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The butterfly effect and the transition to
turbulence in a stratified shear layer
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In a stably stratified shear layer, multiple competing instabilities produce sensitivity to
small changes in initial conditions, popularly called the butterfly effect (as a flapping
wing may alter the weather). Three ensembles of 15 simulated mixing events, identical
but for small perturbations to the initial state, are used to explore differences in the
route to turbulence, the maximum turbulence level and the total amount and efficiency
of mixing accomplished by each event. Comparisons show that a small change in the
initial state alters the strength and timing of the primary Kelvin–Helmholtz instability, the
subharmonic pairing instability and the various three-dimensional secondary instabilities
that lead to turbulence. The effect is greatest in, but not limited to, the parameter regime
where pairing and the three-dimensional secondary instabilities are in strong competition.
Pairing may be accelerated or prevented; maximum turbulence kinetic energy may vary
by up to a factor of 4.6, flux Richardson number by 12 %–15 % and net mixing by a factor
of 2.
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1. Introduction

In a popular metaphor for the sensitivity of chaotic systems to initial conditions, the
flapping of a butterfly’s wings is imagined to alter the evolution of a storm system (e.g.
Lorenz 1993). In a dynamically unstable stratified shear layer, small perturbations grow
exponentially via various competing instabilities, suggesting an analogous process in a
high-dimensional yet relatively simple system. Using ensembles of nearly identical direct
numerical simulations (DNS), we examine variations in the route to turbulence, and in the
ultimate amount and efficiency of mixing, that may result from a random perturbation to
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the initial state, as well as the mechanisms that generate those variations. Our goals are to
(i) survey the specific processes within a Kelvin–Helmholtz (KH) turbulence event that are
amenable to understanding and prediction, (ii) identify the aspects of their interactions that
lead to chaos and (iii) quantify the resulting unpredictability and assess the implications
for our ongoing attempts to parameterize the process.

The life cycle of turbulence in stratified shear flows (Thorpe 2012) has been studied
extensively via linear stability analysis (e.g. Rayleigh 1880; Goldstein 1931; Taylor 1931;
Miles 1961; Hazel 1972; Klaassen & Peltier 1985; Mashayek & Peltier 2012a), as well as
nonlinear numerical simulations (e.g. Caulfield & Peltier 1994, 2000; Smyth & Moum
2000a; Mashayek & Peltier 2011; Dong et al. 2019; Kaminski & Smyth 2019; Lewin
& Caulfield 2021; VanDine, Pham & Sarkar 2021), laboratory experiments (e.g. Thorpe
1971; Lawrence, Browand & Redekopp 1991) and field observations (e.g. Ludlam 1967;
Woods 1969; Smyth & Moum 2012).

Linear, normal-mode stability theory for a stratified, parallel shear layer (e.g. Smyth &
Carpenter (2019), hereafter SC19) assumes that the initial mean flow is steady but unstable,
and suffers a small-amplitude perturbation. For the initial states considered here, it predicts
that the flow will first become dominated by the fastest-growing primary instability, the
KH instability. As the primary instability grows, it develops one or more secondary
instabilities (Klaassen & Peltier 1985, 1991; Mashayek & Peltier 2012a,b) which generate
up- and downscale energy cascades and ultimately lead the flow to a three-dimensional,
turbulent state.

Kaminski & Smyth (2019) found that the amplitude of the initial perturbation affects
the large-amplitude structures that arise from the KH instability as well as useful statistics
of the resulting turbulence such as its mixing efficiency. Dong et al. (2019) showed that
different phase relationships between the primary and subharmonic Fourier components
of the initial state can lead to a significant difference in the potential energy change due
to mixing. Guha & Rahmani (2019) extended these results to include multiple levels of
pairing in unstratified shear layers. Here, we extend Kaminski & Smyth (2019) by looking
beyond the amplitude of the initial noise field to see how the details of its spatial form
influence the flow evolution. Moreover, we extend Guha & Rahmani (2019) by including
stable stratification and Dong et al. (2019) by increasing the Reynolds numbers to values
where different secondary instabilities, specifically the subharmonic pairing mode (e.g.
Klaassen & Peltier 1989) and the various three-dimensional secondary modes, compete
strongly such that pairing may be suppressed altogether (Mashayek & Peltier 2011, 2013).

Our hypothesis is that, because a multitude of competing, exponentially growing
instabilities is inherent in the initial flow, the flow evolution may be altered in important
ways by small changes in the form of the initial disturbance that catalyses those
instabilities. In other words, it will exhibit a form of ‘sensitive dependence on initial
conditions’ (hereafter SDIC), a more explicit descriptor for the aforementioned butterfly
effect. A practical implication is that, in numerical and laboratory experiments designed
to test the influence of initial state parameters such as the Richardson, Reynolds or
Prandtl number on the resulting mixing (e.g. Smyth & Moum 2000a), uncertainties can be
reduced by using ensembles of cases with different initial perturbations and then drawing
conclusions based on ensemble averages.

The timing and strength of turbulence in KH-unstable flow results from interactions
between four main flow components:

(i) The instantaneous mean (i.e. horizontally averaged) flow:
(ii) The billow train that arises from the primary KH instability;

(iii) The subharmonic pairing instability or upscale energy cascade; and
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(iv) The various three-dimensional secondary instabilities (hereafter 3DSIs; e.g.
Klaassen & Peltier 1985, 1991; Thorpe 1985; Mashayek & Peltier 2012a,b, 2013)
that initiate the downscale cascade.

While the pairing mode draws its energy mainly from the mean flow (Smyth & Peltier
1993), the 3DSIs also feed on the shears, strains and overturnings found in mature KH
billows (Klaassen & Peltier 1991; Mashayek & Peltier 2012a,b). Therefore, while both the
primary KH and the pairing instabilities begin to lock on and grow soon after t = 0, the
3DSIs do not appear until the primary billows attain large amplitude. We will examine all
of these processes and the ways that their interactions are determined by the details of the
initial flow, together with the resulting effects on the turbulence.

If the subharmonic mode is too slow in growing, the 3DSIs can nudge the KH billows
into the turbulent state. The mean shear is then diffused, reducing the energy available
for subharmonic growth. The 3DSIs, being small in scale, are relatively vulnerable
to dissipation by viscosity and therefore grow slowly at the low Reynolds numbers
characteristic of laboratory experiments and early DNS. But at the higher Reynolds
numbers accessible in today’s DNS, three-dimensional (3-D) modes can compete with
pairing, possibly accounting for the fact that pairing is rarely observed in geophysical
settings (Mashayek & Peltier 2011, 2013).

Here, we conduct DNS ensembles at three points in parameter space spanning the
boundary region where pairing is first inhibited by 3DSIs. We find that pairing can indeed
be accelerated or prevented due to variations in the timing of the KH, subharmonic
and 3DSIs caused by small changes in the initial state. The possible outcomes can be
summarized as in the parameter diagram in figure 1, which shows the three characteristic
behaviours exhibited across our simulations as described in detail in § 4.4. SDIC is already
evident in the scatter among the 15-case ensembles, each member of which differs only by
a small change in the initial random perturbation. Turbulence statistics such as the amount
and efficiency of mixing will be seen to vary profoundly due to these effects; for example,
the maximum turbulence kinetic energy in an event may vary by more than a factor of 4.

The methodology for our numerical simulations and subsequent analysis is described
in § 2. In § 3, we give an overview of the stages in a typical KH mixing event. Section 4
describes the main instabilities individually, including their growth from the initial noise
field and the possible variations in their evolution. We then examine the range of ways that
the instabilities can interact to determine the ultimate flow evolution. In § 5 we focus on
the maximum amplitude phase in which mature KH billows pair (in some cases) and break
to form turbulence. Section 6 describes how the overall amount of mixing, as well as the
flux coefficient and the cumulative mixing efficiency, vary due to the randomness of the
initial state. Conclusions and directions for future research are summarized in § 7.

2. Methodology

2.1. The mathematical model
We begin by considering a stably stratified parallel shear layer defined by mean profiles of
velocity and buoyancy

U∗(z∗) = u∗
0 tanh

(
z∗

h∗

)
and B∗(z∗) = b∗

0 tanh
(

z∗

h∗

)
, (2.1a,b)

in which 2u∗
0 and 2b∗

0 are velocity and buoyancy differences across the shear layer
and 2h∗ is its thickness. Asterisks indicate dimensional quantities. The Cartesian
coordinates are x∗ (streamwise), y∗ (spanwise) and z∗ (vertical, increasing upwards).

953 A43-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

98
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.985


C.-L. Liu, A.K. Kaminski and W.D. Smyth

6
Ri0 = 0.12

Ri0 = 0.14

Ri0 = 0.16

5

4

3
lo

g
1
0
(K

2
d/

K
3
d)

| t su
b

log10(Ksub/KKH)|tsub

Turbulent

pairing

Laminar

pairing

Nonpairing

2

1

0

6 13 810

1211 14
3 4 136

8
5
10

3
14

11

15

7

9

4

125

12
6

7
9

13
101

14 4

2 15 11

3

8

1 25

29
7

15

–1
–1.0

6

0

0 28x 0 28x 0 28

0.8

–0.8

x

bz

–6

6

0

–6

6

0

–6

–0.5 0 0.5 1.0 1.5 2.0

(b) (c) (d )

(a)

Figure 1. (a) Energetics at the time of maximum subharmonic kinetic energy for 45 simulated mixing events.
Ratio of two- to three-dimensional kinetic energy vs the ratio of subharmonic to primary kinetic energy
(details in § 2.4). Labels indicate cases in each ensemble. Snapshots of the buoyancy field representing
three characteristic regimes shown in (b) non-pairing: Ri0 = 0.16, case no. 6, t = 302; (c) turbulent pairing:
Ri0 = 0.12, case no. 6, t = 219; (d) laminar pairing: Ri0 = 0.12, case no. 11, t = 175.

After non-dimensionalizing velocities by u∗
0, buoyancy by b∗

0, lengths by h∗ and times
by the advective time scale h∗/u∗

0, the velocity and buoyancy profiles become

U(z) = B(z) = tanh(z). (2.2)

The flow evolution is governed by the Boussinesq equations. In non-dimensional form,
these are

∂u
∂t

+ u · ∇u = −∇p + Ri0bẑ + 1
Re

∇2u, (2.3)

∂b
∂t

+ u · ∇b = 1
RePr

∇2b, (2.4)

∇ · u = 0, (2.5)

where u represents the total vector velocity field, b the buoyancy and p = p∗/ρ∗
0 U∗2

0
the scaled pressure with characteristic density ρ∗

0 . Three non-dimensional parameters
are present in (2.3)–(2.5): the initial Reynolds number, Re0 = u∗

0h∗/ν∗, where ν∗ is the
kinematic viscosity, the Prandtl number, Pr = ν∗/κ∗, where κ∗ is the diffusivity and the
initial minimum Richardson number, Ri0 = b∗

0h∗/U∗2
0 . In the limit Re0 → ∞, instability

is only possible when Ri0 < 1/4 (Howard 1961; Miles 1961). Boundary conditions are
periodic in both horizontal directions and free slip and insulating at the top and bottom.
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Ri0 (Lx, Ly, Lz)

0.16 (27.76,6.94,20)
0.14 (28.08,7.02,20)
0.12 (28.28,7.07,20)

Table 1. Parameter values for three, 15-member DNS ensembles. In all cases Re0 = 1000, Pr = 1 and the
grid size is 512 × 128 × 361. The maximum initial random velocity component is 0.025.

A random perturbation is then added to the initial mean state (2.2). This has two
purposes: first, to catalyse the instability; second, to model the turbulence that is invariably
present in natural fluid systems. Kaminski & Smyth (2019) used a Kolmogorov-like
distribution of Fourier components with random phases and kinetic energy proportional
to the −5/3 power of the wavenumber. Here, we take a simpler approach: we impose a
homogeneous distribution of independent, random velocity vectors at each point in the
domain. Ensembles of simulations are performed, each using a different seed to generate
the random velocities. The maximum amplitude of any one component is 0.025, or 1.25 %
of the velocity change across the shear layer. The amplitude is therefore small enough
that the initial growth phase is accurately described by linear perturbation theory (as will
be shown). While the initial noise field has non-zero divergence, mass conservation is
enforced by the pressure field from the first time step onward. The choices of Ri0, grid
sizes and repetitions for each ensemble are presented in table 1.

2.2. Numerical methods
The simulations are conducted using DIABLO (Taylor 2008), which employs a mixed
implicit–explicit time-stepping scheme with pressure projection. The viscous and diffusive
terms are treated implicitly with a second-order Crank–Nicolson method; all other
terms are treated explicitly with a third-order Runge–Kutta-Wray method. The periodic
streamwise and spanwise (x, y) directions are treated pseudospectrally, while the vertical z
direction dependence is approximated using a finite-difference method.

To allow the subharmonic mode to develop, the streamwise periodicity interval Lx
accommodates two wavelengths of the fastest-growing KH mode based on linear stability
analysis (Lian, Smyth & Liu 2020). The spanwise periodicity interval Ly = Lx/4 is
sufficient for the development of 3DSIs (e.g. Klaassen & Peltier 1985; Mashayek & Peltier
2013), and the domain height is Lz = 20, sufficient to avoid boundary effects.

The computational grid is uniform. Grid dimensions are chosen to resolve ∼2.5 times
the Kolmogorov length scale, Lk = (Re−3/ε)1/4 after the onset of turbulence, where ε is
the viscous dissipation rate.

2.3. Parameter choices
Increasing Re0 toward geophysical values places large demands on computational
resources. Here, we must compromise between Re0 and ensemble size. We conduct a total
of 45 DNS runs, 15 each at Ri0 = 0.12, 0.14 and 0.16. In all cases we set Re0 = 1000, the
smallest value at which the suppression of pairing is clearly evident. A second compromise
is the choice of the Prandtl number. We choose Pr = 1, an appropriate value for air but
too small to be realistic in water, again in deference to computational resource limits.
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2.4. Diagnostics
A useful descriptor of stratified shear flow is the gradient Richardson number Ri =
N2/S2. Here, N2 = ∂〈b〉xy/∂z is the squared buoyancy frequency and S = ∂〈u〉xy/∂z is the
mean shear. The notation 〈〉xy denotes an average over the x and y directions. Of particular
significance is the fact that the global minimum of Ri over z, here called Rimin, must be
<1/4 for shear instability to operate in a stratified fluid in the inviscid limit (Howard 1961;
Miles 1961).

The transition to turbulence involves expanding the dimensionality of the flow from 1
to 2 to 3. To examine the processes involved in each step, we first decompose the velocity
field into a horizontally averaged mean flow and a perturbation

u(x, y, z, t) = Ūê(x) + u′(x, y, z, t), where Ū(z, t) = 〈u〉xy. (2.6)

The perturbation velocity is further partitioned into 2-D and 3-D components

u′(x, y, z, t) = u2d + u3d, (2.7)

where

u2d(x, z, t) = 〈u〉y − Ūê(x) and u3d(x, y, z, t) = u − 〈u〉y. (2.8a,b)

The kinetic energy is subdivided into the corresponding constituent parts

K = K̄ + K′; K′ = K2d + K3d, (2.9)

where

K̄ = 1
2 〈Ū2〉z, K2d = 1

2 〈(u2
2d + v2

2d + w2
2d)〉xz, K3d = 1

2 〈u2
3d + v2

3d + w2
3d〉xyz.

(2.10a–c)
The constituent kinetic energies K̄, K′, K2d and K3d may be identified, respectively, as the
kinetic energy associated with the mean flow, the turbulent kinetic energy and the kinetic
energy associated with 2-D and 3-D motions, respectively.

We also partition the kinetic energy into components associated with particular
wavenumbers via Fourier decomposition. The Fourier transform of the perturbation
velocity field at z = 0 is

û′(k, y, t) = 1
Lx

∫ Lx

0
u′(x, y, t) e−i kx dx, (2.11)

where k = (2π/Lx)n, n = 1, 2, 3, . . . (Nx/2) − 1, and Nx = 512 for the array sizes
used here. In the corresponding kinetic energy spectrum, we denote the subharmonic
component n = 1 as Ksub, and the primary KH component n = 2 as KKH . The phase
spectrum of the perturbation vertical velocity is obtained by Fourier transforming the
x-dependence of 〈w′〉y. At height z and time t, the result can then be expressed in the
polar form

ŵ′(k) = Ŵ(k) ei φ̂(k), (2.12)

where Ŵ(k) and φ̂(k) are, respectively, the amplitude and phase spectra. Finally, we define
the subharmonic (n = 1) and KH (n = 2) phases, respectively, as φsub and φKH .

We will be concerned with the quantification of irreversible mixing and its dependence
on the initial random perturbation. To this end, we decompose the total potential energy
P = −Ri0〈bz〉xyz into available and background components, P = Pa + Pb. Here, Pb is the
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minimum potential energy that can be achieved by adiabatically rearranging the buoyancy
field into a statically stable state (Winters et al. 1995; Tseng & Ferziger 2001). The
available potential energy Pa = P − Pb is the potential energy available for conversion to
kinetic energy by stirring, which arises due to lateral variations in buoyancy or statically
unstable regions.

Following Caulfield & Peltier (2000), we define the irreversible mixing rate due to fluid
motions as

M = dPb

dt
− Dp, (2.13)

where Dp ≡ Ri0(btop − bbottom)/(Re0PrLz) denotes the rate at which the potential energy
of a statically stable density distribution would increase in the absence of any fluid motion
(i.e. due only to diffusion of the mean buoyancy profile).

We define a cumulative flux coefficient as

Γc =

∫
M dt∫
ε′ dt

, (2.14)

where we use the turbulent dissipation rate ε′ = (2/Re)〈sijsij〉xyz, and sij = (∂u′
i/∂xj +

∂u′
j/∂xi)/2. The integral covers the duration of the simulation, which ends at t = 500. (At

this juncture, both K2d and K3d have decreased by 2–3 orders of magnitude from their peak
values.) We define Γc using the dissipation rate ε′. This omits the contribution from the
mean shear, since we are interested in dissipation by the turbulence only. We also define
the irreversible flux Richardson number

Rif = Γc

1 + Γc
=

∫
M dt∫

M dt +
∫

ε′ dt
, (2.15)

where Rif relates the fraction of energy that goes into irreversible mixing to the total lost
via turbulent motions (cf. Venayagamoorthy & Koseff 2016). This quantity may also be
referred to as a mixing efficiency, although we note that there are a variety of definitions
for that quantity in the literature (Gregg et al. 2018; Smyth 2020).

To define the normal-mode instability spectrum at any chosen time in a simulation, we
linearize (2.3)–(2.5) about the horizontally averaged profiles 〈u〉xy and 〈b〉xy. Perturbations
are assumed to take a normal-mode form, resulting in a Taylor–Goldstein model extended
to account for viscosity and diffusion. The linear equations are discretized using a
Fourier–Galerkin method, resulting in a generalized matrix eigenvalue problem which is
solved using standard methods. Details may be found in SC19’s § 13.3 or Lian et al. (2020).
Resulting growth rates may be compared with a growth rate derived from the nonlinear
simulation

σ = 1
2

d
dt

ln K, (2.16)

where K may represent any of the constituent kinetic energies described in (2.9) or derived
from (2.11).
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Figure 2. (a) Change in mean flow kinetic energy since t = 0, (b) minimum gradient Richardson number, for
the 15-cases of the Ri0 = 0.14 ensemble. Dark curves show the mean. Diamonds at the bottom of (a) indicate
times shown in figure 3.

3. Overview of a KH event

In an unstable shear flow, kinetic energy is extracted from the mean flow (figure 2a) via
a sequence of instabilities. It is thereby cascaded downscale and ultimately dissipated by
friction. In the process, turbulent mixing leads the flow to a stable state, as indicated by
the minimum gradient Richardson number Rimin increasing from its initial value, which is
less than the inviscid critical value 1/4, to values exceeding 1/4 (figure 2b).

In the earliest stage of each simulation (approximately 0 < t < 100 in the case shown
in figure 2), perturbation amplitudes are small. The mean flow is gradually diffused by
viscosity, leading to a slow decrease of mean kinetic energy (figure 2a) and to a slow
increase in Rimin (figure 2b).

In the next phase (approximately 100 < t < 160), the primary KH instability grows to
large amplitude and generates a train of billows, two of which are included in our periodic
computational domain (figure 3b). This growth coincides with a rapid drop in mean flow
kinetic energy (figure 2a) and also with a drop in Rimin (figure 2b) as overturning in the
vortex cores leads to locally negative buoyancy gradients.

A more precipitous drop in K̄ is seen during 190 < t < 220. This is due first to the
pairing of adjacent KH billows and second to the emergence of 3DSIs (figure 3c,d). These
combine to increase Rimin of the mean flow. The 3-D instabilities now lead the shear
layer toward a state of gradually decaying, quasi-isotropic turbulence (figure 3e, also see
Smyth & Moum 2000a). The decay of the turbulence leaves a dynamically stable parallel
shear flow, with Rimin > 1/4 (figure 3f ). This dissipative collapse to a stable equilibrium
identifies the KH turbulence event as a case of transient chaos (Lai & Tél 2011), as will
be discussed further in § 7.
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Figure 3. Cross-sections through the three-dimensional buoyancy field for case no. 12 of the Ri0 = 0.14
ensemble at successive times as indicated. (a) Stratified shear layer with Rimin = 0.14 (unstable) plus
random perturbation. (b) Primary instability has generated finite-amplitude KH billows. (c) Three-dimensional
secondary instabilities take the form of streamwise convection rolls while subharmonic pairing is in progress.
(d) Paired billow breaks, converting available potential energy into turbulence. (e) Turbulent mixing.
( f ) Stratified shear layer, thickened by turbulent mixing such that minimum Ri > 1/4 (stable). Times are scaled
by the initial maximum shear. For clarity, only part of the vertical range is shown.

The initial conditions for 15-cases shown in figure 2 are identical save for differences in
the small-amplitude noise, yet their evolution is markedly different. As soon as the primary
instability reaches finite amplitude, both K̄ and Rimin show considerable case-to-case
variation. The total amount of mixing also varies significantly, as quantified by a 60 %
variation in the final value of K̄ and a 30 % variation in the final Rimin. In upcoming
sections we describe the mechanisms that cause this SDIC and examine its implications
for the study and prediction of KH turbulence.

4. Sensitive dependence via multiple competing instabilities

In this section we describe the three classes of instability mechanisms whose interaction
governs the strength of the turbulence. We first discuss the influence of the initial noise
field on each instability independently. We then see how the instabilities can interact to
govern turbulence and how the initial noise determines those interactions.

4.1. The primary KH instability
Early in each simulation, the half-growth rate of KKH (figure 4, solid curves), defined
by (2.16) with K = KKH , begins to rise while the instantaneous theoretical growth rate
of the primary instability (symbols) decreases due to the diffusion of the mean shear
(cf. Howland, Taylor & Caulfield 2018). Thereafter, the growth rates decrease together,
with values remaining equal to within a few per cent, for several tens of turnover times
(horizontal lines at the top of figure 4). The equality of the growth rates during this time
confirms that the assumptions underlying linear stability theory, particularly the smallness
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–0.05

Figure 4. Instantaneous exponential growth rate shown for two examples from the Ri0 = 0.14 ensemble. Initial
states differ only in the random velocity perturbation. Symbols indicate growth rates computed from linear
stability analysis (Lian et al. 2020) of horizontally averaged velocity and buoyancy profiles at selected times.
Solid curves show corresponding growth rates derived from the kinetic energy of the KH mode using (2.16)
with K = KKH (§ 2.4). Horizontal lines near the top of the figure indicate the linear growth regime, in which
the growth rates agree to within 3 %.

of the perturbation amplitude and the slowness of the mean flow evolution, are valid. As
a result, different modal components of the initial perturbation field evolve independently
during this time, an important consideration in what follows.

The form of the random initial velocity field influences the subsequent macroscopic
flow evolution partly through the time it requires to ‘lock on’ to the spatial form of the
fastest-growing linear eigenfunction, so that linear growth can begin. For example, the
two cases shown in figure 4 lock on at t ∼ 30 and t ∼ 70, a difference due entirely to
SDIC. We can understand this locking-on process in three complementary ways. First, the
initial noise can be thought of as a linear combination of all of the linear eigenmodes of
the initial profiles. The component proportional to the primary KH mode grows fastest
and therefore dominates the disturbance after a time that depends on its initial amplitude.
While the eigenmode description is valuable, it does not yield insight into the underlying
physics. The following two sections provide alternative descriptions of the locking-on of
the primary KH mode in terms of positive feedbacks.

4.1.1. Locking-on in physical space
The main mechanism of perturbation kinetic energy growth is the shear production
−Ūzu′w′, where the overbar denotes the horizontal average and the subscript denotes
the partial derivative. The mean shear Ūz is nearly always positive. Near t = 0, the
perturbation fields u′ and w′ are random and uncorrelated, therefore u′w′ = 0. But at any
point in space where u′w′ < 0, shear production is locally positive and the amplitudes
of u′ and w′ grow (specifically, u′ grows as w′ advects Ūz, and w′ grows as the pressure
field enforces continuity). Over time, this preferential acceleration of u′ and w′ at points
where u′w′ < 0 produces a negative overall correlation, u′w′ < 0. This, in turn, increases
the shear production rate, creating a positive feedback that drives exponential growth.
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Shear production is focused around the inflection point z = 0, consistent with the shear
production theorem of SC19 (§ 3.11.2).

4.1.2. Locking-on in Fourier space
Locking-on may also be viewed as a process wherein internal waves propagate toward a
configuration that favours resonant amplification (e.g. Holmboe 1962; Baines & Mitsudera
1994; Heifetz et al. 2004; Carpenter, Balmforth & Lawrence 2010). The initial random
velocity fields are viewed as a superposition of vorticity waves with many wavelengths
(quantized in DNS by the periodic boundary conditions and limited by the grid resolution)
and a random distribution of phase positions and velocities. Pairs of vorticity waves
propagating on the upper and lower flanks of the shear layer amplify one another if their
phase velocities are equal and their phase relationship is in a particular range. (For details
see Carpenter et al. (2013), or SC19 §§ 3.12 and 3.13.)

In time, a wave pair with the optimal phase relationship for resonance becomes
dominant. There are two reasons for this. First, wave pairs in that phase configuration
grow fastest. Second, the optimal configuration is a stable attractor since wave pairs tend
to nudge each other toward it. The result is a wave pair with the optimal wavelength and
fixed in the optimal phase relationship, growing exponentially.

To illustrate this process simply, we neglect viscosity and stratification and use
the homogeneous piecewise-linear model (hereafter HPLM) of a shear layer, which
approximates (2.2) with

U(z) =
⎧⎨
⎩

1, z ≥ 1
z, −1 ≤ z ≤ 1
−1, z ≤ −1

; B(z) = 0. (4.1a,b)

In the HPLM, the fastest-growing instability has non-dimensional wavenumber k = 0.40
(Rayleigh 1880, SC19). Vorticity waves with this wavenumber, focused at z = ±1, grow
optimally if they differ in phase by 0.65π radians. To facilitate comparison with Fourier
phase spectra from the DNS, we add those two waves to obtain the total vertical velocity
and compute the phase difference φu


 between its values at z = ±1, resulting in φu

 =

0.35π (see Appendix A for details).
To compare results for our hyperbolic-tangent velocity profile with the HPLM, we

compute the Fourier phase spectrum of w′ at heights z = ± tanh−1 √
1/3 ≈ ±0.6585.

Those two heights are the extrema of Ūzz, and are analogous to the upper and lower edges
of the HPLM shear layer (Carpenter et al. 2013). During the period of linear growth, the
phase difference converges to a fixed value similar to the optimal value for resonance in
the HPLM (figure 5).

4.1.3. Synthesis
An initial random velocity field that locks on quickly to the primary mode will be one for
which

(i) The correlation u′w′ is dominantly negative within the shear layer; and
(ii) Wave motions in the upper and lower regions of the shear layer are phased so as to

favour resonance at the wavelength of the fastest-growing mode.

These criteria are actually equivalent; when the upper and lower waves are configured
to optimize resonance, the shear production in the layer between those waves is positive
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Figure 5. Phase difference between 〈w′〉y at z = ± tanh−1 √
1/3 for example cases from the Ri0 = 0.14

ensemble. The upper and lower horizontal dashed lines show the optimal and suboptimal phase difference,
respectively, for the HPLM (4.1a,b).

(SC19, § 3.11.4). This is the well-known ‘phase tilt’ property that distinguishes a growing
shear instability from a neutral wave (e.g. SC19, Moum, Nash & Smyth 2011).

Between t ∼ 100 and t ∼ 200, the phase difference φu

 drops to near zero (figure 5).

In the HPLM, this is the state in which the phase tilt (and hence the shear production
rate) vanishes. Since shear production is the only energy source for the instability, this is
also the saturation stage, at which growth ceases and the primary billow attains maximum
amplitude. (This is only approximately true in the present case, which differs from the
HPLM due to buoyancy stratification and continuous mean profiles.)

We note that the cases shown in figure 5 reach the ideal phase relationship φu

 = 0.35π,

and also the maximum amplitude state, at different times due to slight differences in their
initial perturbations. The initial perturbations experience transient, non-modal growth
effects before locking on to the unstable KH mode (Kaminski, Caulfield & Taylor 2014).
As a result, the timing of lock-on and the maximum amplitude state are not necessarily
well correlated with the initial phase separation φu


 at t = 0.

4.2. The subharmonic pairing instability

4.2.1. Kinetic energy evolution
The subharmonic mode is one of a spectrum of KH-like modes whose non-dimensional

wavenumbers lie in the unstable band 1
2 ±

√
1
4 − Ri0 (in the inviscid limit, e.g. SC19) but

are not the fastest growing. It is therefore sensitive to the initial noise in the same way as
is the primary KH mode (§ 4.1). To illustrate this, we compare the evolution of the kinetic
energies in the primary KH and subharmonic modes with the exponential growth rates
obtained via linear stability analysis of the instantaneous, horizontally averaged velocity
and buoyancy profiles (figure 6). We focus on two cases from the Ri0 = 0.14 ensemble,
one of which (figure 6a) shows clear pairing of adjacent KH billows and one of which
(figure 6b) does not.
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Figure 6. (a,b) Cross-sections of the buoyancy field for examples no. 2 and no. 12 from the Ri0 = 0.14
ensemble, both at t = 230. Initial states differ only in the random velocity perturbation. Only part of the
vertical domain is shown. (c) Kinetic energies of the primary (KH) and subharmonic Fourier modes. The
vertical line indicates the time shown in (a,b). (d,e) Instantaneous exponential growth rate of the primary
(σKH) and subharmonic (σsub) modes. Symbols indicate growth rates computed from linear stability analysis
(abbreviated as LSA in the figure legend, e.g. Lian et al. 2020) of horizontally averaged velocity and buoyancy
profiles at selected times. Solid curves show equivalent growth rates of the kinetic energy in the DNS.

In both cases, the kinetic energy of the primary KH mode (figure 6(c), dotted curves)
locks on to its modal form at t ∼ 20, then grows quickly to a maximum at t ∼ 150. The
subharmonic energy Ksub (solid curves) evolves similarly but on a slower time scale,
reaching its maximum at t ∼ 210. The main difference is that Ksub reaches a larger
maximum amplitude in case no. 12 than in case no. 2 (panel c, compare solid curves),
and is therefore better configured to effect pairing.
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The growth rate histories show marked similarities despite the difference in the
outcomes. For the KH mode (figure 6d), the growth rate from the simulation (solid curves),
defined by (2.16) with K = KKH , rises to match the theoretical value (circles) at t ∼ 30,
then remains close until t ∼ 80. At t ∼ 80, nonlinear effects cause the growth rate to
depart from its linear value. The two cases depart differently (compare yellow and blue
dotted curves) due to slight differences in the evolution of the mean profiles. In the range
t ∼ 140–150, the growth rate drops to zero, i.e. the KH mode reaches its maximum kinetic
energy state.

The subharmonic growth rate σsub [figure 6(e), defined by (2.16) with K = Ksub] rises
initially to match its theoretical value, undergoing the same locking-on process as the
primary (§ 4.1). As with the primary, slight differences in the initial conditions affect the
time taken for locking-on (cf. figure 5). Here, case no. 12 reaches its normal-mode growth
rate (circles) sooner than does case no. 2. This difference accounts for the difference in the
maxima of Ksub and therefore for the difference in pairing (figure 6a,b).

Around t = 80, as the modes become energetic enough to interact nonlinearly
(Monkewitz 1988), subharmonic growth pauses as the mode propagates to the proper
phase position for pairing. This pause is much more pronounced in case no. 2 than in
no. 12. The effect is not permanent; however, the sharp decay that begins at t ∼ 80 in
case no. 2 is followed by an even sharper ‘growth spurt’ that cancels the overall effect
(figure 6(c), yellow curve). After t ∼ 140 the linear growth rate for each case is relatively
constant (figure 6(e), circles), but the energy growth rates increase sporadically between
t ∼ 140 and 200 to values exceeding the prediction from linear theory. Also evident in
the slope of Ksub (figure 6c, solid curves), this accelerated growth reflects the nonlinear
transfer of energy from the finite-amplitude KH billows to the subharmonic when the latter
is positioned for pairing (Smyth & Peltier 1993).

Note that the subharmonic mode remains linearly unstable between t ∼ 130 and 200,
well after the KH mode is stabilized (compare figure 6d,e). This is because the shear
layer has thickened and therefore favours growth at the longer wavelength. Near t = 200,
both linear and energy growth rates drop rapidly to near zero as the subharmonic mode
saturates. The cessation of subharmonic growth is therefore associated with changes in
the instantaneous mean flow that stop the transfer of energy to the subharmonic mode.
Note that this coincides with the arrival of the ensemble-averaged Rimin at values > 1/4
(figure 2b).

The presence of pairing in case no. 12 and not in case no. 2 is due almost entirely to
the difference in the time required for the subharmonic to lock on to its modal form and
begin growing (figure 6(e), t ∼ 30 vs t ∼ 60). This results in a difference of more than an
order of magnitude in the subharmonic kinetic energies (figure 6(c), compare solid curves
at t ∼ 50) which persists throughout the event.

4.2.2. Phase evolution
In the linear regime, the growth of the subharmonic mode is independent of its phase
position. But when the modes have attained finite amplitude, as alluded to above, the
subharmonic can benefit from an additional energy transfer from the primary mode if it is
near the optimal phase position for pairing (Smyth & Peltier 1993). To illustrate this, we
identify that optimal phase position with the condition

φKH
sub = φKH − 2φsub = π

2
, (4.2)
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Figure 7. Time series of the phase of the primary (KH) and subharmonic Fourier components of the centreline
vertical velocity for case no. 7 of the Ri0 = 0.14 ensemble, together with the phase difference φKH

sub defined in
(4.2). The horizontal dashed line indicates π/2, the optimal value of φKH

sub .

derived in Appendix B. In case no. 2 (figure 7), the phase of the KH mode (φKH ,
blue curve) quickly assumes a value that remains constant throughout the growth of the
subharmonic (from t ∼ 20 to t ∼ 80). In contrast, between t ∼ 80 and 130, the phase of
the subharmonic (φsub, red) evolves to a value such that φKH

sub satisfies (4.2).
To test the generality of the scenario sketched above, we examine six representative

cases from the Ri0 = 0.14 ensemble, including four cases where the primary billows pair
and two where they do not (figure 8). In all cases shown, the condition (4.2) is satisfied as
the subharmonic mode approaches its maximum energy state (figure 8). Also evident in
all cases is the slight acceleration of subharmonic growth during this period (figure 8a).

The pause in subharmonic growth is clearly evident in the non-pairing cases no. 2
and no. 6 (figure 8(a), yellow and red curves). In case no. 6, the subharmonic energy
does not recover but instead remains 1–2 orders of magnitude smaller than in the pairing
cases despite the fact that the mode began growing relatively early. In both cases no. 2
and no. 6, during the initial growth phase, φKH

sub is far from π/2, the correct value for
pairing, and the mode therefore must undergo a relatively large phase shift to satisfy (4.2).
This is especially true in case no. 6 and may account for the more pronounced pause in
subharmonic growth (cf. Dong et al. 2019; Guha & Rahmani 2019). In contrast, in the
laminar pairing cases no. 9 and no. 12, φKH

sub is already close to π/2 during the initial
growth phase. Pairing therefore requires only a modest phase shift, and the corresponding
pause in growth is slight.

In summary, the subharmonic mode begins as a normal, KH-type instability. Its
subsequent growth depends on the time it takes to lock on to its normal-mode form and also
on its phase relationship with the primary KH billow train, which accelerates its growth
as φKH

sub approaches π/2.

4.3. Three-dimensional secondary instabilities
The 3DSIs play a critical role in catalysing the transition to turbulence and the irreversible
mixing of the mean velocity and buoyancy fields. There are many such instabilities. For
example, overturning of stably stratified fluid in the cores of the KH billows results in
shear-aligned convective instability (Davis & Peltier 1979; Klaassen & Peltier 1985).
Several other mechanisms have been identified, in fact Mashayek & Peltier (2012a,b) have
referred to the profusion as a ‘zoo’ of secondary instabilities. (A useful summary is given
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Figure 8. Time series of (a) kinetic energy of the subharmonic mode, and (b) the phase difference defined in
(4.2) whose optimal value for pairing is π/2 shown as horizontal dashed line (Appendix B). Six representative
cases with Ri0 = 0.14 are shown and are categorized as either non-pairing, turbulent pairing or laminar pairing
(to be defined in § 4.4).

in Appendix A of Mashayek & Peltier 2013.) To distinguish among the inhabitants of this
zoo is beyond our scope here; instead, we simply refer to 3-D instabilities in general as
3DSIs.

The 3DSIs derive energy from the shears, strains and overturnings present in the primary
KH billow at finite amplitude, and therefore do not appear until the primary billows attain
sufficient amplitude. This is evident in figure 9, which shows KKH(t) and K3d(t) for three
cases from the Ri0 = 0.14 ensemble. In each case, note that the growth of K3d begins just
before the initial maximum of KKH .

More generally, 3DSIs tend to begin growing within the final ∼50 turnover times before
the KH billows reach their maximum kinetic energy. To illustrate this, we compare the
time of first K3D growth (as in figure 9) with the initial maximum of KKH for all 45-cases
(figure 10). The fact that the slope of the data is less than unity indicates that the longer the
KH mode takes to reach maximum amplitude (due to differences in either Ri0 or the initial
noise), the earlier the 3DSIs begin to grow relative to the saturation of the KH mode.

Recall that Re0 = 1000 in all cases considered here. At higher Re0, we would expect 3-D
motions to emerge earlier relative to the primary KH mode (Mashayek & Peltier 2013). The
initial noise also exerts a direct effect on the 3DSIs, as is indicated by the scatter in the data.
Even though the noise has decayed considerably by the time the billows become unstable
to 3-D perturbations, that noise is the sole source for the three-dimensional motions needed
to catalyse the 3DSIs. It therefore exerts an important influence on their timing and form.
In summary, the effect of the initial perturbation on the 3DSIs is partly direct and partly
inherited via the timing of the primary KH instability.
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Figure 9. Time series of (a) the KH mode of the turbulent kinetic energy spectra and (b) K3d from three
members of the Ri0 = 0.14 ensemble. Circles indicate the beginning of the growth phase of K3d .
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of the KH billow train (e.g. symbols in figure 9). All 45-cases are included. Solid line indicates t3D

min = tKH
max;

dashed line is a least-squares fit to the data points.

4.4. Effects of SDIC on mode interactions
Pairing alters the turbulence and mixing that result from KH instability in two important
ways. First, pairing creates a reservoir of available potential energy that can be converted
into turbulence. Second, the resulting large billows generate intense strain in the braid
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regions that separate them, encouraging strong and efficient mixing (Smyth 2020). While
turbulence varies strongly depending on whether or not pairing occurs, pairing, in turn,
depends on turbulence. Here, we discuss the potential interactions between pairing and
turbulence and how they can be altered by small changes in the initial flow.

We oversimplify when we imply that pairing either happens or does not. Consider first
the 2-D case where, assuming Ri0 is sufficiently small, the emergence of KH billows is
generally followed by pairing, although the relative timing of those two events is sensitive
to the initial conditions. In the 3-D flows studied here, turbulence is an added factor. The
effect on pairing depends on the strength of that turbulence and the timing of its emergence
relative to billow growth and pairing. The resulting interactions may be classified as
follows:

(i) Laminar pairing: if turbulence is sufficiently slow to appear, KH billows may remain
coherent well into the pairing process (e.g. figure 1d). Pairing may then accelerate
the development of turbulence as discussed above.

(ii) No pairing: if, in the opposite extreme, turbulence appears in the early stage of
subharmonic growth, it may stabilize the mean flow before the subharmonic can
attain significant amplitude (e.g. figure 1b).

(iii) Turbulent pairing: in intermediate cases, turbulence may appear early enough to
distort the KH billows before they can pair, but not early enough to prevent the
growth and dominance of the subharmonic mode. The result is large-amplitude
billows with turbulent cores (e.g. figure 1c).

The three scenarios listed above are represented on a regime diagram based on the
energetics of the flow in the state of maximum subharmonic kinetic energy (figure 1).
At the right are cases of laminar pairing, while pairing is suppressed entirely in cases
toward the left. In the intermediate cases, turbulence is elevated in the primary billows.
Representative buoyancy cross-sections (figure 1b–d) illustrate the three regimes listed
above.

5. The maximum amplitude state

The magnitude of a turbulent event can be quantified by computing the temporal maximum
of the volume-averaged turbulent kinetic energy K′(t). The maximum K′ for each event is
influenced by the combination of mode interactions discussed in the previous section. It
therefore varies significantly due to small changes in the initial random velocity field.
The ranges of variation for the Ri0 = 0.12 and 0.14 ensembles are statistically equal
(figure 11a), the variation between the largest and smallest of the 15 values being a factor
of 4.6 in each case. For Ri0 = 0.16, the range is smaller: a factor 2.1. Sensitive dependence
is also evident in the maximum available potential energy (figure 11b). The ranges are
smaller but their Ri-dependence is similar: 3.6 for Ri0 = 0.12, 3.8 for Ri0 = 0.14 and 1.9
for Ri0 = 0.16.

We now look more closely at the cases exhibiting the largest difference in maximum
K′(t) due to SDIC, cases no. 6 and no. 11 of the ensemble with Ri0 = 0.12 (figure 12).
The primary growth phases are nearly identical, lasting until t ∼ 120. Beyond that stage,
the two K′(t) curves diverge. Maximum K′(t) is attained first by case no. 11, which is in
the process of pairing and does not yet show signs of 3DSI, i.e. K3d � K′ (compare red
solid and dashed curves). This is an example of laminar pairing as described in § 4.4 (also
figure 1d). In contrast, case no. 6 attains maximum K′(t) later after pairing is complete.
In that case the paired billow is fully turbulent, i.e. K3d ∼ K′ (blue curves), an example of
turbulent pairing (figure 1c). The effect is not due entirely to pairing; however, even in the
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Figure 11. Ranges, quartiles and medians of the maximum turbulent kinetic energy (a) and available
potential energy (b). Top notations indicate the range (maximum/minimum) in each 15-member ensemble.
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Figure 12. Turbulent kinetic energy (thick, solid curves) vs time for cases no. 6 and no. 11, Ri0 = 0.12.
Asterisks show the 4.6-fold difference in maximum K′. Also shown is K3d (dashed curves).

Ri0 = 0.16 ensemble, where pairing does not occur, SDIC causes maximum K′(t) to vary
by a factor of 2.1.

6. Variability of net turbulent mixing

Simulations are terminated at t = 500, at which time both K2d and K3d have decreased by
2–3 orders of magnitude from their peak values and the mixing event is taken to be over.
At that point, we calculate the cumulative mixing

∫ 500
0 M dt and the cumulative turbulent

dissipation
∫ 500

0 ε′ dt for the event. The total ranges of variation in mixing (the difference
in the extremes of

∫ 500
0 M dt normalized by their average; figure 13a) are similar for the
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Figure 13. Ranges, quartiles and medians of (a) the cumulative mixing
∫

M dt and (b) dissipation
∫

ε′ dt. Top
notations indicate the range (maximum/minimum) in each 15-member ensemble.

three ensembles, approximately a factor 2. Variations in cumulative dissipation
∫ 500

0 ε′ dt
(figure 13b) are similar. In all cases the quartile range is greatest for Ri = 0.14, i.e. values
in that ensemble are evenly distributed, whereas the variation in the cases Ri0 = 0.12 and
0.16 results from a few extreme cases.

Variability of the cumulative flux coefficient Γc is relatively independent of Ri0,
covering a range of ∼20 % (figure 14a). This shows that

∫
M dt and

∫
ε′ dt tend to vary

together such that the variation is less evident in their ratio. Because the flux Richardson
number Rif is restricted to the range 0–1 by definition, we are not surprised to find that it
varies less than Γc for a given Ri0 (figure 14b), but the pattern of variations is similar. The
ranges (maximum - minimum) are 12 %–14 %.

6.1. Implications for simulation studies
Direct simulations like those discussed here, as well as laboratory experiments, are often
used to explore the dependence of turbulence statistics (e.g. mixing efficiency) on mean
flow parameters (e.g. Ri0). There is significant overlap among the distributions of Rif for
the three Ri0 values used here. This raises the possibility of mistaking the overall trend if
only a single case is considered at each Ri0. From figure 14(b), one would likely conclude
that Rif decreases monotonically with increasing Ri0 in the range 0.12 ≤ Ri0 ≤ 0.16. If
only a single case were considered for each Ri0, there would be a 68 % chance (2294 out
of 153 combinations) of identifying this monotonic behaviour correctly. But there would
also be a 31.6 % chance of perceiving a local extremum at Ri0 = 0.14 (22.7 % chance of
a minimum; 8.9 % chance of a maximum) and a 0.4 % chance that the inferred variation
would be monotonic in the wrong direction.

Uncertainty due to SDIC can be reduced by running multiple simulations with slightly
different initial conditions and basing conclusions on ensemble-averaged results. However,
direct simulations require extensive computer resources, and compromises between
accuracy and practicality are inevitable. While we cannot specify the ensemble size
needed for a given application, we can estimate the minimum ensemble size that would
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Figure 14. Ranges, quartiles and medians of (a) the cumulative flux coefficient Γc = ∫
M dt/

∫
ε′ dt and

(b) the corresponding mixing efficiency Rif = Γc/(1 + Γc). Top notations indicate the range (i.e. [maximum −
minimum]/average) in each 15-member ensemble.

be needed to reduce the uncertainty in a given variable by a given amount based on our
15-case ensembles for these particular parameter values. For example, consider the mixing
efficiency Rif when Ri0 = 0.12 (figure 14a). The average value of Rif among our 15 values,
0.369, is taken to be our ‘best’ estimate. A conservative estimate of the uncertainty would
be the maximum absolute deviation from that estimate, 0.030. A more realistic estimate is
the root-mean-square deviation, 0.015.

Now suppose we take the average of an ensemble of n cases with different random
initial conditions, where n < 15. From our 15-cases, we extract the

(15
n

)
possible n-member

subsets and compute the mean, the maximum absolute deviation and the root-mean-square
deviation in Rif for each. Both maximum and root-mean-square deviations are reduced
systematically as we increase n (figure 15a). If our goal was to reduce the maximum
uncertainty in Rif by half (dashed line), we would require an ensemble of six simulations,
whereas halving of the root-mean-square error requires only three simulations. Similar
results hold at other Ri0 (figure 15b,c). In all three cases, three simulations suffice to
reduce the root-mean-square error by half. For Ri0 = 0.14 and 0.16, seven cases are
needed to halve the maximum error. These estimates of the required ensemble size are
not definitive, as they are based on only a single variable, Rf , and on a ‘universe’ of only
15 samples. Nevertheless we can conclude that an ensemble size considerably less than 15
can effectively reduce the uncertainty due to SDIC.

7. Summary and discussion

It has long been recognized that turbulent flows are not reproducible in detail (e.g.
Wyngaard 2010). While statistical quantities can be predicted, timing and strength of
the individual eddies are sensitive to small disturbances. In a laboratory flume, these
disturbances might originate as vibrations from a passing truck. In the atmosphere, we
can imagine how a storm system may be affected by the flapping of a butterfly’s wing.
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Figure 15. Error in estimates of the mean of Rif among n simulations with slightly different initial conditions.

The resulting chaos differs from randomness in that it contains processes which,
considered in isolation, are amenable to understanding and prediction (Lorenz 2000). We
have reviewed specific aspects of a KH turbulence event that are predictable: the primary,
subharmonic and 3-D secondary instabilities. Each, in itself, generates exponentially
diverging values of relevant flow properties. The growth rates are predictable, but the
timing and the phase positions are not, as they depend on small differences in the initial
state that are, in practice, not knowable.

The ‘sensitive dependence on initial conditions’ examined here differs somewhat from
the definition exploited in dynamical systems theory to compute Lyapunov exponents,
but is a more natural analogue to the so-called butterfly effect, whereby a minor change
in the initial state can lead to a very different outcome. In the present example of
transient chaos (Lai & Tél 2011), there is no strange attractor but rather a continuum of
stable asymptotic states (e.g. figure 2). Positive exponential growth rates of the multiple
competing instabilities are analogous to positive Lyapunov exponents, while the implied
criterion for ‘sensitivity’ is that the outcome of a small initial change is manifested
macroscopically in the broadest spatial and temporal scales of the turbulence.

Primary and subharmonic modes grow independently at small amplitude, but interact
as nonlinear terms become significant. This interaction primarily affects the phase
propagation of the subharmonic, shifting it towards the correct phase position for pairing
and thus triggering the upscale energy cascade. The 3DSIs become unstable as the
primary KH mode approaches its maximum amplitude, largely (though not entirely) due to
overturning of isopycnals. These trigger the downscale energy cascade to turbulence. By
diffusing the mean shear, turbulence slows or stops the growth of the subharmonic mode,
potentially preventing pairing.

All of these interactions are sensitive to the timing and initial phase positions of the
individual primary, subharmonic and 3-D modes, which depend in turn on the details
of the initial disturbance. Moreover, all of these interactions have important effects on
the resulting turbulence. Of particular relevance to SDIC are the relative timings of the
subharmonic and primary KH modes, the latter of which in turn affects the timing of
the 3DSIs and thus the onset of turbulence. By governing the relative importance of the
upscale and downscale energy cascades, these timings determine strength of the resulting
turbulence and the amount and efficiency of mixing.
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In the examples tested here, the maximum turbulent kinetic energy in events with nearly
identical initial states can vary by more than a factor of four, while the cumulative amount
of mixing can vary by a factor of two. The cumulative mixing efficiency, being a ratio
of quantities that tend to vary together, varies by only a few tens of per cent, but this is
enough to have important consequences such as distorting the apparent dependence of
mixing efficiency on mean flow parameters.

The most dramatic effects of SDIC involve the pairing process, which is rarely observed
in the high Reynolds number cases found in nature (Mashayek & Peltier 2013). But even
when pairing is suppressed, in our case by stable stratification, the effects of SDIC are
significant. In our Ri = 0.16 ensemble, the maximum turbulent kinetic energy varies by
more than a factor of two despite the complete absence of pairing.

We therefore suggest that future DNS experiments on KH turbulence make use of
ensembles of simulations with varying initial disturbances, much as is done when
forecasting climate or weather (e.g. Gneiting & Raftery 2005). A first attempt to estimate
the appropriate ensemble size suggests a minimum of three to six simulations.

7.1. Caveats and future directions
The choice of amplitude for the initial noise field can influence flow evolution significantly
(Kaminski & Smyth 2019). While that choice is expected to influence sensitivity to the
initial noise variations discussed here, we have so far considered only a single choice
(random velocity components within 1.25 % of the initial velocity change across the shear
layer). Future studies will consider a range of amplitudes, and will also generalize our
purely random noise to include noise fields that better mimic ambient disturbances found
in naturally occurring stratified shear flows.

For this exploratory project, our attention has been confined to a small sampling of the
continuum of initial states, and also to the analysis of a small subset of the flow properties
and turbulence parameters whose values are needed for future progress (e.g. Smyth &
Moum 2000b; Mashayek, Caulfield & Peltier 2017). In future work, a broader range of
initial Re0, Pr and Ri0 should be explored using ensembles of initial noise fields. For
example, larger Re0 values are of practical interest, and will allow instability to grow at
larger Ri0 (also more representative of geophysical cases). Effects of higher Pr are relevant
in water. The range of Ri0 considered should also extend to smaller values where multiple
vortex mergings are possible. Besides the diagnostics considered here, SDIC could affect
the characteristic length scales and their ratios (Smyth & Moum 2000b; Mashayek et al.
2017) and anisotropy statistics (Smyth & Moum 2000a), to name only a few possibilities.

Since pairing is a major determinant of SDIC, it would be useful to map out the region
in Ri0 − Re0 − Pr space where the competition between 3DSIs and pairing is close. This
study provides one data point: Re0 = 1000, Pr = 1, Ri0 = 0.14. In geophysical flows, Re0
is generally on the high side of this boundary, i.e. high enough that pairing is prevented
(Mashayek & Peltier 2011). We speculate that results are then comparable to the Ri0 =
0.16 case investigated here, in which there is no pairing but significant sensitivity to initial
conditions nonetheless. Future studies can test this hypothesis by increasing Re0, although
geophysical values will not be attainable in the foreseeable future.

We have focused specifically on the problem of KH instability arising in shear layers
with initial mean velocity and buoyancy varying over the same layer. Variations in
the background shear and stratification profiles can strongly affect the flow evolution,
and even the type of instability that arises. We expect that our results will broadly
apply to KH-unstable flows. For example, in their numerical study of KH instability
in uniform background stratification, VanDine et al. (2021) mention that repeating
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simulations with slightly different initial noise impacted the resulting transition to
turbulence, suggesting some degree of SDIC even at their higher Re0. However, for cases
where the background density gradient is sharp enough to support Holmboe instability
(Holmboe 1962, SC19), it is not clear that SDIC would be observed. In contrast to
KH-unstable flows, Holmboe-unstable turbulent shear layers tend to evolve towards a state
of self-organized criticality (specifically, they produce internal regions in which Ri ∼ 1/4;
Salehipour, Peltier & Caulfield 2018), suggesting a degree of independence from initial
flow parameters. Understanding whether SDIC may arise in flows prone to Holmboe-type
instabilities, and more generally the relationship between self-organized criticality and
SDIC in turbulent flows, is a compelling problem for future research.
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Appendix A. Optimal phase shift of w across the piecewise shear layer for primary
instability

We extend the analysis in §§ 3.3.1 and 3.13.3 of SC19 to obtain the phase shift of the net
vertical velocity field between the upper and lower edges of the HPLM shear layer subject
to the fastest-growing shear instability. The vertical velocity eigenfunction can be written
in the form

ŵ(z) = Bu e−k|z−h| + B
 e−k|z+h|, (A1)

where k is the streamwise wavenumber of the normal-mode solution and z = ±h are the
upper and lower boundaries of the shear layer. Writing Bu and B
 in polar form and
assuming by symmetry that their amplitudes are equal (taken to be 1 without loss of
generality), we define Bu = ei θu and B
 = ei θ
 .

At the upper and lower edges of the shear layer, the total vertical velocity eigenfunction
is found by substituting z = ±h into (A1)

ŵ(h) = ei θu + ei θ
−2kh; ŵ(−h) = ei θu−2kh + ei θ
 . (A2a,b)

In polar form, this is
ŵ(h) = w0 ei φu; ŵ(−h) = w0 ei φ
, (A3a,b)

where the amplitudes w0 are again equal by symmetry. Equating (A3a,b) with (A2a,b) and
solving for the phase difference φu


 = φu − φ
 gives

tan φu

 = sinh 2kh sin Δθ

1 + cosh 2kh cos Δθ
, (A4)

where Δθ = θu − θ
. For the fastest-growing shear instability, kh = 0.40 and Δθ =
0.65π. Substituting these values and solving numerically, we obtain φu


 = 0.35π.
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Figure 16. Schematic of vorticity and vertical motions associated with the subharmonic and KH modes at the
onset of pairing.

Appendix B. Optimal phase difference for subharmonic pairing instability.

When the subharmonic mode causes two adjacent KH billows to pair, the billows rotate
clockwise (the direction of the shear) about a point x0 midway between their cores
(figure 16). Now consider w0

2d(x), the 2-D vertical velocity component on the midplane
z = 0 at a time just as pairing begins. That velocity has Fourier components with the
subharmonic wavenumber k0 and the KH wavenumber 2k0, plus higher terms

w0
2d(x) = Re

{
ŵsub exp

{
i
[
k0(x − x0) + π

2

]}
+ ŵKH exp

{
i
[
2k0(x − x0) − π

2

]}
+ · · ·

}
,

(B1)
where ŵsub and ŵKH are constants whose values are not relevant here. The added phase
shifts π/2 and −π/2 ensure that the rotation is in the proper sense, i.e. the subharmonic
and KH terms are proportional to − sin[k0(x − x0)] and sin[2k0(x − x0)], respectively, as
in figure 16.

Equating the subharmonic and KH terms in (B1) to exp{i[k0x + φsub]} and exp{i[2k0x +
φKH]}, respectively, gives

φsub = −k0x0 + π

2
; φKH = −2k0x0 − π

2
. (B2a,b)

Finally, eliminating x0 from (B2a,b) results in

φKH
sub ≡ φKH − 2φsub = π

2
+ 2nπ, (B3)

where n is an arbitrary integer.
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