Canad. Math. Bull. Vol. 45 (3), 2002 pp. 422-427

On the Essential Dimension of Some Semi-Direct Products

Arne Ledet

Abstract. We give an upper bound on the essential dimension of the group $\mathbb{Z}/q \rtimes (\mathbb{Z}/q)^*$ over the rational numbers, when *q* is a prime power.

1 Introduction

Let *K* be an infinite field, let *L* be an extension field of *K*, and let M/L be a finite Galois extension with Galois group G = Gal(M/L) (a *G*-extension). The essential dimension of M/L over *K*, denoted $\text{ed}_K(M/L)$, is then the minimal transcendency degree of a subextension F/K of M/K such that *G* acts faithfully on *F*, *cf*. [B&R1, Section 2].

In other words: The essential dimension $\operatorname{ed}_K(M/L)$ is *n*, if there exists a *G*-extension F/E with $K \subseteq E \subseteq L$, tr $\operatorname{deg}_L E = n$ and $M = F \otimes_E L$, and no such extension of transcendency degree < n.

It is clear that the essential dimension is finite: Let $\theta \in M$ be a primitive element for M/K, and look at $K(\{\sigma\theta\}_{\sigma\in G})$. It has transcendency degree $\leq |G|$, and G acts faithfully. Thus, $\operatorname{ed}_K(M/L) \leq |G|$.

The concept of essential dimension was introduced by Buhler and Reichstein in [B&R1] as a measure of how many algebraically independent parameters are needed to describe M/L. In their paper, they proved various properties of ed_{*K*} *G*, of which we will need the following:

Received by the editors October 31, 2000.

AMS subject classification: 12F10.

[©]Canadian Mathematical Society 2002.

Semi-Direct Products

Results (a) Let V be a finite-dimensional K-vector space, and let $G \hookrightarrow \operatorname{GL}_K(V)$ be a faithful linear representation. Then the essential dimension of $K(V)/K(V)^G$ over K is greater than or equal to $\operatorname{ed}_K(M/L)$ for all G-extensions M/L with $K \subseteq L$. In particular, all faithful linear representations give rise to G-extensions of the same essential dimension, which we will call the *essential dimension of G over K*, denoted $\operatorname{ed}_K G$.

(b) If *H* is a subgroup of *G*, then $ed_K H \le ed_K G$.

It follows that $ed_K G \le n$ if *G* has a faithful linear representation of degree *n*.

By the result of [O] (*cf.* also [Ro]) and Lüroth's Theorem, a subextension of transcendency degree 1 in a rational field extension $K(x_1, ..., x_n)/K$ is rational. It follows that the essential dimension of a group *G* over *K* cannot be 1 unless *G* is isomorphic to a subgroup of the projective general linear group PGL₂(*K*). This, however, is not a sufficient condition: By [B&R1, Corollary 5.5], the Klein Vierergruppe V_4 has essential dimension 2 over any field of characteristic 0, even though it *is* a subgroup of PGL₂(\mathbb{Q}).

The main result of this paper is the following Theorem, which generalises an unpublished result of Buhler and Reichstein [B&R2]:

Theorem Let $q = p^n$ be a prime power. Then

$$\operatorname{ed}_{\mathbb{Q}}(\mathbb{Z}/q \rtimes (\mathbb{Z}/q)^*) \leq \varphi(p-1)p^{n-1},$$

where φ is the Euler φ -function.

In [B&R2], the Theorem (and more generally the corollary in Section 2 below) is proved for the cyclic group \mathbb{Z}/q , rather than the semi-direct product. For a cyclic group of prime order, the result is implicit in the work of Hendrik Lenstra.

The proof we give below is a modification of Buhler and Reichstein's argument, which in turn is based of Lenstra's ideas. In fact, their argument can be obtained simply by removing all references to τ in our proof.

Example Let q = 7. Since $\operatorname{ed}_{\mathbb{Q}} C_7 > 1$, we get

$$\operatorname{ed}_{\mathbb{Q}} C_7 = \operatorname{ed}_{\mathbb{Q}} D_7 = \operatorname{ed}_{\mathbb{Q}} F_{21} = \operatorname{ed}_{\mathbb{Q}} F_{42} = 2,$$

where D_7 is the dihedral group of degree 7 (and order 14) and F_{21} and F_{42} are the Frobenius groups of order 21 and 42, respectively.

2 **Proof of the Theorem**

Let *p* be a prime, and let $q = p^n$ be a power of *p*. Also, let *K* be an infinite field of characteristic $\neq p$, and assume that the *q*-th cyclotomic extension K_q/K is cyclic of degree *D*.

We denote by κ a generator for the Galois group $G_q = \text{Gal}(K_q/K)$. Thus, κ is given by $\kappa\zeta = \zeta^f$ for ζ in the group μ_q of q-th roots of unity, where $f \in \mathbb{Z}$ is some primitive *D*-th root of unity modulo q. The group we are interested in is then $C_q \rtimes C_D$, where a generator τ of C_D acts on C_q as $\rho \mapsto \rho^f$. We let σ be a generator for C_q .

In order to bound $ed_K(C_q \rtimes C_D)$ from above, we may use any faithful linear representation of it over K. We obtain such a representation as follows:

Let $\mathbf{x} = (x_{\zeta})_{\zeta \in \mu_a}$ be a set of indeterminates indexed by μ_a , and let $C_a \rtimes C_D$ act on the function field $K_q(\mathbf{x})$ by

$$\sigma x_{\zeta} = \zeta x_{\zeta} \text{ and } \tau x_{\zeta} = x_{\kappa\zeta}, \quad \zeta \in \mu_{q_2}$$

with the action understood to be trivial on K_q . Clearly, this gives a faithful $C_q \rtimes C_D$ action, although over K_q rather than K.

Next, extend the action of G_q to $K_q(\mathbf{x})$ by

$$\kappa x_{\zeta} = x_{\kappa\zeta}, \quad \zeta \in \mu_q.$$

(*i.e.*, κ and τ acts identically on the indeterminates.) Then

$$\sigma \tau = \tau \sigma^{f}, \quad \sigma \kappa = \kappa \sigma \quad \text{and} \quad \tau \kappa = \kappa \tau,$$

meaning that $G_q \times (C_q \rtimes C_D)$ acts on $K_q(\mathbf{x})$. It is easily seen that this action is in fact faithful.

By the Invariant Basis Lemma (see e.g. [Sh, App., Section 3] or [K&M, Lemma 5]), the K_q -vector space $\sum_{\zeta \in \mu_q} K_q x_{\zeta}$ has a G_q -invariant basis $\mathbf{s} = (s_1, \ldots, s_D)$, and $C_q \rtimes C_D$ acts linearly on $K(\mathbf{s}) = K(\mathbf{x})^{G_q}$.

To produce a subfield of $K(\mathbf{s})$ of low transcendency degree on which $C_q \rtimes C_D$ acts faithfully, we make use of *lattices*: For a given finite group G, a G-lattice \mathcal{L} is a finitely generated free abelian group on which G acts by automorphisms. Given a G-lattice \mathcal{L} and a field L, we can produce a rational function field $L(\mathcal{L})$ with an L-linear Gaction by identifying a basis (ℓ_1, \ldots, ℓ_r) for \mathcal{L} with a set of indeterminates (t_1, \ldots, t_r) over L, mapping $\sum_{i=1}^{r} a_i \ell_i$ to $\prod_{i=1}^{r} t_i^{a_i}$. *i.e.*, we consider the multiplicative group of monomials in $L(t_1, \ldots, t_r)$ as a free abelian group of rank *r*.

In this case, we are interested in G_q -lattices, and we start by considering the group ring $\mathbb{Z}[\mu_q]$. We write the elements in $\mathbb{Z}[\mu_q]$ as $\sum_{\zeta \in \mu_q} a_{\zeta} e_{\zeta}$, and have G_q acting by $\kappa: e_{\zeta} \mapsto e_{\kappa\zeta}$. Moreover, we define a map $\lambda: \mathbb{Z}[\mu_q] \to \mu_q$ by

$$\lambda\Big(\sum_{\zeta\in\mu_q}a_\zeta e_\zeta\Big)=\prod_{\zeta\in\mu_q}\zeta^{a_\zeta},$$

and call a G_q -sublattice \mathcal{L} of $\mathbb{Z}[\mu_q]$ non-degenerate if $\lambda(\mathcal{L}) = \mu_q$.

Proposition 1 Let $\mathcal{L} \subseteq \mathbb{Z}[\mu_q]$ be a non-degenerate G_q -sublattice. Then

$$\operatorname{ed}_K(C_a \rtimes C_D) \leq \operatorname{rank} \mathcal{L}.$$

Proof We have $K_q(\mathcal{L}) \subseteq K_q(\mathbf{x})$, when we identify e_{ζ} and x_{ζ} . If we, for convenience, denote the monomial $\prod_{\zeta \in \mu_q} x_{\zeta}^{a_{\zeta}}$ corresponding to $a = \sum_{\zeta \in \mu_q} a_{\zeta} e_{\zeta}$ by x^a , we see that $\kappa x^a = \tau x^a = x^{\kappa a}$ and $\sigma x^a = \lambda(a)x^a$. So, $K_q(\mathcal{L})$ is closed under the action of $G_q \times (C_q \rtimes C_D)$. We claim that the action is faithful:

424

Semi-Direct Products

Assume that $\chi \in G_q$ and $\rho \in C_q \rtimes C_D$ act identically on $K_q(\mathcal{L})$. Since $K_q(\mathcal{L})$ contains K_q , on which G_q acts faithfully and $C_q \rtimes C_D$ acts trivially, we immediately get that $\chi = 1$ and that ρ acts trivially on $K_q(\mathcal{L})$. Now write $\rho = \tau^i \sigma^j$, where $0 \leq i < q$ and $0 \leq j < d$, and pick $a \in \mathcal{L}$ with $\lambda(a)$ a primitive q-th root of unity. Then $\rho(x^a) = \lambda(a)^j x^{\kappa^i a} = x^a$, and so we must have j = 0 and $\rho = \tau^i$. But on the monomials, τ acts as κ , meaning that the C_D -action is faithful, and so $\rho = 1$.

Stepping down to fixed fields under G_q , we conclude that $C_q \rtimes C_D$ acts faithfully on $K_q(\mathcal{L})^{G_q} \subseteq K(\mathbf{s})$. And by construction, tr deg_K $K_q(\mathcal{L}) = \operatorname{rank} \mathcal{L}$.

It remains to produce a non-degenerate G_q -sublattice of $\mathbb{Z}[\mu_q]$ of the desired rank:

Proposition 2 Let G be a cyclic subgroup of Aut μ_q of order $D = dp^e$, where d|p-1 and $a \le n-1$. Then there is a non-degenerate G-sublattice of $\mathbb{Z}[\mu_q]$ of rank $\varphi(d)p^e$.

Proof Let κ be a generator for G, and let f be a primitive D-th root of unity modulo q, such that $\kappa \zeta = \zeta^D$ for $\zeta \in \mu_q$.

First of all, f is a primitive d-th root of unity modulo p: Since $f^d \equiv f^D \equiv 1 \pmod{p}$, it has order dividing d. On the other hand, if $f^c \equiv 1 \pmod{p}$ for a $c \in \{1, \ldots, d-1\}$, we have $f^c = 1 + pi$ for some i, and hence $f^{cp^{n-1}} \equiv 1 \pmod{q}$, since the kernel of $(\mathbb{Z}/q)^* \to (\mathbb{Z}/p)^*$ has order p^{n-1} , and so D must divide cp^{n-1} , contradicting 0 < c < d.

Next, we let

$$P(t) = \prod_{j=0}^{e} \Phi_{dp^{j}}(t) \quad \text{and} \quad Q(t) = \prod_{j=0}^{e} \prod_{\substack{k \mid d \\ k < d}} \Phi_{kp^{j}},$$

where $\Phi_m(t)$ is the *m*-th cyclotomic polynomial. Then $P(t)Q(t) = t^D - 1$, and Q(t) consists exactly of those factors $\Phi_m(t)$ of $t^D - 1$ for which $p \nmid \Phi_m(f)$. In particular, $p \nmid Q(f)$. Also, deg $P(t) = \varphi(d)p^e$.

We now look at the *G*-lattice $\mathbb{Z}[t]/(P(t))$, where κ acts as multiplication by *t*. This is a well-defined *G*-action, since $P(t)|t^D - 1$.

We have another *G*-lattice $\mathbb{Z}[t]/(t^D-1)$, also with κ acting as multiplication by t, and $\mathbb{Z}[t]/(P(t)) \hookrightarrow \mathbb{Z}[t]/(t^D-1)$ as *G*-lattices by $\bar{g} \mapsto \overline{Qg}$.

Finally, $\mathbb{Z}[t]/(t^D - 1) \hookrightarrow \mathbb{Z}[\mu_q]$ by $t^i \mapsto e_{\kappa^i \eta}$, where η is a primitive q-th root of unity, and hence we get $\mathbb{Z}[t]/(P(t)) \hookrightarrow \mathbb{Z}[\mu_q]$. The image of $\overline{1} \in \mathbb{Z}[t]/(P(t))$ has λ -value $\eta^{Q(f)}$, which is a primitive q-th root of unity, and so $\mathbb{Z}[t]/(P(t))$ is non-degenerate.

Corollary Assume that K_q/K is cyclic of degree $D = dp^e$, where d|p-1 and $e \le n-1$, and let $G_q = \text{Gal}(K_q/K)$ act on C_q by cyclotomic action (i.e., by identifying C_q and μ_q). Then

$$\mathrm{ed}_K(C_q \rtimes G_q) \leq \varphi(d)p^e.$$

For odd primes, this proves the Theorem. For p = 2, we note that $\mathbb{Z}/q \rtimes (\mathbb{Z}/q)^*$ has a faithful linear representation over \mathbb{Q} of degree q/2, and that we must therefore have $\operatorname{ed}_{\mathbb{Q}}(\mathbb{Z}/q \rtimes (\mathbb{Z}/q)^*) \leq q/2$.

425

3 Remarks

In [B&R1, Lemma 4.1(b)], it is shown that $ed_K(G \times H) \leq ed_K G + ed_K H$. Consequently, we get a bound on the essential dimension of any finite abelian group *A* over \mathbb{Q} .

Also, by using that $D_{mn} \hookrightarrow D_m \times D_n$ when *m* and *n* are relatively prime (with D_2 understood to be C_2), we see that the bound obtained for C_n will hold for D_n as well, when D_n is the dihedral group of degree *n* (and order 2*n*).

For q = 3, 5 and 7, the bounds we obtain for $\operatorname{ed}_{\mathbb{Q}} C_q$ and $\operatorname{ed}_{\mathbb{Q}} D_q$ are the exact values of the essential dimensions. And over the field $K = \mathbb{Q}(\cos \frac{2\pi}{n})$, *n* odd, the cyclic and dihedral groups are both subgroups of $\operatorname{PGL}_2(K)$, and it is easy to see that they have essential dimension 1, *cf.* also [H&M]. Thus, it seems reasonable to propose

Conjecture For *n* odd, the essential dimensions of C_n and D_n coincide over any field in characteristic 0.

For even *n*, this is obviously not true: Over the *n*-th cyclotomic field, C_n has essential dimension 1, whereas D_n has essential dimension 2.

The bound $p^{n-1}\varphi(p-1)$ for $\operatorname{ed}_{\mathbb{Q}}C_{p^n}$ is in fact an upper bound for $\operatorname{ed}_{\mathbb{Q}}P$ of *any* group of order p^n , by the following elementary result:

Lemma Let K be a field and G a finite group. For any subgroup H of G we then have

$$\operatorname{ed}_{K} G \leq [G:H] \cdot \operatorname{ed}_{K} H.$$

In other words: The quantity $\operatorname{ed}_K G/|G|$ does not grow with G.

Proof Let *G* act regularly on the indeterminates $\mathbf{t} = (t_{\sigma})_{\sigma \in G}$. Then *H* acts regularly on $\mathbf{t}' = (t_{\tau})_{\tau \in H}$, and we can find a subfield *F* of $K(\mathbf{t}')$ such that tr deg_K $F = \text{ed}_K H$ and *H* acts faithfully on *F*. Let *F'* be the composite inside $K(\mathbf{t})$ of the images of *F* under *G*'s action: $F' = \prod_{\sigma \in G} \sigma F$. Since $\tau F = F$ for $\tau \in H$ and $\sigma F \subseteq K(\sigma \mathbf{t}') =$ $K(\{t_{\tau}\}_{\tau \in \sigma H})$, there are exactly [*G* : *H*] distinct conjugates, and $\sigma F = \sigma' F$ if and only if σ and σ' are in the same coset modulo *H*, with $\sigma F \cap \sigma' F = K$ otherwise.

Clearly, F' is closed under the action of G, and we claim that the action is faithful: If $\sigma \in G$ acts trivially on F', it in particular maps F to itself, and so $\sigma \in H$. But H acts faithfully on F, and so $\sigma = 1$.

For a group *P* of order p^n , we can now take a subgroup of order *p* and get that $\operatorname{ed}_K P \leq p^{n-1} \operatorname{ed}_K C_p$, as claimed. In particular, if $\varphi(p-1)$ is not the exact essential dimension of C_p over \mathbb{Q} for some prime *p*, the bound on C_{p^n} will not be exact either.

Of course, the bound $p^{n-1}\varphi(p-1)$ on $ed_{\mathbb{Q}}P$ is very likely not optimal: If *P* contains a non-cyclic abelian subgroup, we can use that as *H* to get a lower bound. And for $C_{p^m} \rtimes C_{p^{m-1}}$ the Theorem gives a better bound.

Example The two non-abelian groups of order p^3 , p odd prime, are the *Heisenberg* group H_{p^3} of exponent p, and the semi-direct product $C_{p^2} \rtimes C_p$. From the Theorem, we get

$$\mathrm{ed}_{\mathbb{Q}}(C_{p^2} \rtimes C_p) \leq p \,\varphi(p-1),$$

426

Semi-Direct Products

and since H_{p^3} contains an abelian subgroup $\simeq C_p \times C_p$, the Lemma gives us

$$\operatorname{ed}_{\mathbb{Q}}H_{p^3}\leq 2p\,\varphi(p-1).$$

In both cases, the bound is better than $p^2\varphi(p-1)$.

References

[B&R1]	J. Buhler and Z. Reichstein, <i>On the essential dimension of a finite group</i> . Compositio Math. 106 (1997), 159–179.
[B&R2]	, Versal cyclic polynomials. unpublished paper.
[H&M]	K. Hashimoto and K. Miyake, Inverse Galois problem for dihedral groups. Developments in
	Mathematics 2 , Kluwer Academic Publishers, 1999, 165–181.
[K&M]	G. Kemper and G. Malle, Invariant fields of finite irreducible reflection groups. Math. Ann.
	315 (1999), 569–586.
[O]	J. Ohm, On subfields of rational function fields. Arch. Math. 42(1984), 136–138.
[Ro]	P. Roquette, Isomorphisms of generic splitting fields of simple algebras. J. Reine Angew. Math.
	214/215(1964), 207–226.

[Sh] I. R. Shafarevich, Basic Algebraic Geometry 1 (2nd ed.). Springer-Verlag, Berlin 1994.

Mathematical Sciences Research Institute 1000 Centennial Drive Berkeley, California 94720–5070 U.S.A. e-mail: ledet@msri.org