A, B]$ denotes the additive subgroup of R generated by $a b-b a$ for $a \in A$ and $b \in B$ and $A \circ B$ denotes the additive subgroup of R generated by $a b+b a$ for $a \in A$ and $b \in B$. An additive subgroup U of R is said to be a Lie ideal (or Jordan ideal) of R if $[U, R] \subset U$ (or $(U \circ R \subset U)$.

We start this paper with the following theorem which may have some independent interest.

Theorem 1. Let R be a semiprime ring of characteristic different from 2, and U a Jordan ideal of R. Suppose that $t \in R$ commutes with u^{2} for all $u \in U$. Then t commutes with every element of U.

Proof. For $r \in R$, let $d(r)=t r-r t$; by hypothesis $d\left(u^{2}\right)=0$ for every $u \in U$. On linearization, we get $d(u v+v u)=0$ for $u, v \in U$, which yields on expansion

$$
\begin{equation*}
u d(v)+d(u) v+v d(u)+d(v) u=0 \quad \text { for } u, v \in U \tag{1}
\end{equation*}
$$

In (1), replace v by $u r+r u, r \in R$. Then we have

$$
\begin{align*}
& u d(u) r+u^{2} d(r)+u d(r) u+u r d(u)+d(u) u r+d(u) r u+u r d(u) \tag{2}\\
&+\operatorname{rud}(u)+d(u) r u+u d(r) u+d(r) u^{2}+r d(u) u=0 \\
& \text { for } u \in U, r \in R .
\end{align*}
$$

[^0]Replace r by $r u$ in (2) and use (2) to get

$$
\begin{equation*}
\left(u^{2} r+2 u r u+r u^{2}\right) d(u)=0 \quad \text { for } u \in U, r \in R \tag{3}
\end{equation*}
$$

For $u \in U$ and $r \in R$ it follows that $u r+r u \in U$ and $u u+u u=2 u^{2} \in U$. But

$$
4 u r u=2\{u(u r+r u)+(u r+r u) u\}-\left\{\left(2 u^{2}\right) r+r\left(2 u^{2}\right)\right\} .
$$

The first and the second term on the right hand side are in U. Hence $4 u r u \in U$. Therefore, if we replace v by $4 u r u$ in (1), where $r \in R$, then

$$
\begin{aligned}
4\left\{u d(u) r u+u^{2} d(r) u+u^{2} r d(u)+d(u) u r u\right. & +u r u d(u)+d(u) r u^{2} \\
& \left.+u d(r) u^{2}+u r d(u) u\right\}=0
\end{aligned}
$$

Since the characteristic of R is different from 2, we get

$$
\begin{align*}
& u d(u) r u+u^{2} d(r) u+u^{2} r d(u)+d(u) u r u+u r u d(u)+d(u) r u^{2} \tag{4}\\
&+u d(r) u^{2}+u r d(u) u=0 \text { for } u \in U, r \in R .
\end{align*}
$$

Replace r by $r u$ in (4) and use (4) to get

$$
\begin{equation*}
\left(u^{2} r u+u r u^{2}\right) d(u)=0 \quad \text { for } u \in U, r \in R . \tag{5}
\end{equation*}
$$

Since $0=d\left(u^{2}\right)=u d(u)+d(u) u$, it follows that $u d(u)=-d(u) u$. Multiplying on the right of (3) by u, we obtain $\left(u^{2} r u+2 u r u^{2}+r u^{3}\right) d(u)=0$. Subtracting Equation (5) from the last equation, we have

$$
\begin{equation*}
0=\left(u r u^{2}+r u^{3}\right) d(u)=(u r+r u) u^{2} d(u) \quad \text { for } u \in U, r \in R . \tag{6}
\end{equation*}
$$

In (6) write r by $r s$ where $s \in R$; since $u(r s)+(r s) u=[u, r] s+r(u \circ s)$, we get $\{[u, r] s+r(u \circ s)\} u^{2} d(u)=0$. But again in view of (6) we get $[u, r] R u^{2} d(u)=0$. Replace r by $d(u)$ and use the fact that $u d(u)=-d(u) u$ (by hypothesis) to conclude that $2 u d(u) R u^{2} d(u)=0$, as a consequence of which, we get $u^{2} d(u) R u^{2} d(u)=0$. This says that $\left[R u^{2} d(u)\right]^{2}=(0)$. Since R is semiprime, we get
(7) $\quad u^{2} d(u)=0 \quad$ for $u \in U$.

In (7) replace u by $u+v$ where $v \in U$ and use (7). Then

$$
u^{2} d(v)+v^{2} d(u)+(u v+v u)\{d(u)+d(v)\}=0 .
$$

Replace v by $-v$ to obtain

$$
-u^{2} d(v)+v^{2} d(u)+(u v+v u)\{-d(u)+d(v)\}=0 .
$$

Adding last two equations and dividing by 2 , we have

$$
v^{2} d(u)+(u v+v u) d(v)=0
$$

for all $u, v \in U$. Replace v by $2 v^{2}$; by hypothesis $d\left(v^{2}\right)=0$, so that $4 v^{4} d(u)=0$ from which we get

$$
\begin{equation*}
v^{4} d(u)=0 \quad \text { for } u, v \in U . \tag{8}
\end{equation*}
$$

For $u \in U$ and $r \in R, u \circ(r u-u r)=r u^{2}-u^{2} r \in U$ and so $2\left(r u^{2}-u^{2} r\right) \in U$. Since $2 u^{2} \in U, 2\left(r u^{2}+u^{2} r\right) \in U$. It follows that $4 u^{2} r$ and $4 r u^{2}$ are in U. Therefore, replacing u by $4 u^{2} r$ where $r \in R$ in (8), we obtain $4 v^{4}\left\{u^{2} d(r)+\right.$ $\left.d\left(u^{2}\right) r\right\}=0$ for all $u, v \in U$ and $r \in R$. In view of (8), $2 v^{4} d\left(u^{2}\right)=0$. Hence $4 v^{4} u^{2} d(r)=0$. In particular,
(9) $u^{6} d(r)=0 \quad$ for $u \in U, r \in R$.

Let $M=\{x \in R \mid x d(r)=0$ for all $r \in R\}$. Clearly M is a left ideal of R. Now, if $m \in M$ and $x \in R$, then for any $r \in R, 0=m d(x r)=m x d(r)+$ $m d(x) r=m x d(r)$. Hence M is an ideal of R. Let $\bar{R}=R / M$. Clearly, the characteristic of \bar{R} is different from 2 , because the characteristic of R is different from 2 . Now we shall show that \bar{R} is semiprime. Let \bar{N} be a nilpotent ideal of \bar{R} with $\bar{N}^{t}=(\overline{0})$, that is, $N^{t} \subset M$, where N is an ideal of R and the inverse image of \bar{N}. Hence $N^{t} d(r)=0$. But $(N d(r))^{t}=N d(r) N d(r) \ldots$ $N d(r) \subset N^{\iota} d(r)=0$. Therefore $N d(r)$ is a nilpotent left ideal of R, hence $N d(r)=(0)$, that is $N \subset M$ and $\bar{N}=(\overline{0})$. Hence $\bar{R}=R / M$ is semiprime. By (9), $\bar{u}^{6}=\overline{0}$ for all $\bar{u} \in \bar{U}$, where \bar{U} is a Jordan ideal of \bar{R}.

We shall show that if $u^{6}=0$ for all $u \in U$, where U is a Jordan ideal of a semiprime ring R of characteristic different from 2 , then $u=0$ for all $u \in U$. For $u \in U$ and $r \in R$ we have $2 u^{2} \in U$, and so $\left(2 u^{2}\right)\left(2 u^{2}\right)+\left(2 u^{2}\right)\left(2 u^{2}\right)=$ $8 u^{4} \in U$. Therefore $8\left(u^{4} r+r u^{4}\right) \in U$ and hence $0=8^{6}\left(u^{4} r+r u^{4}\right)^{6}$. Multiply on the right by $u^{4} r$ to obtain $8^{6}\left(u^{4} r\right)^{7}=0$. Hence $\left(u^{4} r\right)^{7}=0$. If for some $u, u^{4} \neq 0$, then $u^{4} R$ is a nonzero right ideal of R, in which the seventh power of every element is zero. By Levitzki's theorem [2, Lemma 1.1] R would have a nonzero nilpotent ideal, which is impossible for a semiprime ring. Hence $u^{4}=0$ for all $u \in U$. By repeating the above argument twice we can show that $u=0$ for all $u \in U$. Hence $U=0$.

By the above argument we conclude that $\bar{U}=\overline{0}$, that is, $U \subset M$ and, by definition of $M, u d(r)=0$ for $u \in U$ and $r \in R$. Replace r by $r x$ for $x \in R$; then $u R d(r)=0$. As $t R \subset R, u t R d(r)=0$. But $t u R d(r)=0$. Thus we conclude that $d(u) R d(r)=0$ for $r \in R, u \in U$. In particular, $d(u) R d(u)=0$ for $u \in U$. This says that $[d(u) R]^{2}=(0)$ which implies that $d(u)=0$ for all $u \in U$, because R is semiprime. Hence t commutes with every element of U, and this completes the proof of Theorem 1.

Now we shall prove the following corollaries of the above theorem.
Corollary 1. Let R be a semiprime ring of characteristic different from 2 and, U a Jordan ideal of R. If $[U, U] \subset Z$, then $U \subset Z$.

Proof. If $[U, U]=0$, then for $t \in R, v(t v+v t)=(t v+v t) v$ for all $v \in U$; that is, $t v^{2}=v^{2} t$. Hence by Theorem $1, t$ commutes with every element of U. Since t is an arbitrary element of $R,[R, U]=0$; that is, $U \subset Z$. Thus suppose that $[U, U] \neq 0$, so we can find an $\alpha \in[U, U] \subset Z$ such that $\alpha \neq 0$ and $\alpha=u v-v u$ for some $u, v \in U$. For $r \in R$, let $d(r)=u r-r u$. So $d(v)=$
$\alpha(\neq 0) \in Z$. For $x \in R, u d(x)+d(x) u=u(u x-x u)+(u x-x u) u=$ $u(u x+x u)-(u x+x u) u \in[U, U] \subset Z$. Hence $u d(x)+d(x) u \in Z$ for all $x \in R$. Replace x by v; then $u d(v)+d(v) u=2 \alpha u \in Z$. On commuting this by v, we get $2 \alpha[u, v]=0$; that is, $\alpha^{2}=0$. However, $\alpha \in Z$ and is nilpotent, which is a contradiction in semiprime rings. Hence $\alpha=0$, which proves the corollary.

Corollary 2. Let R be a semiprime ring of characteristic different from 2 and U be a Jordan ideal of R. Suppose that $t \in R$ commutes with every element of $[U, U]$. Then t commutes with every element of U.

Proof. For $u, v \in U$ and $r \in R,(u v+v u) r-r(u v+v u)=\{u(v r+r v)-$ $(v r+r v) u\}+\{v(u r+r u)-(u r+r u) v\}$. Thus,
(10) $[U \circ U, R] \subset[U, U]$.

Again, for $u, v \in U$ and $r \in R$, $(u v-v u) r-r(u v-v u)=\{u(v r+r v)+$ $(v r+r v) u\}-\{v(u r+r u)+(u r+r u) v\}$, which gives that
(11) $[[U, U], R] \subset U \circ U$.

Let $T=U \circ U+[U, U]$, which is clearly an additive subgroup of R. In view of (10) and (11), we get

$$
\begin{aligned}
{[T, R]=[U \circ U+[U, U], R] } & =[U \circ U, R] \\
& +[[U, U], R] \subset[U, U]+U \circ U=T
\end{aligned}
$$

Hence T is a Lie ideal of R. Equation (10) and the hypothesis yield

$$
[[U \circ U, t], t] \subset[[U, U], t]=(0)
$$

Therefore, $\quad[[T, t], t]=[[U \circ U], t], t]+[[U, U], t] t]=0$. It follows from Theorem 1 of Herstein [3], that $[t, T]=0$. But $[t, U \circ U] \subset[t,[U, U]+$ $U \circ U]=(0)$. Hence for $u \in U,\left[t, 2 u^{2}\right]=0$; that is, $\left[t, u^{2}\right]=0$. Therefore, by Theorem 1, we conclude that $[t, u]=0$ for all $u \in U$ and so t commutes with every element of U.

We now prove the main theorem of this paper.
Theorem 2. Let R be a semiprime ring of characteristic different from 2 and V be additive subgroup of R such that $[V, U] \subset V$, where U is a Jordan ideal of R. Then either $[V, U]=0$ or there exists an ideal M of R such that

$$
V \supset[M, R] \neq(0)
$$

Proof. Consider $T=[U, U]+U \circ U$. We know in the proof of Corollary 2 that T is a Lie ideal of R. Using the Jacobi identity and $[V, U] \subset V$, we get

$$
\begin{aligned}
{[V, T] } & =[V,[U, U]+U \circ U] \\
& =[V,[U, U]]+[V, U \circ U] \\
& \subset[[V, U], U]+[V, U] \\
& \subset[V, U]+V \subset V+V \subset V .
\end{aligned}
$$

Thus $[V, T] \subset V$. Hence by Theorem 5 of Herstein [3], either $[V, T]=0$ or $V \supset[M, R] \neq 0$, where M is a nonzero ideal of R. Suppose that $[V, T]=(0)$; then $[V, U \circ U] \subset[V,[U, U]+U \circ U]=[V, T]=(0)$. Thus $[V, U \circ U]=$ (0) and so for all $u \in U,\left[V, 2 u^{2}\right]=0$; that is, $\left[V, u^{2}\right]=(0)$. Hence, by Theorem 1, $[V, u]=0$, for $u \in U$. Hence $[V, U]=(0)$, which proves the theorem.

We close this paper by proving a generalization of a well known result of Herstein, namely: Let R be a semiprime ring of characteristic different from 2. If $t \in R$ such that $[t,[t, r]]=0$ for all $r \in R$, then $t \in Z([\mathbf{2}, \mathrm{p} .5])$. The generalization to Jordan ideals of the just mentioned result is as follows:

Theorem 3. Let R be a semiprime ring of characteristic different from 2 , and U a Jordan ideal of R. If $t \in R$ such that $[t,[t, U]]=0$ for all $u \in U$, then t commutes with every element of U.

Proof. For $r \in R$, let $d(r)=t r-r t$; by hypothesis, $d^{2}(u)=0$ for all $u \in U$. If $u \in U$ and $r \in R$, then $u r+r u \in U$ and $0=d^{2}(u r+r u)=$ $u d^{2}(r)+2 d(u) d(r)+d^{2}(u) r+r d^{2}(u)+2 d(r) d(u)+d^{2}(r) u$ or,
(12) $u d^{2}(r)+2 d(u) d(r)+2 d(r) d(u)+d^{2}(r) u=0 \quad$ for $r \in R$ and $u \in U$.

Replace r by $r t$ in (12) and use $d(t)=0$, to obtain

$$
\begin{equation*}
u d^{2}(r) t+2 d(u) d(r) t+2 d(r) t d(u)+d^{2}(r) t u=0 \quad \text { for } r \in R, u \in U \tag{13}
\end{equation*}
$$

Multiply on the right hand side of (12) by t and subtract Equation (13) from the resulting expression to get $2 d(r)(d(u) t-t d(u))+d^{2}(r)(u t-t u)=0$; that is, $2 d(r) d^{2}(u)+d^{2}(r) d(u)=0$. But $d^{2}(u)=0$, so that
(14) $d^{2}(r) d(u)=0 \quad$ for $r \in R, u \in U$.

In (14), replace u by $u(x y)+(x y) u$, where x and y are in R, then

$$
\begin{aligned}
0 & =d^{2}(r) d(u \circ x y) \\
& =d^{2}(r) d\{[u, x] y+x(u \circ y)\} \\
& =d^{2}(r)\{d([u, x]) y+\lceil u, x] d(y)+d(x)(u \circ y)+x d(u \circ y)\} .
\end{aligned}
$$

Replace x by $d(v)$ where $v \in U$. By (14), the fourth term is zero, while by hypothesis, $d^{2}(u)=0$ for all $u \in U$. Thus the third term is zero and the first term is equal to

$$
\begin{aligned}
d^{2}(r) d([u, d(v)]) . y=d^{2}(r)\left\{[d(u), d(v)]+\left[u, d^{2}(v)\right]\right\} & y \\
& =d^{2}(r)[d(u), d(v)] y .
\end{aligned}
$$

Therefore, we get

$$
d^{2}(r)\{[(d(u), d(v)] y+(u d(v)-d(v) u) d(y)\}=0 .
$$

In view of (14) the last equation reduces to

$$
\begin{equation*}
d^{2}(r) u d(v) d(y)=0 \quad \text { for } r, y \in R, \text { and } u, v \in U \tag{15}
\end{equation*}
$$

Replace y by $x y$ in (15) for $x \in R$ and use (15), to obtain $d^{2}(r) u d(v) R d(y)=0$. This says that $\left[d^{2}(r) u d(v) R\right]^{2}=0$. Since R is semiprime, it follows that

$$
\begin{equation*}
d^{2}(r) u d(v)=0 \quad \text { for } r \in R, u \text { and } v \in U \tag{16}
\end{equation*}
$$

Replace r by $r w$, where $w \in U$ in (14). Then

$$
\left\{d^{2}(r) w+2 d(r) d(w)+r d^{2}(w)\right\} d(u)=0
$$

By (16) the first term is zero, while by (14) the third term is zero. Therefore, $2 d(r) d(w) d(u)=0$, that is, $d(r) d(w) d(u)=0$, for all $r \in R$ and $u, w \in U$. Replace r by $r x$ for $x \in R$. Then $d(r) R d(w) d(u)=0$, which gives that $[d(w) d(u) R]^{2}=(0)$. Since R is semiprime, we get

$$
\begin{equation*}
d(w) d(u)=0 \quad \text { for all } u, w \in U \tag{17}
\end{equation*}
$$

We have seen in the proof of Theorem 1 that for $u \in U$ and $r \in R, 4 u^{2} r$ and $4 r u^{2}$ are in U. Therefore, if we replace u by $4 u^{2} r$ in (17), then $d(w)\left\{4 u^{2} \mathrm{~d}(r)+\right.$ $\left.d\left(4 u^{2}\right) r\right\}=0$. But by (17), $d(w) d\left(2 u^{2}\right)=0$ and so $d(w) u^{2} d(r)=0$ for $u, w \in U$ and $r \in R$. Replace r by $r x$ for $x \in R$. Then $d(w) u^{2} R d(x)=0$; in particular, $d(w) u^{2} R d(w)=0$ and so $\left[d(w) u^{2} R\right]^{2}=(0)$ which implies that, as R is semiprime,

$$
\begin{equation*}
d(w) u^{2}=0 \quad \text { for all } w \text { and } u \in U \tag{18}
\end{equation*}
$$

Replace w by $4 r v^{2}$ for $v \in U$ in (18) and use (18) to get

$$
0=\left\{d(r)\left(4 v^{2}\right)+r d\left(4 v^{2}\right)\right\} u^{2}=4 d(r) v^{2} u^{2}
$$

as a consequence of which we get

$$
\begin{equation*}
d(r) u^{4}=0 \quad \text { for all } u \in U \text { and } r \in R \tag{19}
\end{equation*}
$$

By using the parallel argument, which we have used in passing from Equation (9), during the proof of Theorem 1, we get $d(u)=0$ for all $u \in U$. Hence t commutes with every element of U. This proves the theorem.

The author is grateful to the referee for pointing out a few errors.

References

1. I. N. Herstein, On the Lie and Jordan rings of a simple associative ring, Amer. J. Math. 77 (1955), 279-285.
2. - Topics in ring theory (University of Chicago Press, Chicago, 1969).

3, ———On the Lie structure of associative rings, J. Algebra 14 (1970), 561-571.
Aligarh Muslim University, Aligarh, U.P., India

[^0]: Received December 29, 1975 and in revised form, March 26, 1976. This research was supported by the grant of C.S.I.R., India.

