A Dynamical Proof of Pisot's Theorem

Jaroslaw Kwapisz

Abstract. We give a geometric proof of classical results that characterize Pisot numbers as algebraic $\lambda > 1$ for which there is $x \neq 0$ with $\lambda^n x \to 0 \pmod{1}$ and identify such x as members of $\mathbb{Z}[\lambda^{-1}] \cdot \mathbb{Z}[\lambda]^*$ where $\mathbb{Z}[\lambda]^*$ is the dual module of $\mathbb{Z}[\lambda]$.

A real number $\lambda > 1$ is called a *Pisot number* if and only if it is an algebraic integer and all its Galois conjugates (other than λ) are of modulus less than one: the golden mean $(1 + \sqrt{5})/2$ is an example. Pisot's 1938 thesis [4] and, independently, Vijayaraghavan's 1941 paper [7] contain the following beautiful characterization.

Theorem 1 (Pisot, Vijayaraghavan) Suppose that $\lambda > 1$ is an algebraic number (over the field of rational numbers \mathbb{Q}). The following are equivalent

- (i) λ is a Pisot number;
- (ii) There exists non-zero real x such that $\lim_{n\to\infty} \lambda^n x = 0 \pmod{1}$, i.e.,

$$\lim_{n\to\infty} \min\{|\lambda^n x - k| : k \in \mathbb{Z}\} = 0$$

where \mathbb{Z} is the rational integers.

Moreover, any x satisfying (ii) belongs to $\mathbb{Q}(\lambda)$, the field extension of \mathbb{Q} by λ .

The property (ii) is responsible for Pisot numbers turning up in a variety of contexts seemingly unrelated to their definition. The reader may want to savor the ensuing connections by reading [5, 2]. Our interest in Pisot's theorem stems from its role in the determination of spectrum for the translation flow on substitution tiling spaces, as exhibited by [6] and further exploited in [1]. We shall not discuss that connection here, and turn instead to our goal of supplying a proof of the theorem that offers a direct geometrical insight — something that is missing from the considerations of the classical proofs, as found in [3] or [5]. We shall also derive the following characterization of the set

(1)
$$X_{\lambda} := \{ x \in \mathbb{R} : \lim_{n \to \infty} \lambda^n x = 0 \pmod{1} \}.$$

In [3], this result is also attributed to Pisot and Vijayaraghavan.

Theorem 2 (Pisot, Vijayaraghavan) Suppose $\lambda > 1$ is Pisot. Let p' be the derivative of the monic irreducible polynomial of λ over \mathbb{Z} , and $\mathbb{Z}[\lambda]^* := \frac{1}{p'(\lambda)}\mathbb{Z}[\lambda]$. Then $x \in X_{\lambda}$ if and only if $\lambda^n x \in \mathbb{Z}[\lambda]^*$ for some $n \geq 0$, i.e.,

(2)
$$X_{\lambda} = \bigcup_{n \ge 0} \lambda^{-n} \mathbb{Z}[\lambda]^* = \mathbb{Z}[\lambda^{-1}] \cdot \mathbb{Z}[\lambda]^*.$$

Received by the editors December 12, 2003; revised February 25, 2005.

AMS subject classification: 11R06.

©Canadian Mathematical Society 2006.

We note that $\mathbb{Z}[\lambda]^*$ is just an explicit form (as given by Euler) of *the dual* of the module $\mathbb{Z}[\lambda]$ typically defined as $\mathbb{Z}[\lambda]^* := \{x \in \mathbb{Q}(\lambda) : \operatorname{trace}(xy) \in \mathbb{Z} \ \forall y \in \mathbb{Z}[\lambda] \}$ and that $\mathbb{Z}[\lambda]^*$ is non-zero only if λ is an algebraic integer (see [8, Prop. 3-7-12]). That $x \in X_{\lambda}$ for $x \in \mathbb{Z}[\lambda]^*$ is clear by the following standard argument (emulating [5, Theorem 1]). Let $\lambda = \lambda_1, \lambda_2, \dots, \lambda_d$ be all the roots of p (the Galois conjugates of λ) and $x = x_1, \dots, x_d$ be the images of x under the natural isomorphisms $\mathbb{Q}(\lambda) \to \mathbb{Q}(\lambda_i)$, $x_i \in \mathbb{Q}(\lambda_i)$. Then

(3)
$$\mathbb{Z} \ni T_n := \operatorname{trace}(\lambda^n x) = \sum_{i=1}^d \lambda_i^n x_i = \lambda^n x + \sum_{i=2}^d \lambda_i^n x_i,$$

and so $|\lambda^n x - T_n| \to 0$ due to the Pisot hypothesis: $|\lambda_i| < 1$ for i = 2, ..., d.

From now on, consider a fixed algebraic number $\lambda > 1$. Denote by p its monic minimal polynomial, which is obviously irreducible. Let $d := \deg(p)$, and fix a $d \times d$ matrix A over $\mathbb Q$ with eigenvalue λ . The companion matrix of p is one such A, and any other is similar to it over $\mathbb Q$. If λ is an algebraic integer then A can be taken over $\mathbb Z$. Conversely, if A preserves some lattice in $L \subset \mathbb R^d$, $AL \subset L$, then λ is an algebraic integer. Here by a *lattice* we understand a discrete rank d subgroup of $\mathbb R^d$, $\mathbb Z^d$ being the simplest example.

We shall frequently use the fact that A is $irreducible over \mathbb{Q}$: if W is a non-zero subspace of \mathbb{Q}^d and $A(W) \subset W$, then $W = \mathbb{Q}^d$ (as otherwise the characteristic polynomial of $A|_W$ would divide p). Also, by irreducibility of p, A has simple eigenvalues and is diagonalizable over \mathbb{C} so that we have a splitting

$$\mathbb{R}^d = E^s \oplus E^c \oplus E^u$$

where E^s , E^c , E^u are the linear spans of the real eigenspaces corresponding to the eigenvalues of modulus less, equal, and greater than 1, respectively. We shall see that, for $v \in \mathbb{R}^d \setminus \{0\}$, $A^n v \to 0$ if and only if $v \in E^s$ lies at the very heart of Pisot's theorem. Below, $\langle \cdot | \cdot \rangle$ is the standard scalar product in \mathbb{R}^d .

Lemma 1 If $\langle A^n v_0 | k_0 \rangle \to 0 \pmod{1}$ for some $v_0 \in \mathbb{R}^d \setminus E^s$ and $k_0 \in \mathbb{Z}^d \setminus \{0\}$, then A leaves invariant some lattice in \mathbb{Q}^d , i.e., λ is an algebraic integer.

Lemma 2 Suppose that A has entries in \mathbb{Z} and $k_0 \in \mathbb{Z}^d \setminus \{0\}$. If $\langle A^n v_0 | k_0 \rangle \to 0 \pmod{1}$ for $v_0 \in \mathbb{R}^d$, then $v_0 \in \mathbb{Q}^d + E^s$.

Proof of Theorem 1 Taking x=1 in (3) shows that (i) implies (ii), so it is left to show (i) from (ii). Pick $\omega \in \mathbb{R}^d$ to be an eigenvector of A corresponding to λ , $A\omega = \lambda \omega$. Fix $k_0 \in \mathbb{Z}^d \setminus \{0\}$. Observe that $\langle k_0 | \omega \rangle \neq 0$ by irreducibility of the transpose A^T of A (since $\{q \in \mathbb{Q}^d : \langle q | \omega \rangle = 0\}$ is A^T invariant). Thus, in the linear span $\lim_{\mathbb{R}} (\omega)$ of ω over \mathbb{R} , we can find ν_0 so that $x = \langle \nu_0 | k_0 \rangle$. In this way,

(4)
$$\lambda^n x = \lambda^n \langle v_0 | k_0 \rangle = \langle A^n v_0 | k_0 \rangle, \quad v_0 \in \lim_{\mathbb{R}} (\omega).$$

From $x \neq 0$, $v_0 \notin E^s$ and so λ must be an algebraic integer by Lemma 1. By Lemma 2, $v_0 = q_0 + z$ for some $z \in E^s$ and $q_0 \in \mathbb{Q}^d$; and $q_0 \neq 0$ from $v_0 \notin E^s$. Consider,

110 J. Kwapisz

 $W := \mathbb{Q}^d \cap (E^s \oplus \lim_{\mathbb{R}}(\omega))$. Irreducibility of A, $AW \subset W$ and $q_0 \in W$ force $W = \mathbb{Q}^d$. Thus $E^s \oplus \lim_{\mathbb{R}}(\omega) = \mathbb{R}^d$ and λ is Pisot.

We turn our attention to proving the lemmas now. The two proofs will partially overlap and could be combined into a single more compact argument, but we shall keep them separate because (in applications) λ is often a priori known to be an algebraic integer. In that case, Pisot's theorem can be viewed as a feature of the dynamics of the endomorphism $f\colon \mathbb{T}^d\to\mathbb{T}^d$, $x\pmod{\mathbb{Z}^d}\mapsto Ax\pmod{\mathbb{Z}^d}$, induced by A on the d-dimensional torus, $\mathbb{T}^d:=\mathbb{R}^d/\mathbb{Z}^d$. Besides the toral endomorphism f, our main tool will be the concept of duality of lattices. Recall that the dual of a lattice L is defined as $L^*:=\{v\in\mathbb{R}^d:\langle v\mid l\rangle\in\mathbb{Z}\ \forall l\in L\}$. One easily checks that $(\mathbb{Z}^d)^*=\mathbb{Z}^d$. For any lattice L, after expressing it as $L=B\mathbb{Z}^d$ for some nonsingular matrix B, we have $L^*=(B\mathbb{Z}^d)^*=(B^T)^{-1}\mathbb{Z}^d$ where B^T is the transpose of B. In particular, L^* is also a lattice.

Proof of Lemma 1 Let $V := \{v \in \mathbb{R}^d : \langle A^n v | k_0 \rangle \to 0 \pmod{1} \}$ and $K := \{k \in \mathbb{Q}^d : \langle A^n v | k \rangle \to 0 \pmod{1} \}$ and $K := \{k \in \mathbb{Q}^d : \langle A^n v | k \rangle \to 0 \pmod{1} \}$ where K = K is a subgroup of K = K and K = K and K = K is a subgroup of K = K in the subgroup of K = K is a subgroup of K = K in the subgroup of K = K is a subgroup of K = K in the subgroup of K = K is a subgroup of K = K in the subgroup of K = K is a subgroup of K = K in the subgroup of K = K is a subgroup of K = K in the subgroup of K = K is a subgroup of K = K in the subgroup of K = K is a subgroup of K = K in the subgroup of K = K is a subgroup of K = K in the subgroup of K = K is a subgroup of K = K in the subgroup of K = K is a subgroup of K = K in the subgroup of K = K is a subgroup of K = K in the subgroup of K = K is a subgroup of K = K in the subgroup of K = K is a subgroup of K = K in the subgroup of K = K is a subgroup of K = K in the subgroup of K

The convergence $\langle A^n v_0 | k_j \rangle \to 0 \pmod{1}$ translates to $\chi_j(A^n v_0 \pmod{\Gamma}) \to 1$, which (by continuity of χ_j and compactness of \mathbb{R}^d/Γ^*) is equivalent to

$$\operatorname{dist}(A^n \nu_0 \, (\operatorname{mod} \Gamma), \chi_i^{-1}(1)) \to 0.$$

Therefore, $\operatorname{dist}(A^n \nu_0 \pmod{\Gamma}, G) \to 0$ where $G := \bigcap_{j=1}^d \chi_j^{-1}(1) = \{0 \pmod{\Gamma}\}$, which is to say that

(5)
$$\operatorname{dist}(A^{n}\nu_{0}, \Gamma^{*}) \to 0.$$

Fix $\epsilon > 0$ so that, for $x, y \in A\Gamma^* \cup \Gamma^*$, $\operatorname{dist}(x, y) < \epsilon$ forces x = y. (This is possible because $A\Gamma^*/\Gamma^*$ is discrete in \mathbb{R}^d/Γ^* , as can be seen by picking $a \in \mathbb{N}$ so that aA has all integer entries and observing that $A\Gamma^* \subset a^{-1}\Gamma^*$, which yields $A\Gamma^*/\Gamma^* \subset (a^{-1}\Gamma^*)/\Gamma^*$.)

From (5), there are $u_n \in \Gamma^*$, $n \in \mathbb{N}$, such that $\operatorname{dist}(A^n v_0, u_n) \to 0$. Since, $\operatorname{dist}(u_{n+1}, Au_n) \leq \operatorname{dist}(u_{n+1}, A^{n+1} v_0) + \operatorname{dist}(AA^n v_0, Au_n)$, we have $\operatorname{dist}(u_{n+1}, Au_n) \to 0$ and so, as soon as $\operatorname{dist}(u_{n+1}, Au_n) < \epsilon$, it must be that $u_{n+1} = Au_n$. Therefore, for some $n_0 \in \mathbb{N}$ and all $l \geq 0$, we have $A^l u_{n_0} = u_{n_0+l} \in \Gamma^*$. Now, from $v_0 \notin E^s$, $A^n v_0 \not\to 0$ so that $u_{n_0} \neq 0$. But $u_{n_0} \in M := \{v \in \Gamma^* : A^l v \in \Gamma^* \, \forall l \geq 0\}$, which makes M a nonzero subgroup of Γ^* . Clearly $AM \subset M$. By irreducibility of A, $\lim_{\mathbb{Q}} (M) = \mathbb{Q}^d$ so that M is a lattice.

Proof of Lemma 2 Let $f: \mathbb{T}^d \to \mathbb{T}^d$ be the toral endomorphism associated to A, $\chi: \mathbb{T}^d \to \mathbb{C}$ be the character associated to k_0 , $\chi(x \pmod{\mathbb{Z}^d}) := \exp(2\pi i \langle x | k_0 \rangle)$, and set $p := \nu_0 \pmod{\mathbb{Z}^d}$. The hypothesis $\langle A^n \nu_0 | k_0 \rangle \to 0 \pmod{1}$ translates to

 $\chi(f^n(p)) \to 1$, which is equivalent to $\operatorname{dist}(f^n(p), G) \to 0$ where $G := \chi^{-1}(1)$. We claim that, in fact,

(6)
$$\operatorname{dist}(f^{n}(p), G_{\infty}) \to 0, \quad G_{\infty} := \bigcap_{n \ge 0} f^{-n}(G).$$

Indeed, otherwise $f^{n_k}(p) \to w \notin f^{-l}(G)$ for some $w, l \ge 0$, and $n_k \to \infty$, and so $f^{n_k+l}(p) \to f^l(w) \notin G$ contradicting dist $(f^n(p), G) \to 0$.

To identify G_{∞} as a finite subgroup of \mathbb{T}^d , consider its lift to \mathbb{R}^d ,

$$\Gamma := G_{\infty} + \mathbb{Z}^d := \{ x \in \mathbb{R}^d : x \pmod{\mathbb{Z}^d} \in G_{\infty} \}.$$

Denote by L_{k_0} the smallest sublattice of \mathbb{Z}^d containing $(A^T)^n k_0$ for all $n \geq 0$. Its dual, $L_{k_0}^*$, is a lattice in \mathbb{Q}^d . For $v \in \mathbb{R}^d$, we have $v \in \Gamma$ if and only if $\langle A^n v | k_0 \rangle = \langle v | (A^T)^n k_0 \rangle \in \mathbb{Z}$ for all $n \geq 0$ iff $v \in L_{k_0}^*$. Thus $G_{\infty} = \Gamma / \mathbb{Z}^d$ where

(7)
$$\Gamma = L_{k_0}^* \subset \mathbb{Q}^d.$$

Let $q_n \in G_\infty$ realize the distance in (6) so that $\operatorname{dist}(f^n(p), q_n) \to 0$ and thus also $\operatorname{dist}(f(q_n), q_{n+1}) \to 0$. Since G_∞ is discrete, there is $n_0 \in \mathbb{N}$ such that

(8)
$$q_{n+1} = f(q_n), \quad n \ge n_0.$$

Moreover, if we pick $\epsilon > 0$ small enough and $n_1 > n_0$ large enough, then for every $n \ge n_1$ we can write $f^n(p) = q_n + x_n + y_n + z_n$ for some unique $x_n \in E^s$, $y_n \in E^c$, $z_n \in E^u$, each of norm less than ϵ . From (8), we have $x_{n+1} = Ax_n$, $y_{n+1} = Ay_n$, $z_{n+1} = Ax_n$ for $n \ge n_1$. What is more, $\operatorname{dist}(f^n(p), q_n) \to 0$ forces $y_n \to 0$ and $z_n \to 0$, which is only possible if $y_{n_1} = 0$ and $z_{n_1} = 0$. Thus $f^{n_1}(p) = q_{n_1} + x_{n_1}$, i.e., $A^{n_1}v_0 = w + x_{n_1}$ for some $w \in \Gamma$ (with $q_{n_1} = w \pmod{\mathbb{Z}^d}$). To summarize, $v_0 \in A^{-n_1}\Gamma + E^s = A^{-n_1}L_{k_0}^* + E^s \subset \mathbb{Q}^d + E^s$.

Remark 1 (Addendum to Lemma 2) *Under the hypotheses of Lemma 2*,

(9)
$$\{ v \in \mathbb{R}^d : \langle A^n v | k_0 \rangle \to 0 \pmod{1} \} = \bigcup_{n \ge 0} A^{-n} L_{k_0}^* + E^s$$

where L_{k_0} is the smallest lattice in \mathbb{Z}^d containing $(A^T)^n k_0$ for all $n \geq 0$.

Proof of Remark 1 The " \subset " inclusion is demonstrated in the proof of Lemma 2. To see " \supset ", it suffices to note that, if $v \in L_{k_0}^* + E^s$, then v = w + x where $w \pmod{\mathbb{Z}^d} \in G_{\infty}$ and $x \in E^s$. Thus $\langle A^n v | k_0 \rangle$ becomes exponentially close to $\langle A^n w | k_0 \rangle \in \mathbb{Z}$ as $n \to \infty$.

Proof of Theorem 2 The plan is to explicitly compute the objects invloved in the preceding arguments for *A* that is the companion matrix of the polynomial *p* of λ ,

$$p(x) = x^d + a_{d-1}x^{d-1} + \dots + a_0, \quad a_i \in \mathbb{Z}.$$

112 J. Kwapisz

The eigenvectors ω and ω^* with $A\omega = \lambda \omega$, $A^T\omega^* = \lambda \omega^*$ can be found as

$$\omega^* := \frac{1}{p'(\lambda)} \cdot (a_1 + a_2\lambda + \dots + \lambda^{d-1}, \dots, a_{d-1} + \lambda, 1),$$
$$\omega := (1, \lambda, \lambda^2, \dots, \lambda^{d-1}).$$

These are normalized so that $\langle \omega | \omega^* \rangle = 1$, which ensures that the projection onto $\lim_{\mathbb{R}}(\omega)$ along $E^s = (\omega^*)^{\perp}$ is given by $\operatorname{pr}^u(y) = \langle y | \omega^* \rangle \omega$, $y \in \mathbb{R}^d$. Note that the components of ω^* generate $\frac{1}{p'(\lambda)}\mathbb{Z}[\lambda]$, $\{\langle u | \omega^* \rangle | u \in \mathbb{Z}^d\} = \frac{1}{p'(\lambda)}\mathbb{Z}[\lambda]$.

Denote by e_1, \ldots, e_d the standard basis in \mathbb{R}^d , and set $k_0 := e_1$. Since $e_i = (A^T)^{i-1}(e_1)$ for $i = 1, \ldots, d$, we have $L_{k_0} = \mathbb{Z}^d$. Hence, $L_{k_0}^* = \mathbb{Z}^d$. If, as in (4) in the proof of Theorem 1, we write $x = \langle \nu_0 | k_0 \rangle$ for $\nu_0 \in \lim_{\mathbb{R}} (\omega)$,

If, as in (4) in the proof of Theorem 1, we write $x = \langle v_0 | k_0 \rangle$ for $v_0 \in \lim_{\mathbb{R}}(\omega)$, then $\lambda^n x \to 0 \pmod{1}$ if and only if $\langle A^n v_0 | k_0 \rangle \to 0 \pmod{1}$ if and only if $A^{n_1} v_0 \in L_{k_0}^* + E^s = \mathbb{Z}^d + E^s$ for some $n_1 \geq 0$, where the last equivalence hinges on Remark 1. Thus $x \in X_\lambda$ are of the form

$$(10) \ x = \lambda^{-n_1} \langle A^{n_1} v_0 | k_0 \rangle = \lambda^{-n_1} \langle \operatorname{pr}^u(u) | k_0 \rangle = \lambda^{-n_1} \langle u | \omega^* \rangle \langle \omega | k_0 \rangle = \lambda^{-n_1} \langle u | \omega^* \rangle \cdot 1$$

where
$$u \in \mathbb{Z}^d$$
 and $n_1 \geq 0$. That is, $X_{\lambda} = \bigcup_{n_1 \geq 0} \lambda^{-n_1} \frac{1}{p'(\lambda)} \mathbb{Z}[\lambda]$, as desired.

Readers accustomed to a more traditional framework will no doubt notice that, in our setting, the scalar product $\langle \, \cdot \, | \, \cdot \, \rangle$ on $\mathbb{R}^d \times \mathbb{R}^d$ serves as the completion of *the trace form* on $\mathbb{Q}(\lambda) \times \mathbb{Q}(\lambda)$, the two being related by $\langle x|y \rangle = \operatorname{trace} \big(\langle x|\omega^* \rangle \cdot \langle \omega|y \rangle \big)$ for $x,y \in \mathbb{Q}^d$. This explains our remark about the nature of $\mathbb{Z}[\lambda]^*$ from the beginning of this note.

References

- [1] M. Barge and J. Kwapisz, *Geometric theory of Pisot substitutions*. In preparation; available at http://www.math.montana.edu/~jarek/papers.html.
- [2] M.-J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, and J.-P. Schreiber, Pisot and Salem Numbers. Birkhäuser Verlag, Basel, 1992.
- [3] J. W. S. Cassels, An Introduction to Diophantine Approximation. Cambridge Tracts in Mathematics and Mathematical Physics 45, Cambridge University Press, NY, 1957.
- [4] C. Pisot, La répartition modulo 1 et les nombres algébriques. Ann. Scu. Norm. Sup. Pisa 27(1938), 205–248
- [5] R. Salem, Algebraic numbers and Fourier analysis. D. C. Heath, Boston, MA, 1963.
- [6] B. Solomyak, Dynamics of self-similar tilings. Ergodic Theory Dynam. Systems 17(1997), 695–738.
- [7] T. Vijayaraghavan, On the fractional parts of the powers of a number. II. Proc. Cambridge Philos. Soc. 37(1941), 349–357.
- [8] E. Weiss, Algebraic Number Theory. Chelsea Publishing, New York, NY, 1976.

Department of Mathematical Sciences Montana State University Bozeman, MT 59717-2400 U.S.A.

e-mail: jarek@math.montana.edu