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Abstract

Garoufalidis and Levine introduced the homology cobordism group of homology
cylinders over a surface. This group can be regarded as an enlargement of the mapping
class group. Using torsion invariants, we show that the abelianization of this group is
infinitely generated provided that the first Betti number of the surface is positive.
In particular, this shows that the group is not perfect. This answers questions of
Garoufalidis and Levine, and Goda and Sakasai. Furthermore, we show that the
abelianization of the group has infinite rank for the case that the surface has more than
one boundary component. These results also hold for the homology cylinder analogue
of the Torelli group.

1. Introduction

Given g > 0 and n> 0, let Σg,n be a fixed oriented, connected and compact surface of genus
g with n boundary components. We denote by Hom+(Σg,n, ∂Σg,n) the group of orientation-
preserving diffeomorphisms of Σg,n which restrict to the identity on the boundary. The mapping
class group Mg,n is defined to be the set of isotopy classes of elements in Hom+(Σg,n, ∂Σg,n),
where the isotopies are understood to restrict to the identity on the boundary as well. We
refer to [FM10, § 2.1] for details. It is well-known that the mapping class group is perfect
provided that g > 3 [Pow78] (e.g., see [FM10]) and that mapping class groups are finitely
presented [BH71, McC75] (e.g., see [FM10]).

In this paper we intend to study an enlargement of the mapping class group, namely the
group of homology cobordism classes of homology cylinders. A homology cylinder over Σg,n is
roughly speaking a cobordism between surfaces equipped with a diffeomorphism to Σg,n such
that the cobordism is homologically a product. Juxtaposing homology cylinders gives rise to a
monoid structure. The notion of homology cylinder was first introduced by Goussarov [Gou99]
and Habiro [Hab00] (where it was referred to as a ‘homology cobordism’).

By considering smooth (respectively topological) homology cobordism classes of homology
cylinders we obtain a group Hsmooth

g,n (respectively Htop
g,n). These groups were introduced by

Garoufalidis and Levine [GL05, Lev01]. We refer to § 2 for the precise definitions of homology
cylinder and homology cobordism. Henceforth, when a statement holds in both smooth and
topological cases, we will drop the decoration in the notation and simply write Hg,n instead of
Htop
g,n and Hsmooth

g,n .
It follows immediately from the definition that there exists a canonical epimorphism

Hsmooth
g,n →Htop

g,n . A consequence of work of Fintushel and Stern [FS90], Furuta [Fur90] and
Freedman [Fre82] on smooth homology cobordism of homology 3-spheres is that this map is
not an isomorphism. In fact, using their results we can see the following theorem.
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Theorem 1.1. Let g, n> 0. Then the kernel of the epimorphism Hsmooth
g,n →Htop

g,n contains an

abelian group of infinite rank. If g = 0, then there exists in fact a homomorphism F :Hsmooth
0,n →A

onto an abelian group of infinite rank such that the restriction of F to the kernel of the projection
map Hsmooth

0,n →Htop
0,n is also surjective.

An argument of Garoufalidis and Levine shows that the canonical map Mg,n→Hg,n is
injective. (See also Proposition 2.4.) It is a natural question which properties of mapping class
groups are carried over to Hg,n. In particular, in [GS09] Goda and Sakasai ask whether Hsmooth

g,1

is a perfect group and Garoufalidis and Levine [GL05, § 5, Question 9] ask whether Hsmooth
g,1 is

infinitely generated (see also [Mor06, Problem 11.4]).
The following theorem answers both questions.

Theorem 1.2. If b1(Σg,n)> 0, then there exists an epimorphism

Hg,n −→ (Z/2)∞

which splits (i.e., there is a right inverse). In particular, the abelianization of Hg,n contains a
direct summand isomorphic to (Z/2)∞.

Note that Theorem 1.2 also implies that Hg,n is not finitely related, since for a finitely related
group its abelianization is also finitely related. Also refer to Remark 5.5 for a slightly more refined
statement.

In many cases we can actually strengthen the result.

Theorem 1.3. If n > 1, then there exists an epimorphism

Hg,n −→ Z∞.

Furthermore, the abelianization ofHg,n contains a direct summand isomorphic to (Z/2)∞
⊕

Z∞.

We remark that, for the special case of (g, n) = (0, 2), this is a consequence of Levine’s work
on knot concordance [Lev69a, Lev69b] since one can easily see that Htop

0,2 maps onto Levine’s
algebraic knot concordance group. The general cases of Theorem 1.3 for n > 2 and for n= 2 and
g > 0 are new.

In order to prove Theorems 1.2 and 1.3 we will employ the torsion invariant of a homology
cylinder, first introduced by Sakasai (e.g., see [Sak06, § 11.1.2], [Sak08, Definition 6.5] and [GS08,
Definition 4.4]). In § 3 we recall the definition of the torsion of a homology cylinder and we study
the behavior of torsion under stacking and homology cobordism. The result can be summarized
as a group homomorphism

τ :Hg,n −→
Q(H)×

A(H)N(H)
.

Here H =H1(Σg,n) and Q(H)× is the multiplicative group of non-zero elements in the quotient
field of the group ring Z[H]. Loosely speaking, A(H) reflects the action of surface automorphisms
on H, and N(H) is the subgroup of ‘norms’ in Q(H)×. (For details, see § 3.)

An interesting point is that torsion invariants of homology cylinders may be asymmetric,
in contrast to the symmetry of the Alexander polynomial of knots. Indeed, in § 5, we
extract infinitely many (Z/2)-valued and Z-valued homomorphisms of Q(H)×/A(H)N(H) from
symmetric and asymmetric irreducible factors, respectively. Theorems 1.2 and 1.3 now follow
from the explicit construction of examples in § 4.
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We remark that Theorem 1.3 covers all the possibilities of the asymmetric case, since it can
be seen that for either n < 2 or (g, n) = (0, 2) the torsion of a homology cylinder over Σg,n is
always symmetric in an appropriate sense (see § 3.6 for details).

We remark that our main results hold even modulo the mapping class group; the essential
reason is that our torsion invariant is trivial for homology cylinders associated to mapping
cylinders. More precisely, denoting by 〈Mg,n〉 the normal subgroup of Hg,n generated by Mg,n,
the torsion homomorphism τ actually factors as

τ :Hg,n −→
Hg,n
〈Mg,n〉

−→ Q(H)×

A(H)N(H)

and Theorems 1.2 and 1.3 hold for Hg,n/〈Mg,n〉 as well as Hg,n.
In § 6, we study examples of homology cylinders which naturally arise from Seifert surfaces

of pretzel links. We compute the torsion invariant and prove that these homology cylinders span
a Z∞ summand in the abelianization of H0,3.

Finally in § 7, we consider the ‘Torelli subgroup’ IHg,n of Hg,n which is the homology
cylinder analogue of the Torelli subgroup of mapping cylinders. We prove that the conclusions
of Theorems 1.2 and 1.3 hold for the Torelli subgroup IHg,n, but for a larger group of surfaces.
(See Theorem 7.2 for details.) This extends work of Morita’s [Mor08, Corollary 5.2] to a larger
class of surfaces.

In this paper, manifolds are assumed to be compact, connected, and oriented. All homology
groups are with respect to integral coefficients unless it says explicitly otherwise.

2. Homology cylinders and their cobordism

In this section we recall basic definitions and preliminaries on homology cylinders, the
notion of which goes back to Goussarov [Gou99], Habiro [Hab00], and Garoufalidis and
Levine [GL05, Lev01].

2.1 Cobordism classes of homology cylinders
Given g > 0 and n> 0 we fix, once and for all, a surface Σg,n of genus g with n boundary
components. When g and n are obvious from the context, we often denote Σg,n by Σ. A
homology cylinder (M, i+, i−) over Σ is defined to be a 3-manifold M together with injections
i+, i− : Σ→ ∂M satisfying the following:

(i) the map i+ is orientation preserving and i− is orientation reversing;
(ii) the boundary ∂M = i+(Σ) ∪ i−(Σ) and i+(Σ) ∩ i−(Σ) = i+(∂Σ) = i−(∂Σ);
(iii) the maps i+|∂Σ = i−|∂Σ;
(iv) the maps i+, i− :H∗(Σ)→H∗(M) are isomorphisms.

Example 2.1.

(i) Let ϕ ∈Mg,n. Then ϕ gives rise to a homology cylinder

M(ϕ) = (Σg,n × [0, 1]/∼, i+ = id× 0, i− = ϕ× 1).

where ∼ is given by (x, s)∼ (x, t) for x ∈ ∂Σg,n and s, t ∈ [0, 1]. If ϕ is the identity, then we
will refer to the resulting homology cylinder as the product homology cylinder.

(ii) Let K be a knot of genus g such that the Alexander polynomial ∆K is monic and of
degree 2g. Let Σ be a minimal genus Seifert surface in the exterior X of K. Then X cut
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along Σ is a homology cylinder over Σg,1 in a natural way (e.g., see [Ni07, Proposition 3.1]
or [GS08] for details).

Two homology cylinders (M, i+, i−) and (N, j+, j−) over Σ = Σg,n are said to be isomorphic
if there exists an orientation-preserving diffeomorphism f :M →N satisfying j± = f ◦ i±. We
denote by Cg,n the set of all isomorphism classes of homology cylinders over Σg,n. A product
operation on Cg,n is given by stacking:

(M, i+, i−) · (N, j+, j−) := (M ∪i−◦(j+)−1 N, i+, j−).

This turns Cg,n into a monoid. The unit element is given by the product homology cylinder.
Two homology cylinders (M, i+, i−) and (N, j+, j−) over Σ are said to be smoothly homology

cobordant if there exists a compact oriented smooth 4-manifold W such that

∂W =M ∪ (−N)/i+(x) = j+(x), i−(x) = j−(x) (x ∈ Σ),

and such that the inclusion-induced maps H∗(M)→H∗(W ) and H∗(N)→H∗(W ) are
isomorphisms. We denote by Hsmooth

g,n the set of smooth homology cobordism classes of elements
in Cg,n. The monoid structure on Cg,n descends to a group structure on Hsmooth

g,n , where the
inverse of a mapping cylinder (M, i+, i−) is given by (−M, i−, i+). (We refer to [Lev01, p. 246]
for details.)

If there is a topological 4-manifold W satisfying the above conditions, then we say that
(M, i+, i−) and (N, j+, j−) are topologically homology cobordant. We denote the resulting group
of homology cobordism classes by Htop

g,n . Note that there exists a canonical surjection Hsmooth
g,n →

Htop
g,n . We will see in the following sections that this map is in general not an isomorphism.

Remark 2.2. In the original papers of Garoufalidis and Levine [GL05, Lev01] and in [GS09] the
authors focus on the smooth case and denote the group Hsmooth

g,n by Hg,n.

2.2 Examples
In this section we will discuss three types of examples:

(i) surface automorphisms;

(ii) homology cobordism classes of integral homology spheres; and

(iii) concordance classes of (framed) knots in integral homology spheres.

Surface automorphisms and homology cylinders. First recall that ϕ ∈Mg,n gives rise to a
homology cylinderM(ϕ). Note that if ϕ, ψ ∈Mg,n, thenM(ϕ) ·M(ψ) is isomorphic toM(ϕ ◦ ψ).
In particular, the map Mg,n→Cg,n descends to a morphism of monoids. Proposition 2.4 below
says that we can view the mapping class group Mg,n as a subgroup of Hg,n. To prove the
proposition, we need the following folklore theorem.

Theorem 2.3. Let Σ be a surface with one boundary component, possibly with punctures. Let
∗ ∈ ∂Σ be a base point. Suppose h : Σ→ Σ is a homeomorphism with the following properties:

(i) the map h is the identity on ∂Σ;

(ii) the induced homomorphism h∗ : π1(Σ, ∗)→ π1(Σ, ∗) is the identity; and

(iii) the map h fixes each puncture.

Then h is isotopic to the identity where the isotopy restricts to the identity on ∂Σ.
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Proof. The theorem is well-known, and we only give an outline of the proof. We choose disjoint
circles γi in Σ based at ∗ such that Σ cut along the γi is a punctured disk. Since h∗ is the identity,
we may assume (after applying an isotopy whose restriction to ∂Σ is the identity) that h fixes
each γi. Now the map on the punctured disk induced from h is isotopic to the identity with ∂Σ
fixed pointwise. This can be shown, for example, using the fact that the map from the pure braid
group to π1(Σ) is injective. 2

Proposition 2.4. The map Mg,n→Cg,n→Hg,n is injective.

Proof. The proposition was proved by Garoufalidis and Levine in the case that n= 1 and in the
smooth category. (See [GL05, § 2.4] and [Lev01, § 2.1].) Using their arguments partially, we will
show that the proposition holds for any n> 0 (and in the topological category as well).

First note that if (g, n) = (0, 0) or (0, 1), i.e., if Σg,n is a sphere or a disk, then it is well-known
that any orientation-preserving diffeomorphism is isotopic to the identity. If (g, n) = (0, 2), i.e.,
if Σg,n is an annulus, then it is known that Mg,n

∼= Z and it injects into Hg,n (for example, this
can be shown using the arguments in the subsection below entitled Concordance of (framed)
knots in homology 3-spheres). Therefore, we henceforth assume that (g, n) 6= (0, 0), (0, 1), (0, 2).

Suppose ϕ : Σg,n→ Σg,n is an orientation-preserving diffeomorphism such that:

(i) the map ϕ restricts to the identity on ∂Σg,n; and
(ii) the mapping class [ϕ] ∈Ker{Mg,n→Hg,n}.

Now fix k ∈ {1, 2, . . . , n} and fix a base point ∗ lying in the kth component, say ∂k, of ∂Σg,n.
We write π := π1(Σg,n, ∗). We denote by πl the lower central series of π defined inductively by
π1 := π and πl := [π, πl−1], l > 1. The argument of Garoufalidis and Levine (which builds on
Stallings’ theorem [Sta65]) shows that if M(ϕ) is homology cobordant to the product homology
cylinder, then ϕ∗ : π/πl→ π/πl is the identity map for any l. Since

⋂
l πl is trivial, this implies

that ϕ∗ : π→ π is the identity.
We denote by PMk

g,n the set of equivalence classes of orientation-preserving diffeomorphisms
h : Σg,n→ Σg,n such that:

(i) the map h is the identity on ∂k; and
(ii) the map h fixes each boundary component setwise,

where we say that two such maps are equivalent if they are related by an isotopy which fixes ∂k
pointwise. Then [ϕ] = [identity] in PMk

g,n by Theorem 2.3.

Now consider the map Mg,n→PMk
g,n. It is known that the n Dehn twists along boundary

components of Σg,n generate a central subgroup isomorphic to Zn in Mg,n, and Ker{Mg,n→
PMk

g,n} is the subgroup generated by the n− 1 Dehn twists along all but the kth boundary
component. (For example, see [FM10].) Therefore, [ϕ] ∈

⋂
k Ker{Mg,n→PMk

g,n}= {[identity]}
in Mg,n. 2

Note that this shows that Hg,n is non-abelian provided that g > 0 or n > 2. It is
straightforward to see that in the remaining cases Hg,n is abelian.

In the following we will see that the cobordism groups of homology cylinders over the surfaces
Σ0,n with n= 0, 1, 2 have been studied under different names for many years.

Homology cobordism of integral homology 3-spheres. We first consider the case n=0, 1. Recall
that oriented integral homology 3-spheres form a monoid under the connected sum operation.
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Two oriented integral homology 3-spheres Y1 and Y2 are said to be smoothly (respectively
topologically) cobordant if there exists a smooth (respectively topological) 4-manifold
cobounding Y1 and −Y2. We denote by Θsmooth

3 (respectively Θtop
3 ) the group of smooth

(respectively topological) cobordism classes of integral homology 3-spheres.

For n= 0, 1 the group Hsmooth
0,n (respectively Htop

0,n) is naturally isomorphic to the group
Θsmooth

3 (respectively Θtop
3 ) (e.g., see [Sak06, p. 59]). Furuta [Fur90] and Fintushel and Stern

[FS90] showed that Θsmooth
3 has infinite rank. (See also [Sav02, § 7.2].) On the other hand, it

follows from the work of Freedman [Fre82] that Htop
0,n = Θtop

3 is the trivial group. (See also [FQ90,
Corollary 9.3C].) This shows in particular that the homomorphism Hsmooth

0,n →Htop
0,n is not an

isomorphism for n= 0, 1.

Concordance of (framed) knots in homology 3-spheres. We now turn to the case n= 2,
i.e., homology cylinders over the surface Σ0,2 which we henceforth identify with the annulus
S1 × [0, 1]. Let K ⊂ Y be an oriented knot in an integral homology 3-sphere. Let M be the
exterior of K. It is not difficult to see that there are pairs (i+, i−) of maps Σ0,2→ ∂M satisfying
(i)–(iv) in the definition of a homology cylinder in § 2.1 and satisfying the condition that
i+(S1 × 0) is a meridian of K. Furthermore, the isotopy types of such (i+, i−) are in one-to-
one correspondence with framings on K. Indeed, the linking number of K and the closed curve
i−(∗ × [0, 1]) ∪ i+(∗ × [0, 1]) gives rise to a canonical one-to-one correspondence between the set
of framings and Z. Conversely, a homology cylinder (M, i+, i−) over Σ0,2 determines an oriented
knot endowed with a framing in the integral homology sphere, which is given by attaching a
2-handle along i+(S1 × 0) and then attaching a 3-handle.

We say that K1 ⊂ Y1 and K2 ⊂ Y2 are smoothly concordant if there exists a smooth cobordism
X of Y1 and Y2 such that (X, Y1, Y2) is an integral homology (S3 × [0, 1], S3 × 0, S3 × 1) and X
contains a smoothly embedded annulus C cobounding K1 and K2. The set of smooth concordance
classes of knots in integral homology 3-spheres form a group Csmooth

Z under connected sum.

We will now see that we can also think similarly of the concordance group of framed knots in
integral homology 3-spheres. Note that a concordance (X, C) as above determines a one-to-one
correspondence between framings on K1 and K2. We say two framed knots in integral homology
spheres are smoothly concordant if there is a concordance (X, C) via which the given framings
correspond to each other. The smooth concordance class of framed knots form a group as well,
and it is easily seen that this framed analogue of Csmooth

Z is isomorphic to Z⊕ Csmooth
Z . Similarly,

if we allow topologically locally flat annuli in topological cobordisms we obtain a group Ctop
Z and

its framed analogue Z⊕ Ctop
Z .

As usual we adopt the convention that the group CZ can mean either Csmooth
Z or Ctop

Z .
It follows easily from the definitions that we have an isomorphism Z⊕ CZ→H0,2. It follows
from the work of Levine [Lev69a, Lev69b] that CZ maps onto the algebraic knot concordance
group which is isomorphic to (Z/2)∞ ⊕ (Z/4)∞ ⊕ Z∞, and furthermore the epimorphism from
CZ to (Z/2)∞ ⊕ Z∞ splits. This discussion in particular proves the following special case of
Theorem 1.3.

Theorem 2.5. There exists a split surjection of H0,2 onto (Z/2)∞ ⊕ Z∞.

Note that the subgroupM0,2 inH0,2
∼= Z⊕ CZ is exactly the Z factor, so thatH0,2/M0,2

∼= CZ.
In particular, Theorem 2.5 holds for H0,2/M0,2 as well as H0,2.
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2.3 Proof of Theorem 1.1

Before we turn to the proof of Theorem 1.1 we introduce a gluing operation on homology
cylinders. Let M be a homology cylinder over a surface Σ = Σg,n and let M ′ be a
homology cylinder over a surface Σ′ = Σ′g′,n′ . Assume that n, n′ > 0 and fix a boundary
component c of Σ and fix a boundary component c′ of Σ′. We can now glue Σ and Σ′ along c
and c′ using an orientation reversing homeomorphism. Similarly, we can glue M and M ′ along
neighborhoods of c⊂ ∂M and c′ ⊂ ∂M ′. This gives a homology cylinder over Σ ∪c=c′ Σ′, which
we denote by M ∪c,c′ M ′. We refer to M ∪c,c′ M ′ as the union of M and M ′ along c and c′.

Now let M ′ be the product homology cylinder over Σ′. The association M 7→M ∪c,c′ M ′ gives
rise to a monoid homomorphism Cg,n→Cg+g′,n+n′−2. We refer to it as an expansion by Σ′ along c.
Note that the expansion map descends to a group homomorphism Hg,n→Hg+g′,n+n′−2.

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. We adopt the convention that Θ3 stands either for Θsmooth
3 or Θtop

3 . Recall
that in § 2.2 we saw that we can identify H0,n, n= 0, 1, with Θ3. Also recall that by § 2.2 the
group Θsmooth

3 has infinite rank and that Θtop
3 is the trivial group.

As we saw above, an expansion by a surface of genus g with n+ 1 punctures gives rise
to a homomorphism E :H0,1→Hg,n. We also consider the composition F :Hg,n→Hg,0 of n
expansions by a disk along all boundary components of Σg,n. Loosely speaking, F is the
homomorphism given by filling in the n holes.

Claim 1. There exists a map G :Hg,0→H0,0 such that the composition

Θ3 =H0,1
E−−→Hg,n

F−−→Hg,0
G−−→H0,0 = Θ3

is the identity.

Let Λ = Σg,0. Let Y be a fixed handlebody of genus g. Given i= 1, 2 we write Yi = Y . Since
S3 has a Heegaard decomposition of genus g there exist diffeomorphisms ςi : Λ→ ∂Yi such that
Y1 ∪ς1◦ς−1

2
Y2 = S3.

We write H =H1(Λ). We will see in § 3.3 that the action of a homology cylinder M over Λ
on H1(Λ) gives rise to a homomorphism ϕ :Mg,0→Aut(H). We will write Aut∗(H) = ϕ(Mg,0).
We now pick a splitting map ψ : Aut∗(H)→Mg,0, i.e., a map such that ϕ ◦ ψ is the identity on
Aut∗(H). We pick ψ such that ψ(id) = id.

Note that we can not arrange that ψ is a homomorphism. Now consider the following map:

G : Cg,0 7→ {Z-homology spheres},
(M, i+, i−) 7→ Y1 ∪ς1◦i−1

+
M ∪i−◦ψ(ϕ(M))−1◦ς−1

2
Y2.

Note that this map is indeed well-defined, i.e., the right-hand side is an integral homology
3-sphere. Also note that this map descends to a map Hg,0→Θ3. It is easy to verify that

Θ3 =H0,1
E−−→Hg,n

F−−→Hg,0
G−−→H0,0 = Θ3

is indeed the identity map. This concludes the proof of the claim.
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Before we continue we point out that the map G is in general not a monoid morphism. We
now obtain the following commutative diagram.

Θsmooth
3

= //

��

Hsmooth
0,1

E //

��

Hsmooth
g,n

��

F // Hsmooth
g,0

��

G // Hsmooth
0,0

��

= // Θsmooth
3

��
Θtop

3
= // Htop

0,1
E // Htop

g,n
F // Htop

g,0
G // Htop

0,0
= // Θtop

3

Since G ◦ F ◦ E = id we deduce that Θsmooth
3

E−→Hsmooth
g,n is injective. Furthermore, it follows from

Θtop
3 = 0 and from the above diagram that E(Θsmooth

3 ) is contained in the kernel of the projection
map Hsmooth

g,n →Htop
g,n . Since Θsmooth

3 has infinite rank this concludes the proof of the first part of
Theorem 1.1.

If g = 0, then we can take G to be the identity map. In particular, all maps are homo-
morphisms, and the homomorphism F :Hsmooth

0,n →Θsmooth
3 =:A has the desired properties. 2

3. Torsion invariants of homology cylinders

3.1 The torsion invariant

Let (M, N) be a pair of manifolds. Let ϕ : π1(M)→H be a homomorphism to a free abelian
group. We denote the quotient field of Z[H] by Q(H). Denote by p : M̃ →M the universal
covering of M and write Ñ := p−1(N). Then we can consider the chain complex

C∗(M, N ;Q(H)) = C∗(M̃, Ñ ; Z)⊗Z[π1(M)] Q(H).

Let B∗ be a basis for the graded vector space H∗(M, N ;Q(H)); then we obtain the corresponding
torsion

τB∗(M, N ;Q(H)) ∈Q(H)× :=Q(H)− {0}.
This torsion invariant is well-defined up to multiplication by an element of the form ±h (h ∈H).
If (M, N) is Q(H)-acyclic, then B∗ is the trivial basis and we just write τ(M, N ;Q(H)). We
will not recall the definition of torsion but refer instead to the many excellent expositions, for
example, [Mil66, Nic03, Tur01, Tur02].

We will several times make use of the following well-known lemma (e.g., see [KLW01,
Proposition 2.3] for a proof).

Lemma 3.1. If H∗(M, N) = 0 and if π1(M)→H is a homomorphism to a free abelian group,
then H∗(M, N ;Q(H)) = 0.

We also adopt the following notation: given p, q ∈Q(H) we write p .= q if p= εh · q for some
ε ∈ {−1, 1} and h ∈H. Put differently, p .= q if and only if p and q agree up to multiplication by
a unit in Z[H].

3.2 Torsion of homology cylinders

Let (M, i+, i−) be a homology cylinder over Σ. Write H =H1(Σ). We normally think of H as a
multiplicative group. Denote Σ± = i±(Σ)⊂M . Consider

ϕ : π1(M)−→H1(M)
∼=←−−H1(Σ+)

i+←−−H =H1(Σ).
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Since H∗(M, Σ+) = 0 it follows from Lemma 3.1 that H∗(M, Σ+;Q(H)) = 0. Therefore, we can
define

τ(M) := τ(M, Σ+;Q(H)) ∈Q(H)×.

This is referred to as the torsion of the homology cylinder M = (M, i+, i−).
We will now show that the torsion can be defined in terms of homology. First note that Z[H]

is a unique factorization domain, so that, for any finitely generated Z[H]-module M , the order
of M is defined as an element of Z[H]. We denote it by ordM . (For a precise definition, e.g.,
see [Tur01, § 4.2].) Note that ordM is well-defined up to multiplication by a unit in Z[H].

Lemma 3.2. For any homology cylinder M we have τ(M) .= ordH1(M, Σ+; Z[H]).

Proof. It is well-known that τ(M) =
∏
i(ordHi(M, Σ+; Z[H]))(−1)i+1

(e.g., see [Tur01, § 4.2]).
Since H1(Σ+)→H1(M) is an isomorphism it follows immediately that H0(M, Σ+; Z[H]) = 0.
One can check that Hi(M, Σ+; Z[H]) = 0 for all i > 1, by using Poincaré duality, universal
coefficient spectral sequence, and the fact that H1(M, Σ−; Z[H]) is torsion. 2

Remark 3.3.

(i) The torsion of a homology cylinder was first studied by Sakasai [Sak06] and is closely related
to the torsion invariants of sutured manifold introduced independently by Benedetti and
Petronio [BP01] and Friedl, Juhasz and Rasmussen [FJR09].

(ii) Note that string links give rise to homology cylinders in a natural way. In this context the
torsion invariant was first studied by Kirk, Livingston and Wang [KLW01, Definition 6.8].

(iii) By Lemma 3.2 (see also [FJR09, Lemma 3.5]) the torsion τ(M) is in fact an element in
Z[H]; furthermore, if ε : Z[H]→ Z denotes the augmentation defined by ε(h) = 1 for h ∈H,
then ε(τ(M)) = |H1(M, Σ+)|= 1 (e.g., see [Tur86] and [FJR09, Proposition 5]).

(iv) By Lemma 3.2, if M = (M, i+, i−) is the homology cylinder over an annulus corresponding
to a knot K ⊂ S3 as in § 2.2, then τ(M) = ∆K , the Alexander polynomial of K.

(v) If ϕ ∈Mg,n, then H∗(M(ϕ), Σ+; Z[H]) = 0 and therefore τ(M(ϕ)) .= 1 ∈ Z[H].

3.3 Action of homology cylinders on H1(Σ)
Before we can state the behavior of torsion under the product operation we have to study the
action of a homology cylinder on the first homology of the surface. Our notation is as follows.
Throughout this paper we write H =H1(Σ). Given a homology cylinder (M, i+, i−) over Σ we
denote the automorphism

(i+)−1
∗ (i−)∗ :H =H1(Σ)

∼=−−−−→
(i−)∗

H1(M)
∼=−−−−−→

(i+)−1
∗

H

by ϕ(M) = ϕ(M, i+, i−). Let H∂ be the image of H1(∂Σ) in H, and let

Aut∗(H) = {ϕ ∈Aut(H) | ϕ fixes H∂ and preserves the intersection form of Σ}.

We recall the following result.

Proposition 3.4 (Goda and Sakasai [GS08, Proposition 2.3, Remark 2.4]). Let M be a
homology cylinder over Σ. Then ϕ(M) ∈Aut∗(H).

Let Ĥ =H/H∂ =H1(Σ̂) where Σ̂ denotes Σ with capped boundary circles. We write H =
H∂ × Ĥ by choosing a splitting. Choosing an arbitrary basis of H∂ and a symplectic basis
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of Ĥ =H1(Σ̂), Aut∗(H) consists of all matrices P of the form[
idn−1 ∗

0 P0

]
with P0 ∈ Sp(2g, Z) [GS08, Remark 2.4]. Note that any P ∈Aut∗(H) is indeed realized by a
homology cylinder; in fact there exists ϕ ∈Mg,n such that the induced action on H1(Σg,n) is
given by P (e.g., see [FM10]).

3.4 Product formulas for torsion
Each ϕ ∈Aut(H) induces an automorphism of Z[H], which we also denote by ϕ. In particular, a
homology cylinder M over Σ gives rise to ϕ(M) ∈Aut(Z[H]). We can now formulate the following
proposition (e.g., see [Mil66, § 7] and [Sak08, Proposition 6.6] for related results).

Proposition 3.5. Let M = (M, i+, i−) and N = (N, j+, j−) be homology cylinders over Σ.
Then

τ(M ·N) .= τ(M) · ϕ(M)(τ(N)).

Note that Q(H)× is a multiplicative abelian group. The action of Aut∗(H) on H extends to an
action of Aut∗(H) on Q(H)×, and we can thus form the semidirect product Aut∗(H) nQ(H)×.
We can now formulate the following corollary.

Corollary 3.6. The following is a well-defined homomorphism of monoids

Cg,n→Aut∗(H) nQ(H)×,

M 7→ (ϕ(M), τ(M)).

Since we are mostly interested in abelian quotients of Cg,n we will now show that τ also gives
rise to a homomorphism to an abelian group. We define A(H) to be the subgroup of Q(H)×

generated by the following set:

{±h · p−1 · ϕ(p) | h ∈H, p ∈Q(H)× and ϕ ∈Aut∗(H)}.

We write A=A(H) when H is clearly understood from the context. The following is an
immediate consequence of Proposition 3.5.

Corollary 3.7. The torsion invariant gives rise to a monoid homomorphism

τ : Cg,n −→Q(H)×/A.

Proof of Proposition 3.5. We write Σ± = i±(Σ) and Λ± = j±(Σ). Let W =M ∪Σ−=Λ+ N , where
i− ◦ (j+)−1 is the gluing map. We view M , N , Σ− (=Λ+) as subspaces of W . A Mayer–
Vietoris argument shows that the inclusion map induces an isomorphism H1(M)→H1(W ).
Let F =H1(M). We equip W with the map H1(W )∼=H1(M) = F induced by the inclusion.
Restricting this, we equip Σ− (=Λ+), M , N with maps into F . For notational convenience,
we denote Q=Q(F ), the quotient field of Z[F ]. We have the following short exact sequence of
cellular homology:

0−→ C∗(Σ−;Q)−→ C∗(M, Σ+;Q)⊕ C∗(N ;Q)−→ C∗(W, Σ+;Q)−→ 0.

Here the map C∗(Σ−;Q)→ C∗(N ;Q) is given by −(j+)∗ ◦ (i−)−1
∗ and the map C∗(Σ−;Q)→

C∗(M, Σ+;Q) is given by the inclusion map. Let B∗ be a basis for the graded Q-module
H∗(Σ−;Q). It follows from the long exact homology sequence that the inclusion map induces
an isomorphism H∗(Σ−;Q)→H∗(N ;Q). We equip H∗(N ;Q) with the basis C∗ given by
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the image of B∗. We consider the resulting torsions τB∗(Σ−;Q), τ(M, Σ+;Q), τC∗(N ;Q), and
τ(W, Σ+;Q). By applying [Mil66, Theorem 3.2] to the above short exact sequence, the torsions
satisfy the following:

τ(M, Σ+;Q) · τC∗(N ;Q) .= τ(W, Σ+;Q) · τB∗(Σ−;Q).

We equip H∗(Λ+;Q) with the basis D∗ = (j+)∗ ◦ (i−)−1
∗ (B∗). Similarly, we have

τC∗(N ;Q) .= τ(N, Λ+;Q) · τD∗(Λ+;Q).

From the above equations and the tautology τD∗(Λ+;Q) = τB∗(Σ−;Q), it follows that

τ(W, Σ+;Q) .= τ(M, Σ+;Q) · τ(N, Λ+;Q).

We now apply (i+)−1
∗ : F →H to the above equality. From the commutative diagram

H1(N)
∼= // H1(W ) H1(M) = F

∼=oo

H
(j+)∗

eeKKKKKKKKKK (i−)∗

77pppppppppppp

ϕ(M)
// H

(i+)∗

OO

it follows that our H1(N)→ F composed with (i+)−1
∗ gives ϕ(M)(j+)−1

∗ . Therefore, we have

τ(M ·N) .= τ(M) · ϕ(M)(τ(N)). 2

Remark 3.8. Let H be a finitely generated free abelian group. Given a non-zero polynomial
p ∈ Z[H] we denote by m(p) ∈ R>0 its Mahler measure (e.g., see [EW99, SW02, SW04]). It is well-
known that given p, q ∈ Z[H] and h ∈H we have m(p · q) =m(p) ·m(q) and m(±h · p) =m(p).
Furthermore, given any ϕ ∈Aut(H) we have m(ϕ(p)) =m(p) (e.g., see [EW99, § 3]). It follows
that M 7→m(τ(M)) defines a monoid homomorphism Cg,n→ R>0. Using this homomorphism
and using the examples of § 4.3 one can reprove [GS09, Theorem 2.4].

Now let M be a homology cylinder over a surface Σ = Σg,n and let M ′ be a homology cylinder
over a surface Σ′ = Σ′g′,n′ . Assume that n, n′ > 0 and fix a boundary component c in Σ and fix a
boundary component c′ in Σ′. Recall that gluing now gives us a homology cylinder M ∪c,c′ M ′
over Σ ∪c=c′ Σ′.

Proposition 3.9. Denote by i and i′ the inclusion-induced maps of H1(Σ) and H1(Σ′) into
H1(Σ ∪c=c′ Σ′), respectively. Then the following holds:

τ(M ∪c,c′ M ′) = i(τ(M)) · i′(τ(M ′)).

Proof. Write H =H1(Σ ∪c=c′ Σ′). By the Mayer–Vietoris formula for torsion we have

τ(M ∪c,c′ M ′) = τ(M ;Q(H)) · τ(M ′;Q(H)).

It is seen easily that τ(M ;Q(H)) = i(τ(M)) and τ(M ′;Q(H)) = i′(τ(M ′)) from the definitions. 2

3.5 Torsion and homology cobordisms
Let H be a free abelian multiplicative group. We equip Z[H] with the standard involution of a
group ring, i.e., h= h−1 for h ∈H and extend it to Q(H) by setting p · q−1 = p · q−1.

The next theorem can be viewed as a generalization of the classical Fox–Milnor theorem
[FM66] that the Alexander polynomial of a slice knot factors as ∆K(t) .= f(t)f(t−1) for some
f(t) ∈ Z[t±1].
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Theorem 3.10. Let M = (M, i+, i−) and N = (N, j+, j−) be homology cylinders over a surface
Σ which are homology cobordant. Write H =H1(Σ). Then

τ(M) .= τ(N) · q · q̄ ∈Q(H)×

for some q ∈Q(H)×.

Proof. Let W be a homology cobordism between M and N . View Σ+ = i+(Σ) = j+(Σ) as a
subspace of W . Note that H1(Σ+)→H1(W ) is an isomorphism. We now equip W with the
homomorphism

H1(W )
∼=−−→H1(Σ+)

(i+)−1
∗−−−−→H.

By the above we have H1(W, Σ+) = 0. Therefore, it follows from Lemma 3.1 that
H1(W, Σ+;Q(H)) = 0 and we can therefore consider τ(W ) := τ(W, Σ+;Q(H)) ∈Q(H). Also
note that H∗(W,M) = 0 and H∗(W, N) = 0. We can hence also think of the torsion invariants
τ(W,M) := τ(W,M ;Q(H)) and τ(W, N) := τ(W, N ;Q(H)). From the short exact sequence of
acyclic chain complexes

0−→ C∗(M, Σ+;Q(H))−→ C∗(W, Σ+;Q(H))−→ C∗(W,M ;Q(H))−→ 0,

we obtain τ(W ) .= τ(M) · τ(W,M). Similarly, τ(W ) .= τ(N) · τ(W, N). By duality we have
τ(W,M) .= τ(W, N)

−1
(e.g., see [CF10, KL99, Mil66]). Hence

τ(M) .= τ(N) · τ(W, N) · τ(W, N),

and the theorem follows. 2

Define
N(H) = {±h · q · q̄ | q ∈Q(H)×, h ∈H}.

Obviously N(H) is a subgroup of Q(H)×. As we do with A=A(H), we often write N =N(H).
The following corollary is now an immediate consequence of Corollary 3.6 and Theorem 3.10.

This corollary should be compared to [Mor08, Theorem 5.1].

Corollary 3.11. The map Cg,n→Aut∗(H) nQ(H)× defined in Corollary 3.6 descends to a
group homomorphism

Hg,n −→Aut∗(H) nQ(H)×/N.

Since we are mostly interested in abelian quotients of Hg,n we will for the most part work
with the following corollary, which is an immediate consequence of Theorem 3.10.

Corollary 3.12. The torsion invariant gives rise to a group homomorphism

τ :Hg,n −→Q(H)×/AN,

where H =H1(Σg,n). This descends to a homomorphism of the quotient of Hg,n modulo the
normal subgroup 〈Mg,n〉 generated by the mapping class group Mg,n.

In later sections, we will show that the image of this torsion homomorphism is large. Indeed,
it has a quotient isomorphic to (Z/2)∞ if b1(Σg,n) = rankH > 0, and has a quotient isomorphic
to Z∞ if either n > 2, or n= 2 and g > 0.

3.6 Symmetry and asymmetry of torsion
It is well-known that the Alexander polynomial ∆K(t) of a knot K is symmetric, i.e., ∆K(t) .=
∆K(t−1). Furthermore, the Alexander polynomial of any closed 3-manifold or any 3-manifold
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with toroidal boundary is symmetric (e.g., see [Tur86]). In this section we will study the symmetry
properties of the torsion of homology cylinders.

We start out with the following observation.

Lemma 3.13. Let Σ be a surface which is either an annulus or a surface of genus one with at
most one boundary component. Let M be a homology cylinder over Σ. Then τ(M) .= τ(M).

Proof. First assume that Σ is either an annulus or a torus. We write H =H1(M), Q=Q(H)
and consider the torsion τ(M, Σ+;Q) corresponding to π1(M)→H1(M) =H. Clearly it suffices
to show that τ(M, Σ+;Q) is symmetric. First note that Σ+ has Euler characteristic zero. It can
be seen easily that H∗(Σ+;Q) = 0, in particular its torsion τ(Σ+;Q) is defined. Also, from this
it follows that M is Q-acyclic so that τ(M ;Q) is defined. It is well-known that the torsion of a
torus is trivial and for an annulus it equals (1− t)−1, where t is a generator of the first homology
group. It follows in particular that τ(Σ+;Q) .= τ(Σ−;Q). From the long exact sequence of torsion
corresponding to the pair (M, Σ±) it now follows that τ(M, Σ±;Q) = τ(M ;Q) · τ(Σ±;Q)−1.
Also, from duality for torsion we have τ(M, Σ+;Q) .= τ(M, Σ−;Q). Combining these equalities,
it follows that

τ(M, Σ+;Q) = τ(M ;Q) · τ(Σ+;Q)−1

= τ(M ;Q) · τ(Σ−;Q)−1

= τ(M, Σ−;Q)
.= τ(M, Σ+;Q)

as desired.

Now assume that Σ is a surface of genus one with exactly one boundary component. Let Σ′

be a disk and T = Σ ∪ Σ′ the result of gluing Σ and Σ′ along their boundary components. Let
M ′ = Σ′ × [0, 1]. Note that H1(Σ)→H1(T ) is an isomorphism. It now follows immediately from
Proposition 3.9 that τ(M) = τ(M ∪M ′), in particular τ(M) equals the torsion of a homology
cylinder over a torus, which is symmetric as we saw above. 2

In general torsion is not symmetric though. To our knowledge this phenomenon was first
observed in [FJR09, Example 8.5] in the context of sutured manifolds and rational homology
cylinders. More examples will be given in § 4.

On the other hand recall that in order to define the torsion homomorphism in Corollaries 3.7
and 3.12, we thought of torsion invariants modulo A=A(H), i.e., up to the action of Aut∗(H).
When the number of boundary components n6 1, Aut∗(H) is simply the group of automorphisms
on H preserving the intersection pairing on Σ. In particular, the map ϕ(h) = h−1 is in Aut∗(H).
Therefore, p ·A= ϕ(p) ·A= p̄ ·A in Q(H)×/A for any p. In other words, modulo A, everything
is symmetric.

Lemma 3.14. Suppose Σ is a surface with at most one boundary component. Then for any
homology cylinder M over Σ, we have τ(M) = τ(M) in Q(H)×/A.

Therefore, the only remaining case is when either n > 2, or n= 2 and g > 0. We will show
that in these cases the torsion invariant τ(M) is in general asymmetric even modulo A=A(H).

In the next section we will consider general methods to construct homology cylinders and to
compute their torsion, which will be used to illustrate the asymmetry of torsion.
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4. Constructions and computation

In this section we will compute torsion for various homology cylinders. The examples illustrate
the computation of torsion and they will also be used later to prove Theorems 1.2 and 1.3.

4.1 Handle decomposition
For any homology cylinder (M, i+, i−) over Σ, the pair (M, Σ+) admits a handle decomposition
without 0- and 3-handles. A handle decomposition of a pair (M, Σ+) is given as submanifolds

Σ+ × [0, 1] =M0 ⊂M1 ⊂M2 =M

where Mi is obtained by attaching i-handles to Mi−1 for i= 1, 2. M is a homology cylinder if
and only if the numbers of 1-handles and 2-handles are equal, say r, and the boundary map

∂ : C2(M, Σ+) = Zr −→ C1(M, Σ+) = Zr

is invertible.
From the definition, the torsion τ(M) = τ(M, Σ+;Q(H)) is equal to the determinant of the

r × r matrix A over Z[H] which represents the Z[H]-coefficient boundary map

∂ : C2(M, Σ+; Z[H]) = Z[H]r −→ C1(M, Σ+; Z[H]) = Z[H]r

with respect to the bases given by 1- and 2-handles. When a handle decomposition is explicitly
given, the boundary map can be effectively computed using a standard method.

This is often useful in computing the torsion of a homology cylinder with a given handle
decomposition. For readers who are not familiar with this type of computation, it can be described
best by a detailed example. The construction and computation below will also be used later, to
show the existence of non-trivial homomorphisms of Hg,n onto Z.

4.2 An example of asymmetric torsion
Let Σ = Σ+ = Σg,n with g > 0 and n= 2. Let M1 be the 3-manifold obtained by attaching one
1-handle to Σ× [0, 1]. The boundary of M1 is the union of Σ, ∂Σ× [0, 1], and a genus g + 1
surface, say Σ1, which has the same boundary as Σ. We attach one 2-handle to M1 along the
simple closed curve α on Σ1 as illustrated in Figure 1. The point ∗ is the basepoint and the gray
band a a represents a parallel strands. We denote the resulting 3-manifold by M =M(a).

We have H1(M1) = Z×H where Z is generated by the 1-handle. Recall that we can find
a splitting H =H∂ × Ĥ where H∂ is the image of H1(∂Σ) and Ĥ =H1(Σ with capped-off
boundary). In our case H∂ and Ĥ have rank one and 2g, respectively. We choose generators
t of Z, x of H∂ , and yi (i= 1, . . . , 2g) of Ĥ which lie on Σ1 and which are dual to the curves
t∗, x∗, y∗i illustrated in Figure 1 with respect to the intersection pairing on Σ1. That is, t is
represented by a loop which is disjoint to x∗, y∗i and has intersection numbers +1 with t∗ on Σ1,
and similarly for other generators. Given a curve on Σ1, its homology class in H1(M1) can be
determined easily by counting the algebraic intersections with the dual curves.

For the curve α, we have [α] = (t, xaya1) ∈ Z×H =H1(M1). Thus the homology class of α in
H1(M1, Σ+) = Z is t, and so the boundary map

∂ : C2(M, Σ+) = Z−→ C1(M, Σ+) = Z

is the identity. Therefore, our M is a homology cylinder.
Now we compute the Z[H]-coefficient boundary map. Since the attaching circle gives a relation

t= (xy1)−a, the generator t is sent to (xy1)−a under H1(M)
∼=−−→H1(Σ+) =H. The Z[H]-valued
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Figure 1. Attaching circle α on Σ1.

intersection number λ(α, β) of α with the belt circle β of the 1-handle is given by the following
formula: for a point u on α, let αu be the oriented initial segment of α from the basepoint ∗
to u. Then

λ(α, β) =
∑
u∈α∩β

(
ε(u) ·

( ∏
{v∈αu∩t∗

(xy1)−aε(v)

)
·
( ∏
c∈{x,y1,y2,...,y2g}

∏
w∈αu∩c∗

cε(w)

))
.

Here, ε(u) is the usual sign of u ∈ α ∩ β. Precisely, ε(u) = 1 if (dα/dt, dβ/dt) at u agrees with
the orientation of Σ1, and −1 otherwise. The numbers ε(v), ε(w) are given similarly.

From Figure 1, it can be seen that

λ(α, β) = (1 + (−1) · x) + (1 · (xy) + (−1) · (x2y)) + · · ·
+ (1 · (xa−1ya−1) + (−1) · (xaya−1)) + 1 · xaya

= 1 + (y − 1)x+ y(y − 1)x2 + · · ·+ ya−1(y − 1)xa

where y = y1. The Z[H]-coefficient boundary map is the 1× 1 matrix [λ(α, β)]. Therefore,
τ(M(a)) = λ(α, β).

It is obvious that τ(M(a)) is asymmetric in the sense that τ(M(a)) 6 .= τ(M(a)). In
Example 5.9, we will show that τ(M(a)) and τ(M(a)) are distinct even modulo A=A(H).

4.3 Tying in a string link
In this subsection we describe an operation that modifies a homology cylinder by ‘tying in’ a
string link, and investigate its effect on the torsion invariant.

First we recall the definition of a string link. Fix m points p1, . . . , pm in the interior of the disk
D2. An m-component string link β is the disjoint union of m properly embedded disjoint oriented
arcs βi (i= 1, . . . , m) in D2 × [0, 1] from pi × 0 to pi × 1. We denote the exterior of a string link β
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in D2 × [0, 1] by Eβ. The string link
⋃
pi × [0, 1] ∈D2 × [0, 1] is called the trivial string link.

The exterior of the trivial string link is denoted by E0. Note that if β is framed, then there is a
canonical identification of ∂Eβ and ∂E0 which restricts to the identity on D2 × {0, 1} ∩ E0.

Remark 4.1. Including Theorem 4.2, all results in this section hold for string links in homology
D2 × [0, 1] as well.

Torsion of string links. We recall the definition of the torsion invariant for string links
(cf. [KLW01, Definition 6.8]). Let X = (D2 × 0) ∩ E0, a subspace of D2 × [0, 1]. Suppose β is a
string link and φ :H1(Eβ)→H is a homomorphism to a free abelian group H. Since (Eβ, X)
is Z-acyclic, it follows from Lemma 3.1 that (Eβ, X) is Z[H]-acyclic. We denote by τφβ ∈ Z[H]×

the torsion of the cellular chain complex C∗(Eβ, X; Z[H]). When φ is clearly understood from the
context we write τβ = τφβ . As usual, τβ is well-defined up to multiplication by ±h (h ∈H).

Note that, for any string link β, Eβ can be viewed as a homology cylinder over the surface X.

Formula for string link tying. Now consider a homology cylinder (M, i+, i−) on Σ = Σg,n

with H =H1(Σ) and an embedding f : E0→ int(M). For any framed string link β, define

M(f, β) = (M − f(int(E0))) ∪f(∂E0)=∂Eβ Eβ.

Since Eβ has the same homology as E0, it follows that (M(f, β), i+, i−) is a homology cylinder.
We say that M(f, β) is obtained from M by tying the string link β.

The map f gives rise to a homomorphism

H1(Eβ)
∼=−−→H1(X)

∼=−−→H1(E0)
f∗−−→H1(M)←−−H1(Σ+)

(i+)−1
∗−−−−→H1(Σ) =H

induced by the inclusions. We denote the resulting torsion invariant of β by τ fβ .

Theorem 4.2. The torsion invariant of the homology cylinder M(f, β) is given by τ(M(f, β)) .=
τ(M) · τ fβ .

Proof. We write Σ+ = i+(Σ). Let M ′ =M − f(int(E0)). Choose bases of H∗(X;Q(H)) and
H∗(M ′, Σ+;Q(H)). Since (Eβ, X) is Z-acyclic, it is Q(H)-acyclic, and therefore for any string
link β (including the trivial one) our basis of H∗(X;Q(H)) determines a basis of H∗(Eβ;Q(H))
via the inclusion-induced map. Define the torsion invariants τ(X), τ(Eβ), τ(M ′, Σ+) ∈Q(H)×

(up to the usual ambiguity) using these bases.
Consider the following short exact sequence:

0→ C∗(∂E0;Q(H))−→ C∗(M ′, Σ+;Q(H))⊕ C∗(Eβ;Q(H))
→ C∗(M(f, β), Σ+;Q(H))−→ 0.

Since (M(f, β), Σ+) is Q(H)-acyclic, the bases we have chosen give rise to a basis of
H∗(∂E0;Q(H)). Define τ(∂E0) ∈Q(H)× using this basis. By [Mil66, Theorem 3.2], we have

τ(M ′, Σ+) · τ(Eβ) .= τ(∂E0) · τ(M(f, β)).

Considering the special case of a trivial string link β, we obtain

τ(M ′, Σ+) · τ(E0) .= τ(∂E0) · τ(M).

Combining these, we have

τ(M(f, β)) .= τ(M) · τ(Eβ) · τ(E0)−1.
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From the short exact sequence

0−→ C∗(X;Q(H))−→ C∗(Eβ;Q(H))−→ C∗(Eβ, X;Q(H))−→ 0

with (Eβ, X) acyclic, we obtain τ(Eβ) .= τ(X) · τ fβ . Note that E0 =X × [0, 1], and hence τ(E0) =
τ(X). The desired formula now follows immediately. 2

Special case: tying in a knot. We will now study the case m= 1. Note that a string link β
with one component gives us a knot K in S3. Furthermore, for any embedding f : E0→ int(M),
it can be seen easily that the torsion τ fβ is equal to ∆K(h), where ∆K(t) is the Alexander
polynomial of K and h is the image of the generator of H1(E0) = Z under the map H1(E0)→H
induced by f . Therefore, by Theorem 4.2, the torsion of M(f, β) can be described in terms of
the Alexander polynomial of K. The following is a special case of this, which gives a group
homomorphism of the (smooth or topological) concordance group C of knots in S3 into Hg,n.
Recall that E0 =X × [0, 1] and X = E0 ∩ (D2 × 0).

Proposition 4.3. Let g, n> 0. We write Σ = Σg,n and M = Σ× [0, 1]. Let ι :X → int(Σ) be
an embedding, and let f : E0→ int(M) be the embedding f(x, t) = ι(x, t/2 + 1/4). Then the
assignment K 7→M(f, K) descends to a group homomorphism

C −→Hg,n.

Furthermore,

τ(M(f, K)) = ∆K(h)
where h is the image of the generator of H1(X)∼= Z under ι∗ :H1(X)→H.

Proof. It is straightforward to verify that M(f, K1#K2)∼=M(f, K1) ·M(f, K2) and that the
assignment K 7→M(f, K) in fact descends to a group homomorphism C →Hg,n. The conclusion
on torsion has already been proven in the paragraph above Proposition 4.3. 2

5. Epimorphisms onto infinitely generated abelian groups

In this section we will construct epimorphisms of Hg,n onto non-trivial abelian groups. This will
give a proof of Theorems 1.2 and 1.3. Throughout § 5, we fix g, n> 0 and write Σ = Σg,n and
H =H1(Σ).

5.1 Algebraic structure of the torsion group
Recall that our torsion invariant lives in the multiplicative abelian group Q(H)×/AN .
In this subsection we investigate the algebraic structure of Q(H)×/AN . We will think
of symmetric/asymmetric parts of Q(H)×/AN , and define certain Z/2- and Z-valued
homomorphisms which form sets of complete invariants of these parts, respectively. To be more
precise, let

Q(H)sym = {p ∈Q(H)× | p= p̄ in Q(H)×/A}.
Note that AN ⊂Q(H)sym. There is an exact sequence

1−→ Q(H)sym

AN
−→ Q(H)×

AN
−→ Q(H)×

Q(H)sym
−→ 1

which can be viewed as a decomposition of Q(H)×/AN into symmetric and asymmetric parts.
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Recall that H∂ is the image of H1(∂Σ) in H and

Aut∗(H) = {ϕ ∈Aut(H) | ϕ fixes H∂ and preserves the intersection form of Σ}.

We define an equivalence relation ∼ on Z[H]− {0} by p∼ q if p .= ϕ(q) for some ϕ ∈Aut∗(H).
Note that if p∼ q then p and q represent the same element in Q(H)×/A. From now on we say p
is self-dual if p∼ p̄.

Recall that Z[H] is a unique factorization domain, so that, for each p ∈Q(H) and irreducible
λ ∈ Z[H], we can think of the exponent of λ in the factorization of p. (The exponent is an integer
and may be negative.) For an irreducible element λ in Z[H], we define a function eλ :Q(H)×→ Z
as follows: given p ∈Q(H), eλ is the sum of exponents of distinct irreducible factors µ of p such
that µ∼ λ. (As usual, irreducible factors are distinguished up to multiplication by a unit in Z[H].)

Proposition 5.1.

(i) If λ is a self-dual irreducible element in Z[H], then the map

Ψλ :Q(H)sym/AN −→ Z/2

defined by Ψλ(p ·AN) = eλ(p) + 2Z is a surjective group homomorphism. Furthermore,

Ψ =
⊕
[λ]

Ψλ :Q(H)sym/AN −→
⊕
[λ]

Z/2

is an isomorphism, where [λ] runs over the equivalence classes of self-dual irreducible λ.

(ii) If µ is a non-self-dual irreducible element in Z[H], then the map

Θµ :Q(H)×/Q(H)sym −→ Z

defined by Θµ(p ·Q(H)sym) = eµ(p)− eµ̄(p) is a surjective group homomorphism.
Furthermore,

Θ =
⊕
{[µ],[µ̄]}

Θµ :Q(H)×/Q(H)sym −→
⊕
{[µ],[µ̄]}

Z

is an isomorphism, where {[µ], [µ̄]} runs over the unordered pairs of equivalence classes of
non-self-dual irreducible µ and its involution µ̄.

Consequently, Q(H)×/AN is isomorphic to (
⊕

[λ] Z/2)⊕ (
⊕
{[µ],[µ̄]} Z).

Remark 5.2.

(i) In the definition of Θ, we have one summand for the two classes [µ] and [µ̄]. Here we have
sign ambiguity since Θµ =−Θµ̄, but this does not cause any problems in our conclusions.

(ii) The homomorphisms Ψλ and Ψ extend to homomorphisms of Q(H)×/AN , which will also
be denoted by Ψλ and Ψ. Also, we denote by Θ and Θµ the homomorphisms of Q(H)×/AN
induced by Θ and Θµ. Then the isomorphism in the last sentence of Theorem 5.3 can be
written as (Ψ,Θ).

(iii) Although Θµ could be defined for self-dual µ as well, it is not interesting since the resulting
Θµ is always zero.

Proof. First we will observe that Ψλ and Ψ are well-defined surjective homomorphisms. Since the
factorization into irreducible factors is preserved by the Aut∗(H)-action, eλ is invariant under ∼
for any irreducible λ. If λ is self-dual, then eλ(uū) = eλ(u) + eλ̄(ū) = 2eλ(u). It follows that Ψλ

is a well-defined homomorphism. The surjectivity of Ψλ and Ψ follows from the observation that
Ψλ′(λ ·A) equals 1 if λ′ ∼ λ, and 0 otherwise.
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To see that Θµ and Θ are well-defined homomorphisms, observe that for p ∈Q(H)sym,
eµ(p) = eµ̄(p̄) = eµ̄(p). Their surjectivity now follows from the observation that for non-self-dual
irreducible µ and µ′, Θµ′(µ ·Q(H)sym) equals 1 if µ′ ∼ µ, −1 if µ′ ∼ µ̄, and 0 otherwise.

For the injectivity of Ψ, suppose f ∈Q(H)sym represents an element in the kernel of Ψ. We
can rewrite the irreducible factorization of f to obtain an expression f = λm1

1 · · · λmrr · u, where
the λi are mutually non-equivalent self-dual irreducible elements, mi ∈ Z, and u ∈AN . Note that
λ2
i = λiλ̄i = 1 in Q(H)sym/AN since λi is self-dual. Evaluating Ψλi , we have that mi is even for

each i. From this it follows that f = 1 in Q(H)sym/AN .
The injectivity of Θ is proved similarly: if f ∈Q(H)× represents an element in the kernel of Ψ,

then from the irreducible factorization of f we obtain an expression f = µm1
1 µ̄n1

1 · · · µmrr µ̄nrr · u,
where mi, ni ∈ Z, u ∈Q(H)sym, and the µi are non-self-dual irreducible elements such that
µi 6∼ µj 6∼ µ̄i whenever i 6= j. Evaluating Θµi , we have mi = ni for each i. It follows that f = 1 in
Q(H)×/Q(H)sym. 2

Now, in order to understand the structure of Q(H)×/AN , the only remaining part is to count
the number of summands of Ψ and Θ in Proposition 5.1. To state the result, we introduce the
following definition: we say that (g, n) is small if either n6 1 or n= 2 and g = 0. Otherwise we
say that (g, n) is large.

Theorem 5.3. Suppose H is non-trivial, i.e., Σg,n is neither a sphere nor a disk. Then the
following hold:

(i) the homomorphism Ψ is an isomorphism of Q(H)sym/AN onto (Z/2)∞;

(ii) if (g, n) is small, then Q(H)×/Q(H)sym = 0. If (g, n) is large, then Θ is an isomorphism of
Q(H)×/Q(H)sym onto Z∞.

Consequently,

Q(H)×

AN
∼=

{
(Z/2)∞ if (g, n) is small,

(Z/2)∞ ⊕ Z∞ if (g, n) is large.

Proof. Recall that in § 3.6 we observed that there is no non-self-dual µ if (g, n) is small. The first
sentence of Theorem 5.3(ii) is an immediate consequence. In the following subsections, we will
realize, as the values of torsion invariants of homology cylinders, infinitely many self-dual classes
[λ] when H is non-trivial (see Theorem 5.4), and infinitely many non-self-dual classes [µ] when
(g, n) is large (see Theorem 5.6). 2

5.2 Proofs of Theorems 1.2 and 1.3
In §§ 5.2 and 5.3, we give proofs of Theorems 1.2 and 1.3. Along the way we also conclude the
proof of Theorem 5.3.

Theorem 5.4. If b1(Σg,n)> 0, then there exists a subgroup S ⊂Hg,n isomorphic to (Z/2)∞

such that

S −→Hg,n
τ−−→Q(H)×/AN Ψ−−→

⊕
[λ]

Z/2

is an injection whose image is the sum of a certain infinite set of Z/2 summands of
⊕

[λ] Z/2.

Proof. We pick non-trivial knots Ki (i= 1, 2, . . .) which are negative amphicheiral with
irreducible Alexander polynomials such that the multisets Ci of non-zero coefficients
of ∆i(t) := ∆Ki(t) are mutually distinct up to sign. For example, one can use the family of knots
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described in [Cha07, p. 60]: their Alexander polynomials are of the form a2t2 − (2a2 + 1)t+ a2.
It is well-known that the knots Ki form a (Z/2)-basis of a subgroup of the knot concordance
group isomorphic to (Z/2)∞.

We write M = Σ× [0, 1]. Let f : E0→ int(M) be an embedding as in Proposition 4.3, which
is homologically essential. Denote by h the image of the generator of H1(E0)∼= Z under the
homomorphism H1(E0)→H induced by the given embedding f : E0→M .

We now write Mi =M(f, Ki). By Proposition 4.3, the Mi span a subgroup of Hg,n which is
the homomorphic image of (Z/2)∞. Furthermore, we have τ(Mi) = ∆i(h). Note that each ∆i(h)
is irreducible and self-dual since ∆i(t) is irreducible and self-dual and since h is easily seen to be
an indivisible element in H. It is not difficult to see directly that the multiset Ci is an invariant of
∆i(h) under the equivalence relation ∼. (For a more general method from which this observation
is derived as a special case, see § 5.3.) Therefore, since the Ci are all distinct, the equivalence
classes of the ∆i(h) are mutually distinct. From this we obtain

Ψ∆i(h)(τ(Mj)) =

{
1 if i= j,

0 otherwise.

Also, Ψλ(τ(Mi)) = 0 if λ 6∼∆i(h). Therefore, the composition S →
⊕

[λ] Z/2 in the statement of
this theorem is injective and has image

⊕
[∆i(h)] Z/2∼= (Z/2)∞. 2

We now obtain Theorem 1.2 as an immediate corollary.

Proof of Theorem 1.2. By Theorem 5.4, we have a subgroup S of Hg,n and a homo-
morphism Hg,n→ (Z/2)∞ whose restriction to S is an isomorphism. It follows that the
homomorphism splits, and S ∼= (Z/2)∞ descends to a summand of the abelianization of Hg,n. 2

Remark 5.5.

(i) Using the full power of Theorem 4.2, i.e., by tying in string links with several components,
we can realize many more non-trivial values of the homomorphism Ψ.

(ii) Following the arguments in the proof of Theorem 1.2, one can easily show that if b1(Σ)> 0
then there exists a commutative diagram

(Z/2)∞

��

id // (Z/2)∞

Hsmooth
g,n

// Htop
g,n

OO

such that the left-hand map is injective and the right-hand map is surjective.

We also have the following realization result.

Theorem 5.6. If (g, n) is large, then the image of

Hg,n
τ−−→Q(H)×/AN Θ−−→

⊕
{[µ],[µ̄]}

Z

contains infinitely many summands of
⊕
{[µ],[µ̄]} Z.

The proof of Theorem 5.6 requires a more sophisticated method to detect non-equivalence
of non-self-dual irreducible factors. This will occupy all of § 5.3. Assuming Theorem 5.6 we can
now finally prove Theorem 1.3.
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Proof of Theorem 1.3. Suppose that n > 1. By Theorem 2.5, we may assume that (g, n) is
large. Let Habg,n be the abelianization of Hg,n. By Theorem 5.6, we have a surjection Hg,n→ Z∞.
This induces a split surjection, say g, of the abelianization Habg,n of Hg,n onto Z∞. Also, by
Theorem 5.4, we have a split surjection f :Habg,n→ (Z/2)∞. Since the intersection of the images
of the right inverses of f and g is automatically {0} (e.g., compare the order), it follows that
(f, g) :Habg,n→ (Z/2)∞ ⊕ Z∞ is a split surjection. 2

5.3 Detecting non-equivalent non-self-dual factors
In order to prove Theorem 5.6 we will first introduce a simple and practical method for
distinguishing elements in Z[H] up to the action of Aut∗(H).

As before, we denote H =H1(Σ) and H∂ = Im{H1(∂Σ)→H}. Denote Ĥ =H/H∂ =H1(Σ̂)
where Σ̂ is Σ with boundary circles capped off, and write H =H∂ × Ĥ by choosing a splitting.
Fix a basis {x1, . . . , xn−1} of H∂ , so that each u ∈ Z[H∂ ] is viewed as a (Laurent) polynomial
in the variables xi. For u, v ∈ Z[H∂ ], we write u≈ v if u= v ·m for some m ∈H∂ . This is an
equivalence relation; denote the equivalence class of u ∈ Z[H∂ ] by [u]. Since u≈ v if and only if
the polynomial u is obtained from v by shifting the exponents, it is very straightforward to check
whether or not u≈ v for two given polynomials u and v. Given p ∈ Z[H], write p=

∑
g∈Ĥ ug · g

where ug ∈ Z[H∂ ], and define

C(p) = {[ug] | g ∈ Ĥ}.
We view C(p) as a multiset, i.e., repeated elements are allowed. For C(p) = {[ug]}, denote
−C(p) = {[−ug]}.

Lemma 5.7. C(p) is invariant up to sign under ∼ on Z[H], i.e., if p∼ q, C(p) is equal to either
C(q) or −C(q).

Proof. Note that ϕ ∈Aut∗(H) fixes H∂ and sends g ∈ Ĥ to an element of the form g′mg for some
g′ ∈ Ĥ, mg ∈H∂ . In addition, the association g 7→ g′ is a bijection since ϕ is an isomorphism.
Therefore, for p=

∑
g∈Ĥ ug · g ∈ Z[H], the classes [ug] are permuted by the action of ϕ. It follows

that C(p) = C(ϕ(p)). It is easily seen that C(±p · h) =±C(p) for h ∈H. 2

Example 5.8. In the proof of Theorem 5.4, we have observed that for p=
∑

h∈H ch · h ∈ Z[H],
the multiset of all non-zero coefficients {ch | h ∈H and ch 6= 0} is an invariant, up to sign, of
p under ∼. This can be viewed as a consequence of Lemma 5.7, since the multiset of non-zero
coefficients of an element ug ∈ Z[H∂ ] is invariant under ≈.

We remark that if C(p) = {[ug]}, then C(p̄) = {[ūg]}. This combined with Lemma 5.7 often
allows us to detect non-self-dual elements, as illustrated below.

Example 5.9. Fix g 6= e ∈ Ĥ. For a positive integer a, let

pa = 1 + (g − 1)xi + g(g − 1)x2
i + · · ·+ ga−1(g − 1)xai .

Then
C(pa) = {[1− xi], . . . , [xa−1

i − xai ], [xai ]}= {[1− xi], . . . , [1− xi], [1]},
C(p̄a) = {[xi − 1], . . . , [xi − 1], [1]}.

Looking at the element [1] we see that C(pa) 6=−C(pa). Since 1− xi 6≈ xi − 1 we deduce that
C(pa) 6= C(p̄a). Therefore, pa 6∼ p̄a, i.e., pa is non-self-dual. In particular, the torsion of the
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Figure 2. The pretzel link P (2r, 2s, 2t) with r, s, and t full twists.

homology cylinder M(a) in § 4.2 is non-self-dual. Also, since |C(pa)|= |C(p̄a)|= a+ 1, we have
pa 6∼ pb 6∼ p̄a whenever a 6= b.

We are now finally in a position to prove Theorem 5.6.

Proof of Theorem 5.6. First we consider the case n= 2 and g > 0. For each positive integer a,
consider the homology cylinder M(a) constructed in § 4.2. Let pa = τ(M(a)) ∈ Z[H]. As we
observed in Example 5.9, pa is non-self-dual, and pa 6∼ pb 6∼ p̄a whenever a 6= b. Applying the
Eisenstein criterion to pa, it can be seen that pa is irreducible. Therefore

Θpa(τ(M(b))) =

{
1 if a= b,

0 otherwise.

From this it follows that the image of the subgroup generated by the classes of the M(a) under
the homomorphism

Hg,n
τ−−→Q(H)×/AN Θ−−→

⊕
{[µ],[µ̄]}

Z

is equal to
⊕
{[pa],[p̄a]} Z∼= Z∞. This proves the theorem for this case.

For n> 3, the theorem is proved by a similar construction of homology cylinders, using the
generator of H associated to a third boundary component of Σ in place of the generator y1.
(In this case the torsion pa lies in Z[H∂ ] and thus it is easier to see that pa 6∼ pb 6∼ p̄a
whenever a 6= b.) 2

6. Pretzel links

In this section we study homology cylinders arising from pretzel links. The pretzel link
P (2r, 2s, 2t) is a 3-component link with an obvious Seifert surface Σ, as shown in Figure 2.
We pick Σ as a model surface for Σ0,3. We then write M(r, s, t) = (S3 cut along Σ, i+, i−).

The main result of this section is the following.

Proposition 6.1.

(i) The 3-manifold M(r, s, t) defines a homology cylinder if and only if (r + s)(t+ s)− s2 =±1.

(ii) The set of homology cylinders M(r, s, t) generates a Z∞ subsummand of the abelianization
of H0,3.
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Figure 3. Support of τ(M(r, s, t)).

The proof of the proposition will require the remainder of this section. Given r, s, t, we write
M = S3 cut along Σ. Note that M is a handlebody and that π1(M) is the free group on the
generators a and b as shown in Figure 2.

Let α be a loop on Σ which runs down the left-hand strip, and back up via the middle strip.
Similarly, let β be a loop which runs down the right-hand strip and back up the middle, so
that π1(Σ) is generated by α and β. We now denote by α+ and β+ the corresponding curves on
Σ+ ⊂M . Then

α+ = ar(ab−1)s, β+ = b−t(ab−1)s.

We find that H1(Σ)→H1(M) is an isomorphism if and only if (r + s)(t+ s)− s2 =±1. This
concludes the proof of Proposition 6.1(i).

We will now calculate the torsions for homology cylinders with (r + s)(t+ s)− s2 = 1. Note
that this condition on r, s, t is equivalent to (r + s)(t+ s) = s2 + 1. In particular, one of r, s or t
is necessarily negative.

Using the symmetries of Pretzel links we can without loss of generality assume that r, s > 0
and t < 0. Note that the condition s2 + 1 = (r + s)(t+ s) implies that |t|< s and |t|< r.

Recall that we can view H1(M(r, s, t)) as the free abelian multiplicative group with basis
{a, b}. Using the isomorphism H1(Σ0,3)→H1(Σ+)→H1(M(r, s, t)) we now identify H1(Σ0,3)
with the multiplicative free abelian group generated by a and b. In particular, we will view
τ(M(r, s, t)) as an element in Z[a±1, b±1].

Evaluating the 2× 2 determinant [
∂α+/∂a ∂β+/∂a
∂α+/∂b ∂β+/∂b

]
we obtain from [FJR09, Proposition 4.2] that τ(M(r, s, t)) equals

(1 + a+ · · ·+ ar−1)(1 + b+ · · ·+ b|t|−1)
+ ar(1 + b+ · · ·+ b|t|−1)(1 + ab−1 + · · ·+ (ab−1)s−1)
− ab|t|−1(1 + a+ · · ·+ ar−1)(1 + ab−1 + · · ·+ (ab−1)s−1).

(∗)

This polynomial is always asymmetric. In fact the support of the polynomial τ(M(r, s, t)) is
given in Figure 3. Here a point (i, j) corresponds to aibj . Furthermore, a triangle (N) indicates
a coefficient −1 and a big five-pointed star (F) indicates a coefficient +1.
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Proposition 6.2. There exist infinitely many positive integers ri, si, negative integers ti, and

irreducible polynomials pi ∈ Z[a±1, b±1] with the following properties:

(i) the integers s2
i + 1 = (ri + si)(ti + si);

(ii) the polynomials pi 6
.= pi; and

(iii) the polynomial pi divides τ(M(rj , sj , tj)) if and only if i= j.

Proof. Pick distinct odd primes x1, x2, . . . . Furthermore, pick ri > xi and si > xi such that
(ri − xi)(si − xi) = 1 + x2

i . We then have

(ri + si)(si − xi) = ((ri − xi) + (si + xi))(si − xi)
= (si + xi)(si − xi) + (ri − xi)(si − xi)
= s2

i − x2
i + 1 + x2

i

= s2
i + 1.

We now set ti =−xi; it follows that s2
i + 1 = (ri + si)(ti + si).

In order to show the existence of pi with the required properties we have to introduce various
definitions. Given p ∈ Z[b±1][a±1] we now denote by l(p) ∈ Z[b±1] the coefficient of the lowest
degree and by h(p) ∈ Z[b±1] the coefficient of the highest degree. Note that for p, q ∈ Z[b±1][a±1]
we have l(p · q) = l(p) · l(q) and h(p · q) = h(p) · h(q).

We now write τi = τ(M(ri, si, ti)) and we view τi as an element in Z[b±1][a±1]. By equation (∗)
we have

l(τi) = 1 + b+ b2 + · · ·+ bxi−1.

Since xi is prime it follows that l(τi) ∈ Z[b±1] is irreducible. In particular, for any i there exists
an irreducible factor pi ∈ Z[b±1][a±1] of τi with l(pi) = 1 + b+ b2 + · · ·+ bxi−1.

Note that h(pi) divides h(τi) = 1 + b+ · · ·+ bxi−2. In particular, deg(h(pi)) = xi − 2 and
deg(l(pi)) = xi − 1. It follows easily that pi 6

.= pi.
Given i, j we have l(pi) = 1 + b+ · · ·+ bxi−1 and l(τj) = 1 + b+ · · ·+ bxj−1. In particular, if

i 6= j, then l(pi) and l(τj) are distinct irreducible polynomials. It follows that pi does not divide
τj if i 6= j. 2

Write H =H1(Σ0,3). Note that Aut∗(H) = {id}. In particular, the polynomials pi ∈
Z[a±1, b±1] = Z[H] satisfy pi 6∼ pi. It now follows immediately that the homology cylinders
M(r, s, t) span a subgroup of H0,3 which surjects onto Z∞ under the map Θ ◦ τ . This concludes
the proof of Proposition 6.1.

7. The Torelli subgroup

In this section, we consider a subgroup ofHg,n which generalizes the Torelli group of the mapping
class group. We prove analogues of Theorems 1.2 and 1.3, but for a larger set of surfaces.

Let g, n> 0 and write H =H1(Σg,n). Recall that each ϕ ∈Mg,n induces an action ϕ∗ on H
and the map Mg,n→Aut∗(H) sending ϕ to ϕ∗ is an epimorphism. The Torelli group Ig,n is
defined to be the kernel of this map, i.e., Ig,n is the subgroup of Mg,n given by all elements
which act as the identity on H. We refer to [FM10, Joh83b] for details on the Torelli group. The
following theorem summarizes some of the key properties of the Torelli group whose proofs can
be found in [FM10] and [Joh83a, Mes92]. (See also [Joh85, MM86].)
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Theorem 7.1.

(i) The group Ig,n is torsion-free.

(ii) The group Ig,n is finitely generated for g > 3 and n= 0, 1.

(iii) The group I2,0 is a free group on infinitely many generators.

(iv) If g > 3, then the abelianization of Ig,1 is isomorphic to Za ⊕ (Z/2)b for some a, b ∈ N.

It is an open question though whether the Torelli group Ig,1 is finitely presented for g > 3
(e.g., see [FM10]).

Now recall that the action of a homology cylinder on H =H1(Σg,n) also gives rise to an
epimorphism ϕ :Hg,n→Aut∗(H). We now define the Torelli group IHg,n of homology cylinders
over Σg,n to be the kernel of ϕ. By Proposition 2.4 we can view the Torelli group Ig,n as a
subgroup of IHg,n.

It is an immediate consequence of Proposition 3.5 and Theorem 3.10 that the torsion function
gives rise to a homomorphism

τ : IHg,n −→Q(H)×/N.
Note that in this case we do not need to divide Q(H)× out by A=A(H) since ϕ(M) is the
identity for any M ∈ IHg,n. We can now prove the analogues of Theorems 1.2 and 1.3.

Theorem 7.2.

(i) If b1(Σg,n)> 0, then there exists an epimorphism

IHg,n −→ (Z/2)∞

which splits. In particular, the abelianization of IHg,n contains a direct summand
isomorphic to (Z/2)∞.

(ii) If g > 1 or n > 1, then there exists an epimorphism

IHg,n −→ Z∞.

Furthermore, the abelianization of IHg,n contains a direct summand isomorphic to
(Z/2)∞

⊕
Z∞.

Remark 7.3.

(i) Note that, provided the genus is at least two, Theorem 7.2(ii) holds also for closed surfaces
and for surfaces with one boundary component. This is in contrast to the situation in
Theorem 1.3.

(ii) Morita [Mor08, Corollary 5.2] used ‘trace maps’ to show that the abelianization of IHg,1,
g > 1 has infinite rank. Theorem 7.2(ii) can therefore be seen as an extension of Morita’s
theorem.

Proof. Part (i) follows immediately from the proof of Theorem 1.2 since the examples Mi, i ∈ N,
provided in the proof are easily seen to lie in IHg,n.

We will now need the following claim.

Claim 2. Given any M ∈Hg,n there exists M ′ ∈ IHg,n with τ(M ′) = τ(M) ∈ Z[H].

Indeed, let M = (M, i+, i−) be a homology cylinder over Σg,n. As we saw in § 3.3 we have
ϕ(M) ∈Aut∗(H), and there exists ψ ∈Mg,n such that the induced action on H1(Σg,n) is given
by ϕ(M). Now the homology cylinder M ′ = (M, i+, i− ◦ ψ−1) acts as the identity on H, i.e., M ′
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defines an element in IHg,n. On the other hand, it is clear that τ(M ′) = τ(M). This concludes
the proof of the claim.

We now turn to the proof of part (ii). First, suppose that n > 1 and (g, n) 6= (0, 2). Part (ii)
for this case follows from the proof of Theorem 1.3 since the examples M(a), a ∈ N, in the proof
of Theorem 5.6 can be realized as elements in IHg,n by the above claim. When (g, n) = (0, 2),
following the arguments in § 2.2 one can easily see that IH0,2 is isomorphic to CZ and the desired
result follows again from Levine’s work [Lev69a, Lev69b].

Finally, suppose that g > 1. In this case, for a ∈ N, we consider the homology cylinder M(a)
constructed using Figure 1 modified in the following way: in Figure 1 we have two boundary
components, which are connected by x∗, and one hole to which a generator y∗1 is associated.
Now remove the second boundary component and replace the first boundary component by a
new hole, and denote by x∗ a closed curve which ‘connects’ the two holes. It follows from the
discussion of § 4.2 and from the above claim that there exists a homology cylinder M(a) which
lies in the Torelli group IHg,n and such that

τ(M(a)) = pa := 1 + (y − 1)x+ y(y − 1)x2 + · · ·+ ya−1(y − 1)xa.

Recall that the polynomials pa ∈ Z[H] are irreducible. Also it is evident that the pa are non-
symmetric (i.e., pa 6

.= p̄a) and pa 6
.= pb for a 6= b. (Note that pa ∼ pa, and therefore Theorem 1.3

cannot be generalized for this case using our previous method.) To detect τ(M(a)) ∈Q(H)×/N ,
for each irreducible µ ∈ Z[H] we use the homomorphism Θµ :Q(H)×/N → Z defined as in § 5.1
with the following modification: eµ(p) = the exponent of µ in p. Then Θpa(M(b)) = 1 if a= b
and 0 otherwise. Now following the lines of the proof of Theorem 1.3, part (ii) follows. 2

Note that Theorem 7.2(i) also implies that if b1(Σg,n)> 0, then IHg,n is neither finitely
generated nor finitely related, and it is not torsion-free. Also for the structure of the group
Q(H)×/N(H), redefining Ψλ as we did for Θµ in the proof of Theorem 7.2, one can easily obtain
the following analogue of Theorem 5.3.

Theorem 7.4. Suppose H is non-trivial, i.e., Σg,n is neither a sphere nor a disk. Then

Q(H)×/N(H)∼=

{
(Z/2)∞ if g, n6 1 or (g, n) = (0, 2),
(Z/2)∞ ⊕ Z∞ otherwise.

8. Questions

We conclude with a short list of questions and further work needed.

(i) To study the structure of the kernel of

τ :Hg,n −→Q(H)×/AN ∼= (Z/2)∞ ⊕ Z∞.

(ii) Does the abelianization of the group Hg,n have infinite rank for g > 0 and n= 0, 1?
(iii) To characterize the image of the homomorphisms τ :Hg,n→Q(H)×/AN , Ψ :Hg,n→

(Z/2)∞ and Θ :Hg,n→ Z∞.
(iv) Can we realize any element in the image of Ψ by using Theorem 4.2?
(v) Does the abelianization of Hg,n contain 4-torsion? Does it contain any other torsion?
(vi) Let g > 0 and n> 0. Does there exist a homomorphism F :Hsmooth

g,n →A onto an abelian
group of infinite rank such that the restriction of F to the kernel of the projection map
Hsmooth
g,n →Htop

g,n is also surjective?
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(vii) Does there exist a monoid homomorphism from Cg,n onto a non-abelian monoid which
vanishes on Mg,n?

(viii) Is the group Hg,n/〈Mg,n〉 non-abelian?
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(Birkhäuser, Basel, 2001).
Tur02 V. Turaev, Torsions of 3-manifolds, Progress in Mathematics, vol. 208 (Birkhäuser, Basel, 2002).
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