A Dynamical Proof of Pisot's Theorem

Jaroslaw Kwapisz

Abstract. We give a geometric proof of classical results that characterize Pisot numbers as algebraic $\lambda>1$ for which there is $x \neq 0$ with $\lambda^{n} x \rightarrow 0(\bmod 1)$ and identify such x as members of $\mathbb{Z}\left[\lambda^{-1}\right]$. $\mathbb{Z}[\lambda]^{*}$ where $\mathbb{Z}[\lambda]^{*}$ is the dual module of $\mathbb{Z}[\lambda]$.

A real number $\lambda>1$ is called a Pisot number if and only if it is an algebraic integer and all its Galois conjugates (other than λ) are of modulus less than one: the golden mean $(1+\sqrt{5}) / 2$ is an example. Pisot's 1938 thesis [4] and, independently, Vijayaraghavan's 1941 paper [7] contain the following beautiful characterization.

Theorem 1 (Pisot,Vijayaraghavan) Suppose that $\lambda>1$ is an algebraic number (over the field of rational numbers (\mathbb{O})). The following are equivalent
(i) λ is a Pisot number;
(ii) There exists non-zero real x such that $\lim _{n \rightarrow \infty} \lambda^{n} x=0(\bmod 1)$, i.e.,

$$
\lim _{n \rightarrow \infty} \min \left\{\left|\lambda^{n} x-k\right|: k \in \mathbb{Z}\right\}=0
$$

where \mathbb{Z} is the rational integers.
Moreover, any x satisfying (ii) belongs to $(\mathbb{O}(\lambda)$, the field extension of (\mathbb{O}) by λ.
The property (ii) is responsible for Pisot numbers turning up in a variety of contexts seemingly unrelated to their definition. The reader may want to savor the ensuing connections by reading [5, 2]. Our interest in Pisot's theorem stems from its role in the determination of spectrum for the translation flow on substitution tiling spaces, as exhibited by [6] and further exploited in [1]. We shall not discuss that connection here, and turn instead to our goal of supplying a proof of the theorem that offers a direct geometrical insight - something that is missing from the considerations of the classical proofs, as found in [3] or [5]. We shall also derive the following characterization of the set

$$
\begin{equation*}
X_{\lambda}:=\left\{x \in \mathbb{R}: \lim _{n \rightarrow \infty} \lambda^{n} x=0(\bmod 1)\right\} \tag{1}
\end{equation*}
$$

In [3], this result is also attributed to Pisot and Vijayaraghavan.
Theorem 2 (Pisot,Vijayaraghavan) Suppose $\lambda>1$ is Pisot. Let p^{\prime} be the derivative of the monic irreducible polynomial of λ over \mathbb{Z}, and $\mathbb{Z}[\lambda]^{*}:=\frac{1}{p^{\prime}(\lambda)} \mathbb{Z}[\lambda]$. Then $x \in X_{\lambda}$ if and only if $\lambda^{n} x \in \mathbb{Z}[\lambda]^{*}$ for some $n \geq 0$, i.e.,

$$
\begin{equation*}
X_{\lambda}=\bigcup_{n \geq 0} \lambda^{-n} \mathbb{Z}[\lambda]^{*}=\mathbb{Z}\left[\lambda^{-1}\right] \cdot \mathbb{Z}[\lambda]^{*} \tag{2}
\end{equation*}
$$

Received by the editors December 12, 2003; revised February 25, 2005.
AMS subject classification: 11R06.
(C)Canadian Mathematical Society 2006.

We note that $\mathbb{Z}[\lambda]^{*}$ is just an explicit form (as given by Euler) of the dual of the module $\mathbb{Z}[\lambda]$ typically defined as $\mathbb{Z}[\lambda]^{*}:=\{x \in \mathbb{O}(\lambda): \operatorname{trace}(x y) \in \mathbb{Z} \forall y \in \mathbb{Z}[\lambda]\}$ and that $\mathbb{Z}[\lambda]^{*}$ is non-zero only if λ is an algebraic integer (see [8, Prop. 3-7-12]). That $x \in X_{\lambda}$ for $x \in \mathbb{Z}[\lambda]^{*}$ is clear by the following standard argument (emulating [5, Theorem 1]). Let $\lambda=\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}$ be all the roots of p (the Galois conjugates of λ) and $x=x_{1}, \ldots, x_{d}$ be the images of x under the natural isomorphisms $\mathbb{O}(\lambda) \rightarrow$ $\mathbb{O}\left(\lambda_{i}\right), x_{i} \in \mathbb{O}\left(\lambda_{i}\right)$. Then

$$
\begin{equation*}
\mathbb{Z} \ni T_{n}:=\operatorname{trace}\left(\lambda^{n} x\right)=\sum_{i=1}^{d} \lambda_{i}^{n} x_{i}=\lambda^{n} x+\sum_{i=2}^{d} \lambda_{i}^{n} x_{i} \tag{3}
\end{equation*}
$$

and so $\left|\lambda^{n} x-T_{n}\right| \rightarrow 0$ due to the Pisot hypothesis: $\left|\lambda_{i}\right|<1$ for $i=2, \ldots, d$.
From now on, consider a fixed algebraic number $\lambda>1$. Denote by p its monic minimal polynomial, which is obviously irreducible. Let $d:=\operatorname{deg}(p)$, and fix a $d \times d$ matrix A over (\mathbb{O}) with eigenvalue λ. The companion matrix of p is one such A, and any other is similar to it over $\mathbb{O}_{\mathcal{L}}$. If λ is an algebraic integer then A can be taken over \mathbb{Z}. Conversely, if A preserves some lattice in $L \subset \mathbb{R}^{d}, A L \subset L$, then λ is an algebraic integer. Here by a lattice we understand a discrete rank d subgroup of $\mathbb{R}^{d}, \mathbb{Z}^{d}$ being the simplest example.

We shall frequently use the fact that A is irreducible over (\mathbb{O}) : if W is a non-zero subspace of $(\mathbb{O})^{d}$ and $A(W) \subset W$, then $W=(\mathbb{O})^{d}$ (as otherwise the characteristic polynomial of $\left.A\right|_{W}$ would divide p). Also, by irreducibility of p, A has simple eigenvalues and is diagonalizable over \mathbb{C} so that we have a splitting

$$
\mathbb{R}^{d}=E^{s} \oplus E^{c} \oplus E^{u}
$$

where E^{s}, E^{c}, E^{u} are the linear spans of the real eigenspaces corresponding to the eigenvalues of modulus less, equal, and greater than 1 , respectively. We shall see that, for $v \in \mathbb{R}^{d} \backslash\{0\}, A^{n} v \rightarrow 0$ if and only if $v \in E^{s}$ lies at the very heart of Pisot's theorem. Below, $\langle\cdot \mid \cdot\rangle$ is the standard scalar product in \mathbb{R}^{d}.

Lemma 1 If $\left\langle A^{n} v_{0} \mid k_{0}\right\rangle \rightarrow 0(\bmod 1)$ for some $v_{0} \in \mathbb{R}^{d} \backslash E^{s}$ and $k_{0} \in \mathbb{Z}^{d} \backslash\{0\}$, then A leaves invariant some lattice in $(\mathbb{O})^{d}$, i.e., λ is an algebraic integer.

Lemma 2 Suppose that A has entries in \mathbb{Z} and $k_{0} \in \mathbb{Z}^{d} \backslash\{0\}$. If $\left\langle A^{n} v_{0} \mid k_{0}\right\rangle \rightarrow$ $0(\bmod 1)$ for $v_{0} \in \mathbb{R}^{d}$, then $v_{0} \in \mathbb{O}^{d}+E^{s}$.

Proof of Theorem 1 Taking $x=1$ in (3) shows that (i) implies (ii), so it is left to show (i) from (ii). Pick $\omega \in \mathbb{R}^{d}$ to be an eigenvector of A corresponding to λ, $A \omega=\lambda \omega$. Fix $k_{0} \in \mathbb{Z}^{d} \backslash\{0\}$. Observe that $\left\langle k_{0} \mid \omega\right\rangle \neq 0$ by irreducibility of the transpose A^{T} of A (since $\left\{q \in(\mathbb{O})^{d}:\langle q \mid \omega\rangle=0\right\}$ is A^{T} invariant). Thus, in the linear span $\operatorname{lin}_{\mathbb{R}}(\omega)$ of ω over \mathbb{R}, we can find v_{0} so that $x=\left\langle v_{0} \mid k_{0}\right\rangle$. In this way,

$$
\begin{equation*}
\lambda^{n} x=\lambda^{n}\left\langle v_{0} \mid k_{0}\right\rangle=\left\langle A^{n} v_{0} \mid k_{0}\right\rangle, \quad v_{0} \in \operatorname{lin}_{\mathbb{R}}(\omega) \tag{4}
\end{equation*}
$$

From $x \neq 0, v_{0} \notin E^{s}$ and so λ must be an algebraic integer by Lemma 1. By Lemma 2, $v_{0}=q_{0}+z$ for some $z \in E^{s}$ and $q_{0} \in(\mathbb{O})^{d}$; and $q_{0} \neq 0$ from $v_{0} \notin E^{s}$. Consider,
$W:=(\mathbb{O})^{d} \cap\left(E^{s} \oplus \operatorname{lin}_{\mathbb{R}}(\omega)\right)$. Irreducibility of $A, A W \subset W$ and $q_{0} \in W$ force $W=(\mathbb{O})^{d}$. Thus $E^{s} \oplus \operatorname{lin}_{\mathbb{R}}(\omega)=\mathbb{R}^{d}$ and λ is Pisot.

We turn our attention to proving the lemmas now. The two proofs will partially overlap and could be combined into a single more compact argument, but we shall keep them separate because (in applications) λ is often a priori known to be an algebraic integer. In that case, Pisot's theorem can be viewed as a feature of the dynamics of the endomorphism $f: \mathbb{T}^{d} \rightarrow \mathbb{T}^{d}, x\left(\bmod \mathbb{Z}^{d}\right) \mapsto A x\left(\bmod \mathbb{Z}^{d}\right)$, induced by A on the d-dimensional torus, $\mathbb{T}^{d}:=\mathbb{R}^{d} / \mathbb{Z}^{d}$. Besides the toral endomorphism f, our main tool will be the concept of duality of lattices. Recall that the dual of a lattice L is defined as $L^{*}:=\left\{v \in \mathbb{R}^{d}:\langle v \mid l\rangle \in \mathbb{Z} \forall l \in L\right\}$. One easily checks that $\left(\mathbb{Z}^{d}\right)^{*}=\mathbb{Z}^{d}$. For any lattice L, after expressing it as $L=B \mathbb{Z}^{d}$ for some nonsingular matrix B, we have $L^{*}=\left(B \mathbb{Z}^{d}\right)^{*}=\left(B^{T}\right)^{-1} \mathbb{Z}^{d}$ where B^{T} is the transpose of B. In particular, L^{*} is also a lattice.

Proof of Lemma 1 Let $V:=\left\{v \in \mathbb{R}^{d}:\left\langle A^{n} v \mid k_{0}\right\rangle \rightarrow 0(\bmod 1)\right\}$ and $K:=\{k \in$ $\left.\mathbb{O}^{d}{ }^{d}:\left\langle A^{n} v \mid k\right\rangle \rightarrow 0(\bmod 1) \forall v \in V\right\}$. These are subgroups of $\mathbb{R}^{d}, A(V)=V$, $A^{T}(K)=K$, and $v_{0} \in V, k_{0} \in K$. Irreducibility of A^{T} forces $\operatorname{lin}_{\mathbb{Q}}(K)=(\mathbb{O})^{d}$ so that we can find linearly independent $k_{1}, \ldots, k_{d} \in K$. Let Γ be the lattice generated by k_{j} 's, Γ^{*} be its dual, and $\chi_{j}: \mathbb{R}^{d} / \Gamma^{*} \rightarrow \mathbb{C}$ be the associated basis characters on the torus $\mathbb{R}^{d} / \Gamma^{*}$, namely, $\chi_{j}(x(\bmod \Gamma)):=\exp \left(2 \pi i\left\langle k_{j} \mid x\right\rangle\right), x \in \mathbb{R}^{d}, j=1, \ldots, d$.

The convergence $\left\langle A^{n} v_{0} \mid k_{j}\right\rangle \rightarrow 0(\bmod 1)$ translates to $\chi_{j}\left(A^{n} v_{0}(\bmod \Gamma)\right) \rightarrow 1$, which (by continuity of χ_{j} and compactness of $\mathbb{R}^{d} / \Gamma^{*}$) is equivalent to

$$
\operatorname{dist}\left(A^{n} v_{0}(\bmod \Gamma), \chi_{j}^{-1}(1)\right) \rightarrow 0
$$

Therefore, $\operatorname{dist}\left(A^{n} v_{0}(\bmod \Gamma), G\right) \rightarrow 0$ where $G:=\bigcap_{j=1}^{d} \chi_{j}^{-1}(1)=\{0(\bmod \Gamma)\}$, which is to say that

$$
\begin{equation*}
\operatorname{dist}\left(A^{n} v_{0}, \Gamma^{*}\right) \rightarrow 0 \tag{5}
\end{equation*}
$$

Fix $\epsilon>0$ so that, for $x, y \in A \Gamma^{*} \cup \Gamma^{*}, \operatorname{dist}(x, y)<\epsilon$ forces $x=y$. (This is possible because $A \Gamma^{*} / \Gamma^{*}$ is discrete in $\mathbb{R}^{d} / \Gamma^{*}$, as can be seen by picking $a \in \mathbb{N}$ so that $a A$ has all integer entries and observing that $A \Gamma^{*} \subset a^{-1} \Gamma^{*}$, which yields $\left.A \Gamma^{*} / \Gamma^{*} \subset\left(a^{-1} \Gamma^{*}\right) / \Gamma^{*}.\right)$

From (5), there are $u_{n} \in \Gamma^{*}, n \in \mathbb{N}$, such that $\operatorname{dist}\left(A^{n} v_{0}, u_{n}\right) \rightarrow 0$. Since, $\operatorname{dist}\left(u_{n+1}, A u_{n}\right) \leq \operatorname{dist}\left(u_{n+1}, A^{n+1} v_{0}\right)+\operatorname{dist}\left(A A^{n} v_{0}, A u_{n}\right)$, we have $\operatorname{dist}\left(u_{n+1}, A u_{n}\right) \rightarrow 0$ and so, as soon as $\operatorname{dist}\left(u_{n+1}, A u_{n}\right)<\epsilon$, it must be that $u_{n+1}=A u_{n}$. Therefore, for some $n_{0} \in \mathbb{N}$ and all $l \geq 0$, we have $A^{l} u_{n_{0}}=u_{n_{0}+l} \in \Gamma^{*}$. Now, from $v_{0} \notin E^{s}, A^{n} v_{0} \nrightarrow 0$ so that $u_{n_{0}} \neq 0$. But $u_{n_{0}} \in M:=\left\{v \in \Gamma^{*}: A^{l} v \in \Gamma^{*} \forall l \geq 0\right\}$, which makes M a nonzero subgroup of Γ^{*}. Clearly $A M \subset M$. By irreducibility of $A, \operatorname{lin}_{\mathbb{Q}}(M)=(\mathbb{O})^{d}$ so that M is a lattice.

Proof of Lemma 2 Let $f: \Pi^{d} \rightarrow \Pi^{d}$ be the toral endomorphism associated to A, $\chi: \mathbb{T}^{d} \rightarrow \mathbb{C}$ be the character associated to $k_{0}, \chi\left(x\left(\bmod \mathbb{Z}^{d}\right)\right):=\exp \left(2 \pi i\left\langle x \mid k_{0}\right\rangle\right)$, and set $p:=v_{0}\left(\bmod \mathbb{Z}^{d}\right)$. The hypothesis $\left\langle A^{n} v_{0} \mid k_{0}\right\rangle \rightarrow 0(\bmod 1)$ translates to
$\chi\left(f^{n}(p)\right) \rightarrow 1$, which is equivalent to $\operatorname{dist}\left(f^{n}(p), G\right) \rightarrow 0$ where $G:=\chi^{-1}(1)$. We claim that, in fact,

$$
\begin{equation*}
\operatorname{dist}\left(f^{n}(p), G_{\infty}\right) \rightarrow 0, \quad G_{\infty}:=\bigcap_{n \geq 0} f^{-n}(G) \tag{6}
\end{equation*}
$$

Indeed, otherwise $f^{n_{k}}(p) \rightarrow w \notin f^{-l}(G)$ for some $w, l \geq 0$, and $n_{k} \rightarrow \infty$, and so $f^{n_{k}+l}(p) \rightarrow f^{l}(w) \notin G$ contradicting $\operatorname{dist}\left(f^{n}(p), G\right) \rightarrow 0$.

To identify G_{∞} as a finite subgroup of \mathbb{T}^{d}, consider its lift to \mathbb{R}^{d},

$$
\Gamma:=G_{\infty}+\mathbb{Z}^{d}:=\left\{x \in \mathbb{R}^{d}: x\left(\bmod \mathbb{Z}^{d}\right) \in G_{\infty}\right\}
$$

Denote by $L_{k_{0}}$ the smallest sublattice of \mathbb{Z}^{d} containing $\left(A^{T}\right)^{n} k_{0}$ for all $n \geq 0$. Its dual, $L_{k_{0}}^{*}$, is a lattice in $\left(\mathbb{O}^{d}\right.$. For $v \in \mathbb{R}^{d}$, we have $v \in \Gamma$ if and only if $\left\langle A^{n} v \mid k_{0}\right\rangle=$ $\left\langle v \mid\left(A^{T}\right)^{n} k_{0}\right\rangle \in \mathbb{Z}$ for all $n \geq 0$ iff $v \in L_{k_{0}}^{*}$. Thus $G_{\infty}=\Gamma / \mathbb{Z}^{d}$ where

$$
\begin{equation*}
\Gamma=L_{k_{0}}^{*} \subset(\mathbb{O})^{d} . \tag{7}
\end{equation*}
$$

Let $q_{n} \in G_{\infty}$ realize the distance in (6) so that $\operatorname{dist}\left(f^{n}(p), q_{n}\right) \rightarrow 0$ and thus also $\operatorname{dist}\left(f\left(q_{n}\right), q_{n+1}\right) \rightarrow 0$. Since G_{∞} is discrete, there is $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
q_{n+1}=f\left(q_{n}\right), \quad n \geq n_{0} \tag{8}
\end{equation*}
$$

Moreover, if we pick $\epsilon>0$ small enough and $n_{1}>n_{0}$ large enough, then for every $n \geq n_{1}$ we can write $f^{n}(p)=q_{n}+x_{n}+y_{n}+z_{n}$ for some unique $x_{n} \in E^{s}, y_{n} \in E^{c}$, $z_{n} \in E^{u}$, each of norm less than ϵ. From (8), we have $x_{n+1}=A x_{n}, y_{n+1}=A y_{n}$, $z_{n+1}=A x_{n}$ for $n \geq n_{1}$. What is more, $\operatorname{dist}\left(f^{n}(p), q_{n}\right) \rightarrow 0$ forces $y_{n} \rightarrow 0$ and $z_{n} \rightarrow 0$, which is only possible if $y_{n_{1}}=0$ and $z_{n_{1}}=0$. Thus $f^{n_{1}}(p)=q_{n_{1}}+x_{n_{1}}$, i.e., $A^{n_{1}} v_{0}=w+x_{n_{1}}$ for some $w \in \Gamma\left(\right.$ with $\left.q_{n_{1}}=w\left(\bmod \mathbb{Z}^{d}\right)\right)$. To summarize, $v_{0} \in A^{-n_{1}} \Gamma+E^{s}=A^{-n_{1}} L_{k_{0}}^{*}+E^{s} \subset\left(\mathbb{O}^{d}+E^{s}\right.$.

Remark 1 (Addendum to Lemma 2) Under the hypotheses of Lemma 2,

$$
\begin{equation*}
\left\{v \in \mathbb{R}^{d}:\left\langle A^{n} v \mid k_{0}\right\rangle \rightarrow 0(\bmod 1)\right\}=\bigcup_{n \geq 0} A^{-n} L_{k_{0}}^{*}+E^{s} \tag{9}
\end{equation*}
$$

where $L_{k_{0}}$ is the smallest lattice in \mathbb{Z}^{d} containing $\left(A^{T}\right)^{n} k_{0}$ for all $n \geq 0$.
Proof of Remark 1 The " \subset " inclusion is demonstrated in the proof of Lemma 2. To see " \supset ", it suffices to note that, if $v \in L_{k_{0}}^{*}+E^{s}$, then $v=w+x$ where $w\left(\bmod \mathbb{Z}^{d}\right) \in$ G_{∞} and $x \in E^{s}$. Thus $\left\langle A^{n} v \mid k_{0}\right\rangle$ becomes exponentially close to $\left\langle A^{n} w \mid k_{0}\right\rangle \in \mathbb{Z}$ as $n \rightarrow \infty$.

Proof of Theorem 2 The plan is to explicitly compute the objects invloved in the preceding arguments for A that is the companion matrix of the polynomial p of λ,

$$
p(x)=x^{d}+a_{d-1} x^{d-1}+\cdots+a_{0}, \quad a_{i} \in \mathbb{Z}
$$

The eigenvectors ω and ω^{*} with $A \omega=\lambda \omega, A^{T} \omega^{*}=\lambda \omega^{*}$ can be found as

$$
\begin{gathered}
\omega^{*}:=\frac{1}{p^{\prime}(\lambda)} \cdot\left(a_{1}+a_{2} \lambda+\cdots+\lambda^{d-1}, \ldots, a_{d-1}+\lambda, 1\right) \\
\omega:=\left(1, \lambda, \lambda^{2}, \ldots, \lambda^{d-1}\right)
\end{gathered}
$$

These are normalized so that $\left\langle\omega \mid \omega^{*}\right\rangle=1$, which ensures that the projection onto $\operatorname{lin}_{\mathbb{R}}(\omega)$ along $E^{s}=\left(\omega^{*}\right)^{\perp}$ is given by $\operatorname{pr}^{u}(y)=\left\langle y \mid \omega^{*}\right\rangle \omega, y \in \mathbb{R}^{d}$. Note that the components of ω^{*} generate $\frac{1}{p^{\prime}(\lambda)} \mathbb{Z}[\lambda],\left\{\left\langle u \mid \omega^{*}\right\rangle \mid u \in \mathbb{Z}^{d}\right\}=\frac{1}{p^{\prime}(\lambda)} \mathbb{Z}[\lambda]$.

Denote by e_{1}, \ldots, e_{d} the standard basis in \mathbb{R}^{d}, and set $k_{0}:=e_{1}$. Since $e_{i}=$ $\left(A^{T}\right)^{i-1}\left(e_{1}\right)$ for $i=1, \ldots, d$, we have $L_{k_{0}}=\mathbb{Z}^{d}$. Hence, $L_{k_{0}}^{*}=\mathbb{Z}^{d}$.

If, as in (4) in the proof of Theorem 1, we write $x=\left\langle v_{0} \mid k_{0}\right\rangle$ for $v_{0} \in \operatorname{lin}_{\mathbb{R}}(\omega)$, then $\lambda^{n} x \rightarrow 0(\bmod 1)$ if and only if $\left\langle A^{n} v_{0} \mid k_{0}\right\rangle \rightarrow 0(\bmod 1)$ if and only if $A^{n_{1}} v_{0} \in$ $L_{k_{0}}^{*}+E^{s}=\mathbb{Z}^{d}+E^{s}$ for some $n_{1} \geq 0$, where the last equivalence hinges on Remark 1. Thus $x \in X_{\lambda}$ are of the form
(10) $x=\lambda^{-n_{1}}\left\langle A^{n_{1}} v_{0} \mid k_{0}\right\rangle=\lambda^{-n_{1}}\left\langle\operatorname{pr}^{u}(u) \mid k_{0}\right\rangle=\lambda^{-n_{1}}\left\langle u \mid \omega^{*}\right\rangle\left\langle\omega \mid k_{0}\right\rangle=\lambda^{-n_{1}}\left\langle u \mid \omega^{*}\right\rangle \cdot 1$
where $u \in \mathbb{Z}^{d}$ and $n_{1} \geq 0$. That is, $X_{\lambda}=\bigcup_{n_{1} \geq 0} \lambda^{-n_{1}} \frac{1}{p^{\prime}(\lambda)} \mathbb{Z}[\lambda]$, as desired.
Readers accustomed to a more traditional framework will no doubt notice that, in our setting, the scalar product $\langle\cdot \mid \cdot\rangle$ on $\mathbb{R}^{d} \times \mathbb{R}^{d}$ serves as the completion of the trace form on $\mathbb{O}(\lambda) \times \mathbb{O}(\lambda)$, the two being related by $\langle x \mid y\rangle=\operatorname{trace}\left(\left\langle x \mid \omega^{*}\right\rangle \cdot\langle\omega \mid y\rangle\right)$ for $x, y \in(\mathbb{O})^{d}$. This explains our remark about the nature of $\mathbb{Z}[\lambda]^{*}$ from the beginning of this note.

References

[1] M. Barge and J. Kwapisz, Geometric theory of Pisot substitutions. In preparation; available at http://www.math.montana.edu/~jarek/papers.html.
[2] M.-J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, and J.-P. Schreiber, Pisot and Salem Numbers. Birkhäuser Verlag, Basel, 1992.
[3] J. W. S. Cassels, An Introduction to Diophantine Approximation. Cambridge Tracts in Mathematics and Mathematical Physics 45, Cambridge University Press, NY, 1957.
[4] C. Pisot, La répartition modulo 1 et les nombres algébriques. Ann. Scu. Norm. Sup. Pisa 27(1938), 205-248.
[5] R. Salem, Algebraic numbers and Fourier analysis. D. C. Heath, Boston, MA, 1963.
[6] B. Solomyak, Dynamics of self-similar tilings. Ergodic Theory Dynam. Systems 17(1997), 695-738.
[7] T. Vijayaraghavan, On the fractional parts of the powers of a number. II. Proc. Cambridge Philos. Soc. 37(1941), 349-357.
[8] E. Weiss, Algebraic Number Theory. Chelsea Publishing, New York, NY, 1976.

Department of Mathematical Sciences

Montana State University
Bozeman, MT 59717-2400
U.S.A.
e-mail: jarek@math.montana.edu

