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1. Statement of the problem

Consider some property Ψ of a finite group inherited by all its subgroups. Important
examples of such a property are the following: cyclicity; commutativity; nilpotence;
solvability. A natural question arises: how large is a normalΨ-subgroup in an arbitrary
finite group G? A more precise formulation of this question is the following.

QUESTION 1.1. Given a finite group G with Ψ-subgroup H of index n, is it true that G
has a normal Ψ-subgroup whose index is bounded by some function f (n)?

Since the kernel of the action of G on the set of right cosets of H by right
multiplication is a subgroup of H and such an action provides a homomorphism to
the symmetric group Sym(n), it always suffices to take f (n) = n! for every such Ψ.
We are interested in stronger bounds, in particular those of shape f (n) = nc for some
constant c.

Lucchini [8] and, independently, Kazarin and Strunkov [6] proved the following
result.

THEOREM 1.2. If a finite group G has a cyclic subgroup C of index n, then
⋂

g∈G Cg

has index at most n2 − n.

The following theorem follows from results by Chermak and Delgado [4].

THEOREM 1.3. Let G be a finite group. If G has an abelian subgroup of index n, then
it has a normal abelian subgroup of index at most n2.

Zenkov [10] proved the following result when Ψ is nilpotence.
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THEOREM 1.4. Let G be a finite group and let F(G) be its maximal normal nilpotent
subgroup. If G has a nilpotent subgroup of index n, then |G : F(G)| ≤ n3.

Babai et al. [1] proved the following statement.

THEOREM 1.5. There is an absolute constant c such that, if a finite group G has a
solvable subgroup of index n, then G has a solvable normal subgroup of index at
most nc.

Although their proof does not yield an explicit value, they conjectured that c ≤ 7.
This conjecture is closely related to the following problem [7, Problem 17.41(b)].

PROBLEM 1.6. Let H be a solvable subgroup of a finite group G that has no
nontrivial solvable normal subgroups. Do there always exist five conjugates of H
whose intersection is trivial?

Before we explain how Problem 1.6 is related to Question 1.1, we need to introduce
some notation. Problem 1.6 can be reformulated using the notion of base size.

DEFINITION 1.7. Assume that a finite group G acts on a set Ω. A point α ∈ Ω is
G-regular if its stabiliser in G is trivial. Define the action of G on Ωk by

(α1, . . . ,αk)g = (α1g, . . . ,αkg).

If G acts faithfully and transitively on Ω, then the minimal number k such that the
set Ωk contains a G-regular point is the base size of G and is denoted by b(G). For a
positive integer m, a regular point in Ωm is a base for the action of G on Ω. Denote the
number of G-regular orbits on Ωm by Reg(G, m) (this number is 0 if m < b(G)). If G
acts by right multiplication on the set Ω of right cosets of a subgroup H, then G/HG
acts faithfully and transitively on Ω. (Here HG =

⋂
g∈G Hg.) In this case, we denote

bH(G) := b(G/HG) and RegH(G, m) := Reg(G/HG, m).

Therefore, for G and H, as in Problem 1.6, the existence of five conjugates of H
whose intersection is trivial is equivalent to the statement that bH(G) ≤ 5. We remark
that 5 is the best possible bound for bH(G) because bH(G) = 5 when G = Sym(8) and
H = Sym(4) � Sym(2). This can be easily verified. In fact, there are infinitely many
examples with bH(G) = 5 (see [2, Remark 8.3]).

Let G act transitively on Ω and let H be a point stabiliser, so |Ω| = |G : H|. If
(β1, . . . , βn) is a base for the natural action of G/HG on Ω, then

|(β1, . . . , βn)G| ≤ |Ω| · (|Ω| − 1) · · · (|Ω| − n + 1) < |Ω|n = |G : H|n.

Therefore,

|G : HG| < |G : H|n,

and if Problem 1.6 has a positive answer, then c ≤ 5 in Theorem 1.5.
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Problem 1.6 is essentially reduced to the case when G is almost simple by Vdovin
[9]. In particular, to solve Problem 1.6, it is sufficient to prove

RegH(G, 5) ≥ 5

for every almost simple group G and each of its maximal solvable subgroups H.

2. Results

We study the situation when G0 is a simple classical group of Lie type isomorphic
to PSLn(q), PSUn(q) or PSpn(q)′ for some (n, q) and G is an almost simple classical
group with socle isomorphic to G0. In particular, we identify G0 with its group of
inner automorphisms, so

G0 ≤ G ≤ Aut(G0).

When G0 = PSLn(q) or G0 = PSpn(q), we also assume that G contains neither graph
nor graph-field automorphisms (see [5, Definition 2.5.10]). Therefore, in our results,
G is an arbitrary almost simple group with socle G0 if

(1) G0 = PSUn(q);
(2) G0 = PSpn(q) for n > 4 and for n = 4 if q is odd.

If q is even, then PSp4(q) has a graph automorphism [3, Proposition 12.3.3].
If X is ΓLn(q), ΓUn(q) or ΓSn(q), and N is the subgroup of all scalar matrices

in X, then X/N is isomorphic to a subgroup of Aut(G0) where G0 is equal to
PSLn(q), PSUn(q) and PSpn(q)′, respectively. Hence G can be considered as a sub-
group of X/N. A maximal solvable subgroup H of G lies in some maximal solvable
subgroup H1 of X/N. Assume that bH1 (H1 · G0) ≤ c, so there exist a1, . . . , ac ∈ H1 · G0
such that

Ha1
1 ∩ · · · ∩ Hac

1 = 1.

Since ai ∈ H1 · G0, ai = hixi for hi ∈ H1, xi ∈ G0 and i = 1, . . . , c,

Hx1
1 ∩ · · · ∩ Hxc

1 = 1

and, finally,

Hx1 ∩ · · · ∩ Hxc = 1.

Thus, it suffices to consider the situation when H is a maximal solvable subgroup of
X/N and G = H · G0.

If S and Ĝ are the full preimages of H and G in X, then S is solvable and

bH(G) = bS(Ĝ).

It is convenient to work with matrix groups, so we formulate our main results as
follows.
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THEOREM 2.1. Let X = ΓLn(q), n ≥ 2, where (n, q) is neither (2, 2) nor (2, 3). If S
is a maximal solvable subgroup of X, then RegS(S · SLn(q), 5) ≥ 5, and in particular
bS(S · SLn(q)) ≤ 5.

THEOREM 2.2. Let X = ΓUn(q), n ≥ 3 where (n, q) is not (3, 2). If S is a maximal
solvable subgroup of X, then one of the following holds:

(1) bS(S · SUn(q)) ≤ 4, so RegS(S · SUn(q), 5) ≥ 5;
(2) (n, q) = (5, 2) and S is the stabiliser in X of a totally isotropic subspace of

dimension 1, bS(S · SUn(q)) = 5 and RegS(S · SUn(q), 5) ≥ 5.

THEOREM 2.3. Let X = ΓSn(q) and n ≥ 4. If S is a maximal solvable subgroup of X,
then bS(S · Spn(q)) ≤ 4, so RegS(S · Spn(q), 5) ≥ 5.
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