On the Essential Dimension of Some Semi-Direct Products

Arne Ledet

Abstract. We give an upper bound on the essential dimension of the group $\mathbb{Z} / q \rtimes(\mathbb{Z} / q)^{*}$ over the rational numbers, when q is a prime power.

1 Introduction

Let K be an infinite field, let L be an extension field of K, and let M / L be a finite Galois extension with Galois group $G=\operatorname{Gal}(M / L)$ (a G-extension). The essential dimension of M / L over K, denoted $\mathrm{ed}_{K}(M / L)$, is then the minimal transcendency degree of a subextension F / K of M / K such that G acts faithfully on F, $c f$. [B\&R1, Section 2].

In other words: The essential dimension $\operatorname{ed}_{K}(M / L)$ is n, if there exists a G-extension F / E with $K \subseteq E \subseteq L$, $\operatorname{tr} \operatorname{deg}_{L} E=n$ and $M=F \otimes_{E} L$, and no such extension of transcendency degree $<n$.

It is clear that the essential dimension is finite: Let $\theta \in M$ be a primitive element for M / K, and look at $K\left(\{\sigma \theta\}_{\sigma \in G}\right)$. It has transcendency degree $\leq|G|$, and G acts faithfully. Thus, $\operatorname{ed}_{K}(M / L) \leq|G|$.

The concept of essential dimension was introduced by Buhler and Reichstein in $[B \& R 1]$ as a measure of how many algebraically independent parameters are needed to describe M / L. In their paper, they proved various properties of ed ${ }_{K} G$, of which we will need the following:

[^0]Results (a) Let V be a finite-dimensional K-vector space, and let $G \hookrightarrow \mathrm{GL}_{K}(V)$ be a faithful linear representation. Then the essential dimension of $K(V) / K(V)^{G}$ over K is greater than or equal to $\operatorname{ed}_{K}(M / L)$ for all G-extensions M / L with $K \subseteq L$. In particular, all faithful linear representations give rise to G-extensions of the same essential dimension, which we will call the essential dimension of G over K, denoted $\mathrm{ed}_{K} G$.
(b) If H is a subgroup of G, then $\operatorname{ed}_{K} H \leq \operatorname{ed}_{K} G$.

It follows that ed ${ }_{K} G \leq n$ if G has a faithful linear representation of degree n.
By the result of $[\mathrm{O}](c f$. also [Ro]) and Lüroth's Theorem, a subextension of transcendency degree 1 in a rational field extension $K\left(x_{1}, \ldots, x_{n}\right) / K$ is rational. It follows that the essential dimension of a group G over K cannot be 1 unless G is isomorphic to a subgroup of the projective general linear group $\mathrm{PGL}_{2}(K)$. This, however, is not a sufficient condition: By [B\&R1, Corollary 5.5], the Klein Vierergruppe V_{4} has essential dimension 2 over any field of characteristic 0 , even though it is a subgroup of $\mathrm{PGL}_{2}(\mathbb{O})$).

The main result of this paper is the following Theorem, which generalises an unpublished result of Buhler and Reichstein [B\&R2]:
Theorem Let $q=p^{n}$ be a prime power. Then

$$
\operatorname{ed}_{\mathbb{Q}}\left(\mathbb{Z} / q \rtimes(\mathbb{Z} / q)^{*}\right) \leq \varphi(p-1) p^{n-1}
$$

where φ is the Euler φ-function.
In [B\&R2], the Theorem (and more generally the corollary in Section 2 below) is proved for the cyclic group \mathbb{Z} / q, rather than the semi-direct product. For a cyclic group of prime order, the result is implicit in the work of Hendrik Lenstra.

The proof we give below is a modification of Buhler and Reichstein's argument, which in turn is based of Lenstra's ideas. In fact, their argument can be obtained simply by removing all references to τ in our proof.

Example Let $q=7$. Since $\mathrm{ed}_{\mathbb{Q}} C_{7}>1$, we get

$$
\mathrm{ed}_{\mathbb{Q}} C_{7}=\operatorname{ed}_{\mathbb{Q}} D_{7}=\operatorname{ed}_{\mathbb{Q}} F_{21}=\operatorname{ed}_{\mathbb{Q}} F_{42}=2
$$

where D_{7} is the dihedral group of degree 7 (and order 14) and F_{21} and F_{42} are the Frobenius groups of order 21 and 42, respectively.

2 Proof of the Theorem

Let p be a prime, and let $q=p^{n}$ be a power of p. Also, let K be an infinite field of characteristic $\neq p$, and assume that the q-th cyclotomic extension K_{q} / K is cyclic of degree D.

We denote by κ a generator for the Galois group $G_{q}=\operatorname{Gal}\left(K_{q} / K\right)$. Thus, κ is given by $\kappa \zeta=\zeta^{f}$ for ζ in the group μ_{q} of q-th roots of unity, where $f \in \mathbb{Z}$ is some primitive D-th root of unity modulo q. The group we are interested in is then $C_{q} \rtimes C_{D}$, where a generator τ of C_{D} acts on C_{q} as $\rho \mapsto \rho^{f}$. We let σ be a generator for C_{q}.

In order to bound $\operatorname{ed}_{K}\left(C_{q} \rtimes C_{D}\right)$ from above, we may use any faithful linear representation of it over K. We obtain such a representation as follows:

Let $\mathbf{x}=\left(x_{\zeta}\right)_{\zeta \in \mu_{q}}$ be a set of indeterminates indexed by μ_{q}, and let $C_{q} \rtimes C_{D}$ act on the function field $K_{q}(\mathbf{x})$ by

$$
\sigma x_{\zeta}=\zeta x_{\zeta} \text { and } \tau x_{\zeta}=x_{\kappa \zeta}, \quad \zeta \in \mu_{q}
$$

with the action understood to be trivial on K_{q}. Clearly, this gives a faithful $C_{q} \rtimes C_{D^{-}}$ action, although over K_{q} rather than K.

Next, extend the action of G_{q} to $K_{q}(\mathbf{x})$ by

$$
\kappa x_{\zeta}=x_{\kappa \zeta}, \quad \zeta \in \mu_{q}
$$

(i.e., κ and τ acts identically on the indeterminates.) Then

$$
\sigma \tau=\tau \sigma^{f}, \quad \sigma \kappa=\kappa \sigma \quad \text { and } \quad \tau \kappa=\kappa \tau
$$

meaning that $G_{q} \times\left(C_{q} \rtimes C_{D}\right)$ acts on $K_{q}(\mathbf{x})$. It is easily seen that this action is in fact faithful.

By the Invariant Basis Lemma (see e.g. [Sh, App., Section 3] or [K\&M, Lemma 5]), the K_{q}-vector space $\sum_{\zeta \in \mu_{q}} K_{q} x_{\zeta}$ has a G_{q}-invariant basis $\mathbf{s}=\left(s_{1}, \ldots, s_{D}\right)$, and $C_{q} \rtimes C_{D}$ acts linearly on $K(\mathbf{s})=K(\mathbf{x})^{G_{q}}$.

To produce a subfield of $K(\mathbf{s})$ of low transcendency degree on which $C_{q} \rtimes C_{D}$ acts faithfully, we make use of lattices: For a given finite group G, a G-lattice \mathcal{L} is a finitely generated free abelian group on which G acts by automorphisms. Given a G-lattice \mathcal{L} and a field L, we can produce a rational function field $L(\mathcal{L})$ with an L-linear G action by identifying a basis $\left(\ell_{1}, \ldots, \ell_{r}\right)$ for \mathcal{L} with a set of indeterminates $\left(t_{1}, \ldots, t_{r}\right)$ over L, mapping $\sum_{i=1}^{r} a_{i} \ell_{i}$ to $\prod_{i=1}^{r} t_{i}^{a_{i}}$. i.e., we consider the multiplicative group of monomials in $L\left(t_{1}, \ldots, t_{r}\right)$ as a free abelian group of rank r.

In this case, we are interested in G_{q}-lattices, and we start by considering the group ring $\mathbb{Z}\left[\mu_{q}\right]$. We write the elements in $\mathbb{Z}\left[\mu_{q}\right]$ as $\sum_{\zeta \in \mu_{q}} a_{\zeta} e_{\zeta}$, and have G_{q} acting by $\kappa: e_{\zeta} \mapsto e_{\kappa \zeta}$. Moreover, we define a map $\lambda: \mathbb{Z}\left[\mu_{q}\right] \rightarrow \mu_{q}$ by

$$
\lambda\left(\sum_{\zeta \in \mu_{q}} a_{\zeta} e_{\zeta}\right)=\prod_{\zeta \in \mu_{q}} \zeta^{a_{\zeta}}
$$

and call a G_{q}-sublattice \mathcal{L} of $\mathbb{Z}\left[\mu_{q}\right]$ non-degenerate if $\lambda(\mathcal{L})=\mu_{q}$.
Proposition 1 Let $\mathcal{L} \subseteq \mathbb{Z}\left[\mu_{q}\right]$ be a non-degenerate G_{q}-sublattice. Then

$$
\operatorname{ed}_{K}\left(C_{q} \rtimes C_{D}\right) \leq \operatorname{rank} \mathcal{L}
$$

Proof We have $K_{q}(\mathcal{L}) \subseteq K_{q}(\mathbf{x})$, when we identify e_{ζ} and x_{ζ}.
If we, for convenience, denote the monomial $\prod_{\zeta \in \mu_{q}} x_{\zeta}^{a_{\zeta}}$ corresponding to $a=$ $\sum_{\zeta \in \mu_{q}} a_{\zeta} e_{\zeta}$ by x^{a}, we see that $\kappa x^{a}=\tau x^{a}=x^{\kappa a}$ and $\sigma x^{a}=\lambda(a) x^{a}$. So, $K_{q}(\mathcal{L})$ is closed under the action of $G_{q} \times\left(C_{q} \rtimes C_{D}\right)$. We claim that the action is faithful:

Assume that $\chi \in G_{q}$ and $\rho \in C_{q} \rtimes C_{D}$ act identically on $K_{q}(\mathcal{L})$. Since $K_{q}(\mathcal{L})$ contains K_{q}, on which G_{q} acts faithfully and $C_{q} \rtimes C_{D}$ acts trivially, we immediately get that $\chi=1$ and that ρ acts trivially on $K_{q}(\mathcal{L})$. Now write $\rho=\tau^{i} \sigma^{j}$, where $0 \leq i<q$ and $0 \leq j<d$, and pick $a \in \mathcal{L}$ with $\lambda(a)$ a primitive q-th root of unity. Then $\rho\left(x^{a}\right)=\lambda(a)^{j} x^{\kappa^{i} a}=x^{a}$, and so we must have $j=0$ and $\rho=\tau^{i}$. But on the monomials, τ acts as κ, meaning that the C_{D}-action is faithful, and so $\rho=1$.

Stepping down to fixed fields under G_{q}, we conclude that $C_{q} \rtimes C_{D}$ acts faithfully on $K_{q}(\mathcal{L})^{G_{q}} \subseteq K(\mathbf{s})$. And by construction, $\operatorname{tr} \operatorname{deg}_{K} K_{q}(\mathcal{L})=\operatorname{rank} \mathcal{L}$.

It remains to produce a non-degenerate G_{q}-sublattice of $\mathbb{Z}\left[\mu_{q}\right]$ of the desired rank:
Proposition 2 Let G be a cyclic subgroup of Aut μ_{q} of order $D=d p^{e}$, where $d \mid p-1$ and $a \leq n-1$. Then there is a non-degenerate G-sublattice of $\mathbb{Z}\left[\mu_{q}\right]$ of rank $\varphi(d) p^{e}$.

Proof Let κ be a generator for G, and let f be a primitive D-th root of unity modulo q, such that $\kappa \zeta=\zeta^{D}$ for $\zeta \in \mu_{q}$.

First of all, f is a primitive d-th root of unity modulo p : Since $f^{d} \equiv f^{D} \equiv 1$ $(\bmod p)$, it has order dividing d. On the other hand, if $f^{c} \equiv 1(\bmod p)$ for a $c \in$ $\{1, \ldots, d-1\}$, we have $f^{c}=1+p i$ for some i, and hence $f^{c p^{n-1}} \equiv 1(\bmod q)$, since the kernel of $(\mathbb{Z} / q)^{*} \rightarrow(\mathbb{Z} / p)^{*}$ has order p^{n-1}, and so D must divide $c p^{n-1}$, contradicting $0<c<d$.

Next, we let

$$
P(t)=\prod_{j=0}^{e} \Phi_{d p^{j}}(t) \quad \text { and } \quad Q(t)=\prod_{j=0}^{e} \prod_{\substack{k \mid d \\ k<d}} \Phi_{k p^{j}}
$$

where $\Phi_{m}(t)$ is the m-th cyclotomic polynomial. Then $P(t) Q(t)=t^{D}-1$, and $Q(t)$ consists exactly of those factors $\Phi_{m}(t)$ of $t^{D}-1$ for which $p \nmid \Phi_{m}(f)$. In particular, $p \nmid Q(f)$. Also, $\operatorname{deg} P(t)=\varphi(d) p^{e}$.

We now look at the G-lattice $\mathbb{Z}[t] /(P(t))$, where κ acts as multiplication by t. This is a well-defined G-action, since $P(t) \mid t^{D}-1$.

We have another G-lattice $\mathbb{Z}[t] /\left(t^{D}-1\right)$, also with κ acting as multiplication by t, and $\mathbb{Z}[t] /(P(t)) \hookrightarrow \mathbb{Z}[t] /\left(t^{D}-1\right)$ as G-lattices by $\bar{g} \mapsto \overline{Q g}$.

Finally, $\mathbb{Z}[t] /\left(t^{D}-1\right) \hookrightarrow \mathbb{Z}\left[\mu_{q}\right]$ by $t^{i} \mapsto e_{\kappa^{i} \eta}$, where η is a primitive q-th root of unity, and hence we get $\mathbb{Z}[t] /(P(t)) \hookrightarrow \mathbb{Z}\left[\mu_{q}\right]$. The image of $\overline{1} \in \mathbb{Z}[t] /(P(t))$ has λ-value $\eta^{Q(f)}$, which is a primitive q-th root of unity, and so $\mathbb{Z}[t] /(P(t))$ is nondegenerate.
Corollary Assume that K_{q} / K is cyclic of degree $D=d p^{e}$, where $d \mid p-1$ and $e \leq n-1$, and let $G_{q}=\operatorname{Gal}\left(K_{q} / K\right)$ act on C_{q} by cyclotomic action (i.e., by identifying C_{q} and μ_{q}). Then

$$
\operatorname{ed}_{K}\left(C_{q} \rtimes G_{q}\right) \leq \varphi(d) p^{e}
$$

For odd primes, this proves the Theorem. For $p=2$, we note that $\mathbb{Z} / q \rtimes(\mathbb{Z} / q)^{*}$ has a faithful linear representation over \mathbb{O} of degree $q / 2$, and that we must therefore have $\operatorname{ed}_{\mathbb{Q}}\left(\mathbb{Z} / q \rtimes(\mathbb{Z} / q)^{*}\right) \leq q / 2$.

3 Remarks

In [B\&R1, Lemma 4.1(b)], it is shown that $\mathrm{ed}_{K}(G \times H) \leq \mathrm{ed}_{K} G+\mathrm{ed}_{K} H$. Consequently, we get a bound on the essential dimension of any finite abelian group A over (O).

Also, by using that $D_{m n} \hookrightarrow D_{m} \times D_{n}$ when m and n are relatively prime (with D_{2} understood to be C_{2}), we see that the bound obtained for C_{n} will hold for D_{n} as well, when D_{n} is the dihedral group of degree n (and order $2 n$).

For $q=3,5$ and 7 , the bounds we obtain for $\operatorname{ed}_{\mathbb{Q}_{2}} C_{q}$ and $\mathrm{ed}_{\mathbb{Q}} D_{q}$ are the exact values of the essential dimensions. And over the field $K=\mathbb{O}_{2}\left(\cos \frac{2 \pi}{n}\right), n$ odd, the cyclic and dihedral groups are both subgroups of $\mathrm{PGL}_{2}(K)$, and it is easy to see that they have essential dimension $1, c f$. also $[H \& M]$. Thus, it seems reasonable to propose
Conjecture For n odd, the essential dimensions of C_{n} and D_{n} coincide over any field in characteristic 0 .

For even n, this is obviously not true: Over the n-th cyclotomic field, C_{n} has essential dimension 1, whereas D_{n} has essential dimension 2 .

The bound $p^{n-1} \varphi(p-1)$ for $\mathrm{ed}_{\mathbb{Q}_{2}} C_{p^{n}}$ is in fact an upper bound for $\mathrm{ed}_{\mathbb{Q}} P$ of any group of order p^{n}, by the following elementary result:

Lemma Let K be a field and G a finite group. For any subgroup H of G we then have

$$
\operatorname{ed}_{K} G \leq[G: H] \cdot \operatorname{ed}_{K} H
$$

In other words: The quantity $\operatorname{ed}_{K} G /|G|$ does not grow with G.
Proof Let G act regularly on the indeterminates $\mathbf{t}=\left(t_{\sigma}\right)_{\sigma \in G}$. Then H acts regularly on $\mathbf{t}^{\prime}=\left(t_{\tau}\right)_{\tau \in H}$, and we can find a subfield F of $K\left(\mathbf{t}^{\prime}\right)$ such that $\operatorname{tr} \operatorname{deg}_{K} F=\operatorname{ed}_{K} H$ and H acts faithfully on F. Let F^{\prime} be the composite inside $K(\mathbf{t})$ of the images of F under G's action: $F^{\prime}=\prod_{\sigma \in G} \sigma F$. Since $\tau F=F$ for $\tau \in H$ and $\sigma F \subseteq K\left(\sigma \mathbf{t}^{\prime}\right)=$ $K\left(\left\{t_{\tau}\right\}_{\tau \in \sigma H}\right)$, there are exactly $[G: H]$ distinct conjugates, and $\sigma F=\sigma^{\prime} F$ if and only if σ and σ^{\prime} are in the same coset modulo H, with $\sigma F \cap \sigma^{\prime} F=K$ otherwise.

Clearly, F^{\prime} is closed under the action of G, and we claim that the action is faithful: If $\sigma \in G$ acts trivially on F^{\prime}, it in particular maps F to itself, and so $\sigma \in H$. But H acts faithfully on F, and so $\sigma=1$.

For a group P of order p^{n}, we can now take a subgroup of order p and get that $\operatorname{ed}_{K} P \leq p^{n-1} \mathrm{ed}_{K} C_{p}$, as claimed. In particular, if $\varphi(p-1)$ is not the exact essential dimension of C_{p} over (\mathbb{O}) for some prime p, the bound on $C_{p^{n}}$ will not be exact either.

Of course, the bound $p^{n-1} \varphi(p-1)$ on $\mathrm{ed}_{\mathbb{Q}} P$ is very likely not optimal: If P contains a non-cyclic abelian subgroup, we can use that as H to get a lower bound. And for $C_{p^{m}} \rtimes C_{p^{m-1}}$ the Theorem gives a better bound.

Example The two non-abelian groups of order p^{3}, p odd prime, are the Heisenberg group $H_{p^{3}}$ of exponent p, and the semi-direct product $C_{p^{2}} \rtimes C_{p}$. From the Theorem, we get

$$
\operatorname{ed}_{\mathbb{Q}}\left(C_{p^{2}} \rtimes C_{p}\right) \leq p \varphi(p-1)
$$

and since $H_{p^{3}}$ contains an abelian subgroup $\simeq C_{p} \times C_{p}$, the Lemma gives us

$$
\mathrm{ed}_{\mathbb{Q}} H_{p^{3}} \leq 2 p \varphi(p-1)
$$

In both cases, the bound is better than $p^{2} \varphi(p-1)$.

References

[B\&R1] J. Buhler and Z. Reichstein, On the essential dimension of a finite group. Compositio Math. 106(1997), 159-179.
[B\&R2] , Versal cyclic polynomials. unpublished paper.
[H\&M] K. Hashimoto and K. Miyake, Inverse Galois problem for dihedral groups. Developments in Mathematics 2, Kluwer Academic Publishers, 1999, 165-181.
[K\&M] G. Kemper and G. Malle, Invariant fields of finite irreducible reflection groups. Math. Ann. 315(1999), 569-586.
[O] J. Ohm, On subfields of rational function fields. Arch. Math. 42(1984), 136-138.
[Ro] P. Roquette, Isomorphisms of generic splitting fields of simple algebras. J. Reine Angew. Math. 214/215(1964), 207-226.
[Sh] I. R. Shafarevich, Basic Algebraic Geometry 1 (2nd ed.). Springer-Verlag, Berlin 1994.

Mathematical Sciences Research Institute
1000 Centennial Drive
Berkeley, California 94720-5070
U.S.A.
e-mail: ledet@msri.org

[^0]: Received by the editors October 31, 2000. AMS subject classification: 12F10.
 (C)Canadian Mathematical Society 2002.

