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HITTING TIMES, OCCUPATION TIMES, TRIVARIATE
LAWS AND THE FORWARD KOLMOGOROV EQUATION
FOR A ONE-DIMENSIONAL DIFFUSION WITH MEMORY
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Abstract

We extend many of the classical results for standard one-dimensional diffusions to
a diffusion process with memory of the form dXt = σ(Xt ,Xt ) dWt , where Xt =
m∧ inf0≤s≤t Xs . In particular, we compute the expected time for X to leave an interval,
classify the boundary behavior at 0, and derive a new occupation time formula for X.
We also show that (Xt ,Xt ) admits a joint density, which can be characterized in terms
of two independent tied-down Brownian meanders (or, equivalently, two independent
Bessel-3 bridges). Finally, we show that the joint density satisfies a generalized forward
Kolmogorov equation in a weak sense, and we derive a new forward equation for down-
and-out call options.

Keywords: One-dimensional diffusion; occupation time formula; stochastic functional
differential equation; diffusion with memory
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1. Introduction

In [10] Forde constructed a weak solution to the stochastic functional differential equation
Xt = x + ∫ t

0 σ(Xs,Ms) dWs , where Mt = sup0≤s≤t Xs . Using excursion theory, Forde then
solved the following problem: for a natural class of joint density functions µ(y, b), specify
σ(·, ·) so that X is a martingale, and the terminal level and supremum of X, when stopped at
an independent exponential time ξλ, is distributed according to µ. The proof uses excursion
theory for regular diffusions to compute an explicit expression for the Laplace transform of
the joint density of the terminal level and the supremum of X at an independent exponential
time, and the joint density satisfies a forward Kolmogorov equation. Integrating twice, Forde
obtained a forward partial differential equation for the up-and-out put option payoff which was
then used to back out σ from the pre-specified joint density. This was inspired by the earlier
work of Carr [5] and Cox et al. [6], who showed how to construct a one-dimensional diffusion
with a given marginal at an independent exponential time.

The main result, Theorem 3.6 of [4], shows that we can match the joint distribution at
each fixed time of various functionals of an Itô process, including the maximum-to-date or the
running average of one component of the Itô process. The mimicking process is also a weak
solution to the stochastic functional differential equation (SFDE) and in the special case when
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One-dimensional diffusion with memory 861

we are mimicking the terminal level and the maximum, the mimicking process is of the form
Xt = x + ∫ t

0 σ(Xs,Ms, s) dWs .
In this article we consider the case when the diffusion coefficient σ(·) depends only on X

and its running minimum, and we assume that X is strictly positive, and σ(x,m) is continuous
with 0 < σ(x,m) < ∞ for x > 0 and m ≥ 0, m ≤ x, and that σ(0, 0) = 0. The purpose of
the article is to extend many of the standard well-known results for one-dimensional diffusions
to the case when σ also depends on the running minimum (as opposed to solving one problem
in particular), and we give financial motivation/applications where appropriate.

In Theorem 2.1 we prove weak existence and uniqueness in law for dXt = σ(Xt ,Xt ) dWt by
extending the usual time-change argument for one-dimensional diffusions. In Proposition 3.1,
we compute the expected length of time to hit either of two barriers forX, as a simple application
of Itô’s lemma and the optional sampling theorem. We then examine the nontrivial question of
when the hitting time H0 to 0 is finite or not (almost surely); specifically, in Theorem 4.1 we
show that, for ε ∈ (0,m),

P(H0 < ∞) = 0 if and only if
∫ ε

0

∫ u

0
m̃(u, v) dv du = ∞,

where m̃(x,m) = 1/σ(x,m)2. For the case when m̃ is independent of m, this reduces
to the well-known condition that P(H0 < ∞) = 0 if and only if

∫ ε
0 vm̃(v) dv = ∞ (see,

e.g. Theorem 51.2(i) of [21]). We then formulate an extension of the classical occupation time
formula for the new X process (Theorem 5.1).

In Theorem 6.1, by adapting the argument in [18], using Girsanov’s theorem, and condition-
ing on the terminal value and the minimum of X, we prove the existence of the joint density
pt (x,m) forX and its minimum. We then further characterize this joint density in terms of two
independent back-to-back Brownian meander bridges, which we can further represent in terms
of two independent Bessel-3 bridges using standard results in, e.g. [1], [2], and [11]. Finally,
in Section 8 we show thatX is a weak solution to a forward Kolmogorov equation, and we also
derive a new forward equation for down-and-out call options.

2. A one-dimensional diffusion with memory

In this section we construct a weak solution to the SFDE

Xt = x +
∫ t

0
σ(Xs,Xs) dWs, (2.1)

where Xt = m ∧ inf0≤s≤t Xs and W is a standard Brownian motion, and we show that the
solution X is unique in law. The m parameter allows us to include the possibility that X has
accrued a previous historical minimum m which may be less than X0 = x.

We make the following assumptions on σ throughout.

Assumption 2.1. (i) σ is continuous, and strictly positive away from (0, 0).

(ii) σ(0, 0) = 0.

(iii) limx↘0 x/σ(x, x)
2 = 0.

We let Hb denote the first hitting time to b, i.e.

Hb = inf{s : Xs = b},
and define m̃(u, v) = 1/σ(u, v)2.
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2.1. Weak existence and uniqueness in law

Theorem 2.1. Equation (2.1) has a nonexploding weak solution for t < Hδ which is unique in
law, where 0 < δ ≤ m ≤ x.

Proof. Existence. Let (Bt , Px) denote a standard Brownian motion defined on some (�,F ,
(Ft ))withB0 = x > 0 andBt = inf0≤s≤t Bs , and assume that Ft satisfies the usual conditions
(i.e. Ft is right continuous and F0 contains all F sets of measure 0). Let Tt denote the almost
surely (a.s.), strictly increasing process

Tt =
∫ t

0
m̃(Bs,m ∧ Bs) ds (2.2)

for t < τδ and some δ > 0, where

τa = inf{s : Bs = a}. (2.3)

Let At = inf{s : Ts = t} denote the inverse of Tt , and set

Xt = BAt . (2.4)

Then we have ∫ At

0
σ 2(Bs,m ∧ Bs) dTs =

∫ At

0
ds = At .

If we make the change of variables u = Ts so du = dTs = m̃(Bs,m ∧ Bs) ds then we can
rewrite the integral on the left-hand side as

At =
∫ t

0
σ 2(Xu,Xu) du a.s.,

where we have used a pathwise application of the Lebesgue–Stieltjes change-of-variable
formula. Thus, 〈X〉t = At a.s. Then, by Theorem 3.4.2 of [12], there exists a Brownian
motion W on some extended probability space such that (2.1) is satisfied.

Uniqueness in law. We proceed along similar lines to Lemma V.28.7 of [21]. By Theo-
rem IV.34.11 of [21], if X satisfies (2.1) then

Bt = XTt

is standard Brownian motion, where Tt = inf{s : 〈X〉s = t}, so∫ Tt

0
σ(Xs,Xs)

2 ds = t.

Differentiating with respect to t we obtain

σ(XTt , XTt )
2T ′
t = 1 = σ(Bt ,m ∧ Bt)2T ′

t ,

where T ′
t = m̃(Bt ,m ∧ Bt). Hence,

〈X〉t = inf

{
u :

∫ u

0
m̃(Bs,m ∧ Bs) ds = t

}
.

Thus, X may be described explicitly in terms of the Brownian motion B, so the law of X is
uniquely determined.

Finally, stopping X at Hδ means we are only running B until time τδ , and τδ < ∞ a.s., so
(Xt∧Hδ ) cannot explode to ∞ a.s.

From here on we work on the canonical sample space� = C([0,∞),R+)with the canonical
process Xt(ω) = ω(t) (ω ∈ �, t ∈ [0,∞)) and its canonical filtration Ft = σ(Xs; s ≤ t).
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Let Px,m denote the law on (�,B(�)) induced by a weak solution to (2.1) (which is unique
by Theorem 2.1).

Remark 2.1. If σ ≡ σ(x,m, t) is time dependent, we can still obtain weak existence and
uniqueness if the solution to the ordinary differential equation dTt = m̃(Bt ,m ∧ Bt , Tt ) dt is
uniquely determined a.s. This will be the case if m̃ is Lipschitz in the third argument (we thank
Gerard Brunick for pointing this out).

We refer the reader to [14] and [15] for existence and uniqueness results for general SFDEs.

2.2. Application in financial modelling

We consider a time-homogeneous local volatility model with memory for a forward price
process (Ft )t≥0 which satisfies

dFt = Ftµ dt + Ftσ (Ft , F t ) dWt

under the physical measure P. This has the desirable feature of being a complete model,
so, under the unique risk neutral measure Q, Ft will satisfy dFt = Ftσ (Ft , F t ) dWt , i.e. a
diffusion-type process of the form in (2.1).

3. The expected time to leave an interval

The following proposition computes a closed-form expression for the expectation of the exit
time from an interval, using Itô’s lemma and a simple application of the optional sampling
theorem. This proposition will be needed in the next section where we classify the boundary
behaviour of X at 0. The proof is similar to that used for a regular diffusion in Section 5.5,
part C of [12] and [13, p. 197].

Proposition 3.1. The expected time for X to leave the interval (a, b) is given by

h(x,m) = Ex,m(Ha ∧Hb)

= 2
∫ x

m

(u− x)m̃(u,m) du+ 2(x −m)

b −m

∫ b

m

(b − u)m̃(u,m) du+ 2(b − x)C(m)

< ∞ (3.1)

for 0 < a ≤ m ≤ x ≤ b < ∞, where

C(m) =
∫ b

a

∫ u∧m

a

b − u

(b − v)2
m̃(u, v) dv du.

Proof. We can easily verify that h(x,m) satisfies

m̃(x,m) = − 1
2hxx, hm(m,m) = 0, (3.2)

with endpoint condition h(a, a) = h(b,m) = 0 for all a ≤ m < b.
Now let τ = Ha ∧Hb. Then by Itô’s lemma we have

h(Xt∧τ , Xt∧τ )− h(x,m) =
∫ t∧τ

0
hx(Xs,Xs) dXs + 1

2

∫ t∧τ

0
hxx(Xs,Xs)σ

2(Xs,Xs) ds

+
∫ t∧τ

0
hm(Xs,Xs) dXs

=
∫ t∧τ

0
hx(Xs,Xs) dXs + 1

2

∫ t∧τ

0
hxx(Xs,Xs)σ

2(Xs,Xs) ds
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using the second equation in (3.2) and the fact that dXt = 0 ifXt �= Xt . The functions hx(u, v)
and σ(u, v) are bounded for 0 < a ≤ v ≤ u ≤ b, so taking expectations and applying the
optional sampling theorem, and using the first equation in (3.2) yields

Ex,m(h(Xt∧τ , Xt∧τ )) = h(x,m)− Ex,m(t ∧ τ). (3.3)

Let m̃(u, v) ≤ K for 0 < a ≤ v ≤ u ≤ b and some constant K > 0, so we have

h(x,m) = Ex,m(Ha ∧Hb)

= 2
∫ x

m

(u− x)m̃(u,m) du+ 2(x −m)

b −m

∫ b

m

(b − u)m̃(u,m) du+ 2(b − x)C(m)

≤ 2K

[∫ x

m

(x − u) du+
∫ b

m

(b − u) du+ (b − x)

∫ b

a

∫ u∧m

a

b − u

(b − v)2
dv du

]

< ∞.

Thus, h(·, ·) is continuous and bounded; so letting t → ∞ in (3.3), applying the dominated
convergence theorem to the left-hand side and the monotone convergence theorem to the right-
hand side, and using the fact that h(a, a) = h(b,m) = 0, we obtain (3.1).

4. Absorption at zero

Theorem 4.1. Let ε ∈ (0,m). Then we have the following boundary behaviour for X:

Px,m(H0 < ∞) = 0 if and only if
∫ ε

0

∫ u

0
m̃(u, v) dv du = ∞.

Remark 4.1. For the case when m̃ is independent of m, X is a regular one-dimensional
diffusion, and Theorem 4.1 reduces to the well-known condition that

Px(H0 < ∞) = 0 if and only if
∫

0+
vm̃(v) dv = ∞

(see, e.g. Theorem 51.2(i) of [21]).

Proof of Theorem 4.1. Setting a = 0 in (3.1), we have

C(m) =
∫ b

0

∫ u∧m

a

b − u

(b − v)2
m̃(u, v) dv du

and Ex,m(H0 ∧ Hb) < ∞ if and only if C(m) < ∞, because m̃(0, 0) = ∞ and m̃ < ∞
elsewhere, all the upper limits of integration are finite, and 1/(b− v) will not explode because
the upper range of v is m < b. Noting that (b − u)/(b − v)2 → 1 as u, v ↘ 0 and replacing
the upper limits of integration by ε ∈ (0,m), we see that

Ex,m(H0 ∧Hb) < ∞ if and only if Cε(m) =
∫ ε

0

∫ u∧m

a

m̃(u, v) dv du < ∞.

Thus, we have established that Ex,m(H0 ∧Hb) < ∞ if and only if
∫ ε

0

∫ u
0 m̃(u, v) du dv < ∞.

We now need to verify that Px,m(H0 < ∞) = 0 if and only if
∫ ε

0

∫ u
0 m̃(u, v) dv du = ∞.

First assume that
∫ ε

0

∫ u
0 m̃(u, v) dv du < ∞. Then Ex,m(H0 ∧Hb) < ∞, soH0 ∧Hb < ∞

a.s. and Px,m(H0 = Hb = ∞) = 0. But, from the construction of X via the time-changed
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Brownian motion B in (2.4), we know that Px(τ0 < τb) > 0, where τa is the first hitting time
of B to a as defined in (2.3); hence, Px,m(H0 ≤ Hb) > 0, Px,m(H0 < Hb) > 0, and

Px,m(H0 < ∞) ≥ Px,m(H0 < Hb ≤ ∞) > 0.

Conversely, assume that Px,m(H0 < ∞) > 0. For this part, we proceed as in the proof of
Lemma 6.2 of [13]. Then there exists a t > 0 for which

Px,m(H0 < t) = α > 0.

Every path starting at x and reaching 0 prior to time t visits every intervening state ξ ∈ (0, x).
Thus, we have

0 ≤ α ≤ Px,m(H0 −Hξ < t) = Pξ,ξ∧m(H0 < t) ≤ Pξ,ξ∧m(Hx ∧H0 < t)

for 0 < ξ ≤ x. It follows that

sup
ξ∈(0,x]

Pξ,,ξ∧m(Hx ∧H0 ≥ t) ≤ 1 − α < 1,

and by induction we find that

sup
ξ∈(0,x)

Pξ,,ξ∧m(Hx ∧H0 ≥ nt) ≤ (1 − α)n < 1.

We can rewrite this as

Pξ,ξ∧m(Hx ∧H0 ≥ a) ≤ (1 − α)[a/t] ≤ (1 − α)a/t−1. (4.1)

We now recall the general result in, e.g. [24, p. 79]. For any nonnegative random variable Y ,
we have

E(Y ) =
∫

[0,∞)

P(Y ≥ y) dy.

Thus, E(Y ) < ∞ if and only if
∫
(R,∞)

P(Y ≥ y) dy < ∞ for any R > 0. Thus, setting
Y = Hx ∧H0 we have

Eξ,ξ∧m(Hx ∧H0) < ∞ if and only if
∫

[R,∞)

Pξ,ξ∧m(Hx ∧H0 ≥ a) da < ∞.

But, from (4.1) we have

∫
[R,∞)

Pξ,ξ∧m(Hx ∧H0 ≥ a) da ≤
∫ ∞

R

(1 − α)a/t−1 da = t (1 − α)−1+R/t

log(1 − α)
< ∞.

Thus, Eξ,ξ∧m(Hx∧H0) < ∞, and from the first part of the proof we know that Eξ,ξ∧m(Hx∧H0)

is finite if and only if
∫ ε

0

∫ u
0 m̃(u, v) dv du < ∞ for all ε ≤ m.

Remark 4.2. For a stock price model of the form in (2.2), Theorem 4.1 allows us to compute
whether or not the stock will default by hitting 0 or not in a finite time under the risk neutral
measure Q, which is relevant for the pricing of so-called credit default swaps, which pay 1 dollar
at maturity T if the stock defaults before T .

https://doi.org/10.1239/aap/1377868542 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1377868542


866 M. FORDE ET AL.

5. The occupation time formula

From the continuity of σ , we see that, for any R ∈ (1,∞) and 0 < 1/R ≤ v ≤ u < R,
m̃(u, v) is continuous in v, and, thus (by the Heine–Cantor theorem), is uniformly continuous
in v on the compact set 0 < 1/R ≤ v ≤ u < R with fixed v. Using this property, we will
construct an approximating sequence of processes (Xn) to the process X in (2.1) by ‘freezing’
the m-dependence on a small interval. We then derive a new occupation time formula for X
by applying the standard occupation time formula for regular diffusions to the approximating
process on each small interval, and then letting n → ∞.

5.1. Almost-sure convergence for an approximating sequence of diffusion processes

Recall that τb = inf{s : Bs = b}. Set 0 < b ≤ m ≤ x and m̃n(u, v) = m̃(u, [vn]/n) for
n ≥ 1, so that m̃n(u, v) is piecewise constant in v, and define the process

Xnt = BAnt , (5.1)

where Ant is the strictly increasing continuous inverse of

T nt =
∫ τm∧t

0
m̃(Bs,m) ds +

∫ t

τm∧t
m̃n(Bs, Bs) ds

for 0 ≤ t < τ0. Note thatXt = Xnt for 0 ≤ t ≤ Hm, because them dependence in σ is ‘frozen’
until X sets a new minimum below m.

Proposition 5.1. Let Hn
b = inf{s : Xns = b} and Hb = inf{s : Xs = b} as before for b ∈

(0,m). Then Hn
b → Hb a.s. and Xt∧Hb −Xn

t∧Hn
b

→ 0 a.s.

Proof. Without loss of generality, we assume that x = m; otherwise, we just start from time
Hm instead of time 0. From the time-change construction in the proof of Theorem 2.1, we
know that Bt = XTt and Bτb = XHb , so we have

Hb =
∫ τb

0
m̃(Bs, Bs) ds

and, similarly,

Hn
b =

∫ τb

0
m̃n(Bs, Bs) ds.

Using the uniform continuity of m̃(u, v) on {(u, v) : 1/R ≤ v ≤ u ≤ R} for any R ∈ (1,∞),
and the fact that sup0≤s≤τb Bs(ω) < ∞ a.s., we know that, for any ε > 0, there exists a
N = N(ω) such that, for all n > N(ω), we have

|Hb −Hn
b | =

∣∣∣∣
∫ τb

0
[m̃(Bs, Bs)− m̃n(Bs, Bs)] ds

∣∣∣∣
=

∣∣∣∣
∫ τb

0

[
m̃(Bs, Bs)− m̃

(
Bs,

1

n
[nBs]

)]
ds

∣∣∣∣
≤ ετb

and τb < ∞, Px-a.s., so Hb → Hn
b a.s. Now, let

m̃min(ω) = inf
0≤s≤τb

m̃(Bs(ω), Bs(ω)) < ∞ a.s.
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By the definition of the inverse processes At and Ant , we have

t ∧Hb =
∫ At∧τb

0
m̃(Bs, Bs) ds ≥ (At ∧ τb)m̃min(ω), (5.2)

t ∧Hn
b =

∫ Ant ∧τb

0
m̃n(Bs, Bs) ds. (5.3)

We first consider the case when At ∧ τb ≤ Ant ∧ τb (the other case is dealt with similarly).
We know that sup0≤s≤τb∧At Bs < ∞ a.s. Subtracting (5.3) from (5.2), and again using the
uniform continuity of m̃ in m, we see that

t ∧Hb − t ∧Hn
b =

∫ At∧τb

0
[m̃(Bs, Bs)− m̃n(Bs, Bs)] ds −

∫ Ant ∧τb

At∧τb
m̃n(Bs, Bs) ds

≤ ε(At ∧ τb)− m̃min(ω)(A
n
t ∧ τb − At ∧ τb)

≤ ε(t ∧Hn
b )

m̃min(ω)
− m̃min(ω)(A

n
t ∧ τb − At ∧ τb),

where in the last line we have used the inequality in (5.2). Rearranging, we find that

0 ≤ m̃min(A
n
t ∧ τb − At ∧ τb) ≤ ε(t ∧Hn

b )

m̃min
− (t ∧Hb − t ∧Hn

b ) a.s.

But, we have already shown that Hn
b → Hb a.s, so the right-hand side can be made arbitrarily

small, and, thus,Ant ∧ τb → At ∧ τb a.s. We proceed similarly for the caseAnt ∧ τb ≤ At ∧ τb.
Then

Xt∧Hb −Xn
t∧Hn

b
= BAt∧τb − BAnt ∧τb

and B is continuous, so
Xt∧Hb −Xn

t∧Hn
b

→ 0 a.s.,

as required.

5.2. The occupation time formula

Let (lxt ) denote the local time process for B in (2.4) at the level x.

Theorem 5.1. Let x = m, 0 < δ < x, and f : R2 �→ R+ be a bounded, continuous function.
Then we have the occupation time formula

∫ Hδ∧t

0
f (Xs,Xs) ds =

∑
δ<m≤x

∫ ∞

m

f (x,m)m̃(x,m)l
x,m
At∧τδ dx a.s., (5.4)

where lx,mt = ∫ t
0 1{Bs∈{m}} dlxs = lxτb− − lxτb ≥ 0 is the local time that B spends at x when the

minimum is exactly m, and the sum is taken over the (a.s. countable) m-values where B makes
a nonzero upward excursion from a minimum atm (we know thesem-values are a.s. countable
from standard excursion theory for Brownian motion; see, e.g. [17, Chapter XII, Section 2]).

Proof. See Appendix A.

Remark 5.1. Theorem 5.1 is clearly more involved than the standard occupation time formula.
However, it can be used to show that

∫ ε
0

∫ u
0 m̃(u, v) dv du < ∞ implies that

Px,m(H0 < ∞) = 1,
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which combined with Theorem 4.1 shows that P(H0 < ∞) is either 1 or 0 depending on the
finiteness of

∫ ε
0

∫ u
0 m̃(u, v) dv du (we defer the details to future work).

6. Transition densities

6.1. Existence of a joint transition density for (Xt, Xt)

Theorem 6.1. Define the function

σ̃ (y, y) = e−yσ (ey, ey)

for all y ≥ y, and assume that

• σ̃ (y, y) possesses bounded continuous partial derivatives of all orders up to and
including 2;

• ∫ ε
0

∫ u
0 m̃(u, v) dv du = ∞ so P(H0 < ∞) = 0.

Then, under Px,x , (Xt ,Xt ) defined in (2.1) admits a joint density pt (x′, x′).

Remark 6.1. Note that, under Px,m with x > m, there is a nonzero probability that Xt =
m ∧ inf0≤s≤t Xs = m, i.e. the law of Xt has an atom at m.

Proof of Theorem 6.1. Let Yt := logXt and Y t := logXt , which are well defined becauseX
cannot hit 0 in finite time a.s. We note that Y0 = Y 0. Using Itô’s lemma, we have

dYt = σ̃ (Yt , Y t ) dWt − 1
2 σ̃

2(Yt , Y t ) dt.

Let us define
ρt = inf{u ≤ t : Xu = Xt }.

Because the log function is monotonically increasing, we have ρt = inf{u ≤ t : Yu = Y t }. We
now make a transformation of Y to a process with diffusion coefficient equal to 1. To this end,
we first define

η(y) =
∫ y

y0

du

σ̃ (u, u)
, β(y, y) = η(y)+

∫ y

y

du

σ̃ (u, y)
,

and consider the new processesZt :=β(Yt , Y t ) andZt := infs≤t Zs . ThenZ0 =β(Y0, Y 0) = 0.
Note that, for all t ,

Zt = β(Yt , Y t ) = η(Y t )+
∫ Yt

Y t

du

σ̃ (u, Y t )
≥ η(Y t ),

and from this we see that
Zt = inf

s≤t Zs ≥ η(Y t ). (6.1)

It turns out that we have equality in (6.1), since at time ρt ≤ t we have Yρt = Y t . Using the
monotonicity of η(·) and β(·, y), we have

Y t = η−1(Zt ), (6.2)

Yt = β−1(Zt , η
−1(Zt )), (6.3)

ρt = inf{u ≤ t : Zu = Zt },
where β−1(·, y) is the inverse of function β(·, y).

https://doi.org/10.1239/aap/1377868542 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1377868542


One-dimensional diffusion with memory 869

Since β is at least C2, using Itô’s lemma, we obtain

dZt = dWt − 1
2 [σ̃ (Yt , Y t )+ σ̃y(Yt , Y t )] dt = dWt + b(Zt , Zt ) dt,

where

b(z, z) = − 1
2 [σ̃ (β−1(z, η−1(z)), η−1(z))+ σ̃y(β

−1(z, η−1(z)), η−1(z))].
In light of (6.2) and (6.3), it suffices to show that (Zt , Zt ) has a density function.

We now mimic the proof of the main theorem in [18, p. 2], and consider a new measure P̃

defined by
dP

dP̃

∣∣∣∣
Ft

= Ep

{∫ t

0
b(Zs, Zs) dZs − 1

2

∫ t

0
b2(Zs, Zs) ds

}
.

By Girsanov’s theorem, the process (Zt ) is a standard Brownian motion under the measure P̃.
Now define the C2 function

h(z, z) =
∫ z

z

b(u, z) du+
∫ z

0
b(u, u) du. (6.4)

Using Itô’s lemma, we have

dh(Zt , Zt ) = b(Zt , Zt ) dZt + 1
2bz(Zt , Zt ) dt,

from which we obtain (note that h(Z0, Z0) = h(0, 0) = 0))

h(Zt , Zt )− 1

2

∫ t

0
bz(Zs, Zs) ds =

∫ t

0
b(Zs, Zs) dZs.

Now, for any bounded bivariate continuous function f , we have

E(f (Zt , Zt )) = Ẽ

(
f (Zt , Zt ) exp

[
h(Zt , Zt )− 1

2

∫ t

0
g(Zs, Zs) ds

])
,

where g = b2 + bz. Conditioning on (Zt , Zt ) = (z, z) for z > z, z < 0, we obtain

E(f (Zt , Zt )) =
∫ 0

−∞

∫ ∞

z

f (z, z)φt (z, z)e
h(z,z)

× Ẽ

(
exp

[
−1

2

∫ t

0
g(Zs, Zs) ds

] ∣∣∣∣ Zt = z, Zt = z

)
dz dz,

where φt (z, z) is the joint density of the standard Brownian motion (Zt ) and its minimum Zt .
Thus, the pair (Zt , Zt ) has joint density

p
Z,Z
t (z, z) = φt (z, z)e

h(z,z)Ẽ

(
exp

[
−1

2

∫ t

0
g(Zs, Zs) ds

] ∣∣∣∣ Zt = z, Zt = z

)
. (6.5)

It follows that the pair (Yt , Y t ) = (logXt, logXt) has joint density

p
Y,Y
t (y, y) = p

Z,Z
t (β(y, y), η(y))

∂β

∂y

∂η

∂y
= p

Z,Z
t (β(y, y), η(y))

σ̃ (y, y)σ̃ (y, y)
. (6.6)
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Remark 6.2. For a stock price model of the form in (2.2), the existence of a semiclosed-form
density for (Xt ,Xt ) as proved above allows us to price general barrier option contracts with
payoffs of the form ϕ(Xt ,Xt ) for a measurable function ϕ.

6.2. Characterizing the joint density in terms of Bessel-3 bridges

From (6.5) and (6.6), it is seen that the regularity of the joint density of pY,Yt (y, y) depends
on that of h in (6.4) and the following function ψt :

ψt(z, z) = Ẽ

(
exp

[
−1

2

∫ t

0
g(Zs, Zs) ds

] ∣∣∣∣ Zt = z, Zt = z

)
.

The functionψt depends on the law of a standard Brownian motion (Zs)0≤s≤t givenZt , andZt .
To this end, let us condition on (Zt , Zt , ρt ) = (z, z, u); (Zt , Zt , ρt ) has a smooth density given
by

χt (z, z, u) = 2f (z, u)f (z− z, t − u) = −z(z− z)

πu3/2(t − u)3/2
exp

[
− z2

2u
− (z− z)2

2(t − u)

]
,

where f (y, t) = |y|e−y2/2t /
√

2πt3 is the hitting time density from 0 to y for a standard
Brownian motion (see, e.g. [11]). Moreover, given (Zt , Zt , ρt ) = (z, z, u), the path fragments

(Zu−s − z)0≤s≤u and (Zu+s − z)0≤s≤t−u

are two independent Brownian meanders of lengths u and t − u, starting at 0 and conditioned
to end at −z > 0 and z− z > 0, respectively (see, e.g. [2]). A Brownian meander of length
s is defined as the rescaled portion of a Brownian path following the last passage time at 0,
G1 = sup{s ≤ 1 : Bs = 0}:

Bme
u =

√
s√

1 −G1
|BG1+u(1−G1)/s | 0 ≤ u ≤ s

(see [3, p. 63]). It is known that the law of a Brownian meander of length s is identical to
that of a standard Brownian motion starting at 0 and conditioned to be positive for t ∈ [0, s]
(see, e.g. [8]). Moreover, the tied-down Brownian meander, i.e. the Brownian meander
conditioned so that Bme

1 = x > 0, has the same law as a three-dimensional Bessel bridge Rbr

with Rbr
0 = 0 and Rbr

1 = x (see, e.g. [1] and [11]). Hence, the path fragments (Zu−s − z)0≤s≤u
and (Zu+s − z)0≤s≤t−u can be identified with two independent Bessel-3 bridges, starting at 0,
and ending at −z > 0 and z− z > 0, respectively (see [2] and [23]). Thus, as in [16], we
have

κt (z, z, u) = Ẽ

(
exp

[
−1

2

∫ u

0
g(Zs, Zs) ds

] ∣∣∣∣ Zt = z, Zt = z, ρt = u

)

× Ẽ

(
exp

[
−1

2

∫ t

u

g(Zs, z) ds

] ∣∣∣∣ Zt = z, Zt = z, ρt = u

)

= Ẽ

(
exp

[
−1

2

∫ u

0
g(Zs, Zs) ds

] ∣∣∣∣ Zt = z, Zt = z, ρt = u

)

× Ẽ

(
exp

[
−1

2

∫ t−u

0
g(Zt−s , z) ds

] ∣∣∣∣ Zt = z, Zt = z, ρt = u

)
,
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and we can rewrite the last expectation in terms of the two aforementioned independent Bessel-3
bridges if we wish. It follows that

ψt(z, z) = Ẽ

(
exp

[
−1

2

∫ t

0
g(Zs, Zs) ds

] ∣∣∣∣ Zt = z, Zt = z

)

=
∫ t

0
κt (z, z, u)P̃(ρt ∈ du | Zt = z, Zt = z) du

=
∫ t

0
κt (z, z, u)

χt (z, z, u)

φt (z, z)
du.

7. A generalized forward Kolmogorov equation

In this section we assume thatm = x = x0, soX0 = X0 = x0 > 0 and we use E as shorthand
for Ex0,x0 . We further assume that

∫ ε
0

∫ u
0 m̃(u, v) dv du = ∞, so Px,x(H0 < ∞) = 0, i.e. X

cannot hit 0 a.s., and, for simplicity, we assume that σ is bounded (we can easily relax this
assumption by working in log space as in the previous section, but in the interests of clarity
and succinctness, we do not do this here). Let O = {(x, y) ∈ R+ × R+ : x ≥ y} denote the
support of (Xt ,Xt ).

Theorem 7.1. (Xt ,Xt ) satisfies the following forward equation

∂

∂t
E(f (Xt ,Xt , t)) = E

(
ft (Xt ,Xt , t)+ 1

2
fxx(Xt ,Xt , t)σ (Xt ,Xt )

2
)

(7.1)

for all test functions f ∈ C2,1,1
b (O × R+) satisfying fy(y, y, t) = 0.

Proof. See Appendix B.

Remark 7.1. Iff ∈ C∞
c (O × R+) (C∞

c means smooth with compact support), re-writing (7.1)
in terms of integrals and integrating from t = 0 to ∞, and using the fact that f (t, Xt ,Xt ) = 0
a.s. for sufficiently large t , we see that p(t, dx, dy) = P(Xt ∈ dx, Xt ∈ dy) satisfies

∫ ∞

t=0

∫
O

(
ft + 1

2
σ(x, y)2fxx

)
p(t, dx, dy) dt = 0. (7.2)

Remark 7.2. If p(t, dx, dy) admits a density so that p(t, dx, dy) = p(t, x, y) dx dy, and p
and σ are twice continuously differentiable in x andp is once differentiable in t , then integrating
(7.2) by parts we have

∫ ∞

t=0

∫
O
f (x, y, t)

[
−∂tp + ∂2

xx

(
1

2
σ(x, y)2p

)]
dx dy dt = 0,

and, thus (by the arbitraryness of f ), p(t, x, y) is a classical solution to the family of forward
Kolmogorov equations

∂tp = ∂2
xx

( 1
2σ(x, y)

2p
)
, x �= y,

for all y ≤ x (see [21, p. 252], Theorem 3.2.6 of [22], and [9] for similar results and weak
formulations for a standard diffusion process).
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7.1. A forward equation for down-and-out call options

Proposition 7.1. Assume that k > 0 and 0 < b < x0. Then

E((Xt − k)+ 1{Xt>b})− (X0 − k)+ = 1
2 E(Lkt∧Hb)− (b − k)+P(Xt ≤ b), (7.3)

where Lat is the semimartingale local time of X at a as defined in, e.g. Theorem 3.7.1 of [12]
and Hb = inf{s : Xs = y}, subject to the following boundary condition at x = y:

E((Xt − b)+ 1{Xt>b}) = E((Xt − b) 1{Xt>b}) = x0 − b. (7.4)

Remark 7.3. Equation (7.3) is a forward equation for a down-and-out call option on Xt with
strike x, which knocks out if X hits y before time t . Specifically (assuming zero interest rates
and dividends), the left-hand side is the fair price of the down-and-out call, and the P(Xt ≤ y)

term on the right-hand side is the price of a one-touch option on Xt which pays 1 if X hits y
before t .

Remark 7.4. Equation (7.4) is the same condition that appears in [20], and if Xt has no atom
at y, we can differentiate (7.4) with respect to y to obtain the condition in Theorem 3.1 of [19].

Remark 7.5. The financial interpretation of (7.4) is the well-known result that (for zero
dividends and interest rates) we can semistatically hedge a down-and-out call option with
barrier b equal to the strike k, by buying one unit of stock and holding −b dollars, and unwinding
the position if/when the barrier is struck (see, e.g. Appendix A of [7]).

Proof of Proposition 7.1. From the generalized Itô formula given in, e.g. Theorem 3.7.1
of [12], we obtain

d(Xt − k)+ = 1{Xt>k} dXt + 1
2 dLkt .

Integrating from time 0 to t ∧Hb we obtain

(Xt∧Hb − k)+ − (X0 − k)+ = (Xt − k)+ 1{Hb>t} +(b − k)+ 1{Hb≤t} −(X0 − k)+

=
∫ t∧Hb

0
1{Xs>x} dXs + 1

2
Lkt∧Hb .

Taking expectations and simplifying, we obtain (7.3).
To obtain the boundary condition in (7.4), we use the optional sampling theorem for the

bounded stopping time t ∧Hb to obtain

E(Xt∧Hb) = x0

= E(Xt 1{Xt>b})+ E(XHb 1{Hb≤t})
= E(Xt 1{Xt>b})+ bP(Xt ≤ b)

= E((Xt − b) 1{Xt>b})+ bE(1{Xt>b})+ bE(1{Xt≤b})
= E((Xt − b) 1{Xt>b})+ b

= E((Xt − b)+ 1{Xt>b})+ b,

where the last equality follows because Xt > b on {Xt > b}, i.e. if X does not hit b before
time t .

Appendix A. Proof of Theorem 5.1

The process (Xnt ) defined in (5.1) is just a regular one-dimensional diffusion process for
t ∈ [Hn

(k+1)/n,H
n
k/n) for each k = 0, . . . , [x0n] − 1. Using the standard occupation time
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formula for t ∈ [Hn
(k+1)/n,H

n
k/n) for each k (see Theorem 49.1 of [21]), we have

∫ Hn
k/n∧t

Hn
(k+1)/n∧t

fn(X
n
s ,X

n
s ) ds =

∫ ∞

δ

f

(
x,
k

n

)
m̃

(
x,
k

n

)
l
x,(k/n,(k+1)/n]
Ant ∧τδ dx

=
∫ ∞

δ

∑
k/n<m≤(k+1)/n

fn(x,m)m̃n(x,m)l
x,m

Ant ∧τδ dx,

where fn(x,m) = f (x, [nm]/n), lx,(a,b]t = ∫ t
0 1{Bs∈(a,b]} dlxs is the local time that B has

accrued at x at time t while B ∈ (a, b], and we are summing over (a.s. countable) m-values in
(k/n, (k + 1)/n] for which there is a nonzero upward excursion from a minimum at m.

Summing over k until time t ∧Hn
δ and taking the finite sum inside the integral on the

right-hand side, we obtain

∫ t∧Hn
δ

0
f (Xns ,X

n
s ) ds =

∫ t

0
f (Xns ,X

n
s ) 1{s<Hn

δ } ds

=
[x0n]−1∑
k=0

∫ ∞

δ

∑
k/n<m≤(k+1)/n

fn(x,m)m̃n(x,m)l
x,m

Ant ∧τδ dx

=
∫ ∞

δ

[ ∑
δ<m≤x

fn(x,m)m̃n(x,m)l
x,m

Ant ∧τδ

]
dx

=
∫ sup0≤s≤τδ Bs

δ

[ ∑
δ<m≤x

fn(x,m)m̃n(x,m)l
x,m

Ant ∧τδ

]
dx. (A.1)

For the left-hand integral, from Proposition 5.1, we know that Hn
δ → Hδ a.s. and Xn

t∧Hn
δ

→
Xt∧Hδ a.s., sof (Xns ,X

n
s ) 1{s<Hn

δ } → f (Xs,Xs) 1{s<Hδ} Lebesgue almost everywhere on [0, t],
a.s. Thus, by the dominated convergence theorem, we have

∫ t

0
1{s≤Hn

δ }f (Xns ,Xns ) ds →
∫ t

0
1{s≤Hδ} f (Xs,Xs) ds =

∫ t∧Hδ

0
f (Xs,Xs) ds a.s.

For the integrand on the right-hand side, we have the upper bound
∑

δ<m≤x
fn(x,m)m̃n(x,m)l

x,m

Ant ∧τδ ≤ fmaxm̃max(δ, ω)l
x
Ant ∧τδ < ∞ a.s.,

where m̃max(δ, ω) = sup0≤s≤τδ m̃(Bs, Bs) < ∞ a.s. Thus, letting n → ∞ on both sides of
(A.1), and applying the dominated convergence theorem to the right-hand side as well, and then
applying Fubini’s theorem, we obtain (5.4).

Appendix B. Proof of Theorem 7.1

Let σt = σ(Xt ,Xt ); Xt and Xt are continuous semimartingales, so we can apply Itô’s

formula to the test function f ∈ C2,1,1
b (O × R+):

df (Xt ,Xt , t) = fx(Xt ,Xt , t) dXt + 1
2fxx(Xt ,Xt , t)σ

2
t dt + fy(Xt ,Xt , t) dXt,

= fx(Xt ,Xt , t) dXt + 1
2fxx(Xt ,Xt , t)σ

2
t dt.
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Here we have used the fact that Xt = Xt on the growth set of Xt in the final term (by growth
set we mean the support of the random measure induced by the process Y on [0, T ], i.e. the
complement of the largest open set of zero measure). (Recall thatψy(y, y, t) = 0.) Integrating
we obtain

f (Xt ,Xt , t)− f (x0, x0, 0) =
∫ t

0
fx(Xs,Xs, s) dXs +

∫ t

0

1

2
fxx(Xs,Xs, s)σ

2
s ds.

Taking expectations, and applying Fubini’s theorem yields

E(f (Xt ,Xt , t))− f (x0, x0, 0) =
∫ t

0

1

2
E(fxx(Xs,Xs, s)σ

2
s ) ds. (B.1)

Since Xt and Xt are continuous in t a.s. and σ(·, ·) is continuous, σt = σ(Xt ,Xt , t) is
also continuous in t a.s. Moreover, f ∈ C2,1,1

b , so fxx(·, ·) is bounded and continuous, and
fxx(Xu,Xu, u)σ

2
u → fxx(Xs,Xs, s)σ

2
s a.s. as u → s. As σ is also bounded, from the

dominated convergence theorem we have

lim
u→s

E(fxx(Xu,Xu, u)σ
2
u ) = E(fxx(Xs,Xs, s)σ

2
s ),

so the integrand E(fxx(Xs,Xs, s)σ
2
s ) in (B.1) is continuous in s for all s. Thus, using the

fundamental theorem of calculus, we can differentiate (B.1) everywhere with respect to t to get

∂

∂t
E(f (Xt ,Xt , t)) = E

(
ft (Xt ,Xt , t)+ 1

2
fxx(Xt ,Xt , t)σ (Xt ,Xt )

2
)
.
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