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Abstract

We give an explicit construction of a continuous trace C*-algebra with prescribed Dixmier-Douady
class, and with only finite-dimensional irreducible representations. These algebras often have non-triv-
ial automorphisms, and we show how a recent description of the outer automorphism group of a
stable continuous trace C*-algebra follows easily from our main result. Since our motivation came
from work on a new notion of central separable algebras, we explore the connections between this
purely algebraic subject and C*-algebras.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 46 L 05, 46 L 40; secondary 13 A
20, 55 N 05.

Let A be a continuous trace C*-algebra with paracompact spectrum T. Dixmier
and Douady [4] constructed a cohomology class 8(A) e H3(T, Z), now known as
the Dixmier-Douady class of A, which vanishes exactly when A is the C*-algebra
defined by a continuous field of Hilbert spaces over T [3, 10.7.15]. This invariant
has attracted considerable attention in recent years since in the case of separable
algebras 8(A) determines A up to stable isomorphism. (This can easily be
deduced from, for example, [2, Theoreme 2], [8, Lemma 1.11] and [3,10.8.4].)

Dixmier and Douady also showed in [4] that every class in H3(T, Z) is 8(A) for
some A. Their proof of this uses Zorn's lemma and the fact that when H is an
infinite-dimensional Hilbert space the sheaf of germs of U(H )-valued functions is
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[i\ Continuous trace C*-algebras 395

soft, and all the irreducible representations of the resulting algebra are infinite-
dimensional. We present here an explicit construction of a continuous trace
C*-algebra with prescribed Dixmier-Douady class. The irreducible representa-
tions of the C*-algebra we construct are all finite-dimensional; as it is easy to see
that nS(A) = 0 when A is ^-homogeneous [5, Proposition 1.4] it follows that our
algebra is in general far from homogeneous.

This construction is the content of our first section. In Section 2 we discuss the
automorphism groups of the algebras we have built. For any continuous trace
C*-algebra A with spectrum T and any automorphism a e AutC(r) A there is a
cohomology class f(a) e H2(T,Z) which vanishes when a is implemented by a
multiplier, and the main theorem of [8] asserts that when A is stable and separable
every class in H2(T, Z) arises this way. The proof of this in [8] is modelled on the
surjectivity argument of Dixmier-Douady, and is not constructive; however, for
suitable algebras of the type in Section 1 we can write down automorphisms
corresponding to given elements of H2(T, Z), and we use this to give a short proof
of the theorem in [8].

The construction we describe here arose in connection with work on a notion of
central separable algebra which does not require that the algebra have an identity
[14], [11], and when the spectrum T is compact our C*-algebras are also central
separable algebras in this sense. In our third section we discuss the relationship
between these central separable algebras and continuous trace C*-algebras.

Our notation concerning continuous trace C*-algebras will more or less con-
form to that of [3, Chapter 10]. If H is a continuous field of Hilbert spaces over T
with continuous sections T(H), we denote the corresponding field of elementary
C*-algebras by 9T(i7) and write T(%(H)) for the C*-algebra defined by H. In
Section 3 it will be crucial that we are working with purely algebraic tensor
products, so we shall always write ® when we mean to take a completion.

1. The construction of continuous trace C*-algebras

with prescribed Dixmier-Douady class

Let T be a paracompact space, and let St, £f respectively denote the sheaves of
germs of continuous real and S ̂ valued functions on T. Then the covering map
t -* explirit gives a short exact sequence

0 -»Z->3?->,?'->0
of sheaves, which in turn gives a long exact sequence of cohomology

. . . -> H2(T, 91) -* H2(T, y ) -» H3(T,Z) -> H3(T, < # ) - > . . . .
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The sheaf ® is fine, so H"(T, 01) = 0 for n > 0, and the middle map is an
isomorphism. The Dixmier-Douady class of a continuous trace C*-algebra A with
paracompact spectrum T is by definition the image of a class in H2(T, £f) [3,
Section 10.7], so we may as well start with a 2-cocycle \ijk. NiJk -» S1 relative to a
locally finite open cover {iV,: i e / } . We can always replace the cover by another
{ M;: / G / } with Af, c Nt, so we may also suppose that each \jJk is defined on
the closure Nijk.

THEOREM 1. Let {N^. ii G / } be a locally finite cover of a locally compact
paracompact space T by relatively compact open sets, and suppose that \jjk:
NiJk -* Sl is a 2-cocycle. Let

A = f I V>*l*>* e C ( r ) ' *>* s ° outside Njk

have the obvious structure as a C(T)-module, multiplication defined by

where 8k,is the Kronecker delta and $ is given by

i«k-.(f) fort<EN,n = I V«(')*,*(0*tm(0 Mt G NJkm,
U \0 fi*teNJkm,

and involution defined by

(^jkejk)* = </>,*%•

For t ^T let I(t) = {i G / : t e AT}: woie r/ia? «, = | / (0 l is finite. If t e Afy
/or rAe usual n, X «(matrix norm we have

IK wo**/(O)*./e/(,)ll = IK V/(o*«(o)it./e/(()|,
50 that for each t we have a semi-norm \\-\\, on Av Let A be the set of a e A1 such
that t -* \\a\\, vanishes at infinity, and set \\a\\ = sup||a||,. Then A is a continuous
trace C*-algebra with spectrum T whose Dixmier-Douady class 8(A) e H3(T, Z) =
H2(T, Sf) is represented by the cocycle {Njy \iJk). The dimension of the irreducible
representation corresponding tot&T is nt.

PROOF. Simple calculations using the cocycle identity show that A is a *-algebra
with the above operations, and that for l e iVj

defines a *-representation of A into Mn (C). If / e JV/y and D(jik) is the diagonal
matrix with entries nk, then the cocycle identity yields
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141 Continuous trace C*-algebras 397

The diagonal matrices are unitary, so we deduce that the norms of the matrices
«r ,(a) a n d "},»(a) a r e always equal, and we have well-defined semi-norms

H<=lk»l forreJV,,
as claimed. The norm on A satisfies the C*-condition ||aa*|| = ||a[|2 since each
|| • ||, does, and it is not hard to see that A is complete, so A is a C*-algebra.

For each ( e l w e define an ideal in A1 by

V v * G A\*jk(*) = 0 for all;, k).
j,k I

We denote the quotient C*-algebra A/J, by A(t), and we write a(t) for the image
of a G Ax in ̂ 4(0- Note that if t e Nt the representation •ni t induces an isomor-
phism of A(t) onto Mn, so each A{t) is an elementary C*-algebra. In fact,
21 = {A(t), Ax) is a continuous field of elementary C*-algebras over T such that
A is the C*-algebra of continuous sections vanishing at infinity. For by definition
{a(t): a e A } is all of A(t), an^ t n e continuity of

follows from the continuity of the matrix norm (note that if ta -> / then I(ta)
eventually contains /(/))• Further, if x = (x(t)) e T\A(t) then there are unique
scalars ^ ( 0 such that

If x is locally uniformly approximable by elements of Ax, then standard argu-
ments show that the vJk are continuous and vanish off Njk, so that x is the section
defined by T,vjkeJk e A. Thus 21 is a continuous field as asserted and A = F0(2l)
has spectrum T. It is easy to see that 91 satisfies Fell's condition (for example, if
t e Nt, p = 1 near t and p = 0 off Nt, then (pe,,)(s) is a rank one projection for s
near t) and hence v4 has continuous trace.

To compute the Dixmier-Douady class of A we build fields Ht of Hilbert spaces
over Nt and isomorphisms of the associated fields of elementary C*-algebras
21 (//,-) onto 211^_. For / e Nt we define

with the usual inner product (ek\e,) = 8kl, and take as our space of continuous
sections

( ( ) }> - 0 off i

where /, = {k: NkC\ Nt # { 0 } } . It is routine to check that this does define a
continuous field of Hilbert spaces. The corresponding field 21, = 21(7/,) of
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elementary C*-algebras is that generated by fields of the form e ® / for e, f e
T(Hj), where x ® y denotes the rank one operator z -* (z\y)x. We define a linear
map from T(/f,) ® I\/7,) t o ^ by

, U,7/t(O<KO«H') forte NiJk,
hiUej ® ipek) = 0ejk, where0(f) =

'V y * ' jk \0 for teN,\NJk;

a standard Urysohn's lemma argument shows that 6eJk is in fact the restriction of
an element of A. Further, fc, is a *-homomorphism, is isometric from the usual
norm on F(9lj) to the given one on A, and is easily seen to be surjective; hence it
extends to an isomorphism of 31, onto 9l|^. (In fact, every 6eJk is the image of an
elementary tensor so if the index set / is finite ht defines an isomorphism of the
algebraic tensor product T(Ht) 9c^,)T(Hi) onto A\^. As the latter algebra is
complete so is the algebraic tensor product, which therefore equals r(9l,).) We
now define isomorphisms g,y: #/|^~ -• #, |A^ by

NiJk

The induced isomorphism Ad gtJ of $t(Hj) into 91 (i/,) is given on elementary
tensors by

(Ad go-)

(0**(0* uM+Me, iff e iV
\0 i f / e A

so that routine calculations using the cocycle identity give

hi(t)°(Adgij)(t) = hj(t) forte NT.

Thus gtJ defines the isomorphism h'^hj as in [3,10.7.11], and for t G NjJk we have

8ij(t)gJk(t) = Kjk(t)gM>

so that the class S(y4) = y(9l) in H2(T,Sf) is represented by the cocycle
{ A/;., XiJk} as claimed (see [3,10.7.12-14]).

REMARKS. 1. If T has covering dimension n, then we can realise any class in
H2(T,Sf) as a cocycle relative to a cover where at most n + 1 different sets
intersect. Because the Dixmier-Douady class determines a separable continuous
trace C*-algebra up to stable isomorphism, our theorem implies that every such
algebra with spectrum T is stably isomorphic to an algebra whose irreducible
representations have dimension < n + 1. This has already been shown by Brown
[1, Corollary 2.11] using different reasoning.

https://doi.org/10.1017/S1446788700023661 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700023661


[6] Continuous trace C*-algebras 399

2. The last part of the proof could be simplified a bit by constructing the class
S(A) as in [9, 2.6-2.9] using local rank one projections and intertwining partial
isometries rather than fields of Hilbert spaces and isomorphisms. However, in our
present proof we also showed that, when T is compact, the algebraic tensor
product T(Ht) ®C(r)r(//,) is complete, and this has some interesting algebraic
consequences, which we shall discuss in Section 3.

3. The C*-algebra A we construct in Theorem 1 can also be viewed as a twisted
groupoid C*-algebra. For simplicity we suppose T is compact and { Nt: i e / } is
a finite cover. Then we let \p be the local homeomorphism of the disjoint union
X = \JiNi onto T, let # ( ^ ) be the equivalence relation induced on X by \p as in [6,
Section 4], and let G be the corresponding topological groupoid with left Haar
system induced by counting measure on the fibres of \p (see [12, Section 1.2]).
Given a cocycle \iJk: Nijk -» S1 we define a 2-cocycle a: G2 -* S1 by

where G2 denotes the set of composable elements of G and /: X -* I is defined by
x e Ni(x). We define $: CC(G) -> A by $ / = Y,$jkejk, where

(x, y) iixeNj,y(ENkandi(x) = i(y) = t,

itt*NJk.

It is routine to verify that $ defines a *-monomorphism of the convolution
algebra CC(G, a) (see [12, Section 4.1]) onto a dense subalgebra of A, and hence
gives an isomorphism of C*(G, a) with A.

In particular, when \iJk = 1 the algebra A is the C*-algebra C*(ip) associated
by Kumjian [6] to the local homeomorphism \p. This can also be seen directly: his
imprimitivity bimodule I2(\p)is isomorphic to

H = {]£**«*: 4»fc e C ( r ) , 4>k = 0 outside^
^ k

with C(T)-valued inner product given by

and 4̂ acts on ̂  by

This is, of course, the same construction as we carried out locally to prove our
theorem, modulo changes in convention regarding inner products.
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400 Iain Raeburn and Joseph L. Taylor 171

2. Automorphisms

For any continuous trace C*-algebra A with paracompact spectrum T there is
an exact sequence

0 -> Inn ,4 -> A u t C ( r ) ^ ^ H2(T,Z),

where Inn A denotes the group of A determined by multipliers of A (see [13,
Section 5]). We shall now investigate the range of the homomorphism $A f°r t n e

algebra^ constructed in Theorem 1.
So let { Nt, \iJk } and A be as in Theorem 1, and let c e H2(T, Z) be given. If c

can be represented by a 1-cocycle {Nt, ju,y} with values inSf relative to the same
cover { TV,}, then we can define an automorphism a of A by

«(L *jftk = E V;*where M ' ) = „ 7 . /
10 otherwise.

This is easily seen to be a C(T)-module automorphism: we compute its class f(a)
in H\T, y) s H2(T,Z). Let {A/,} be an open cover of T with Wi c AT, and
choose continuous functions p,: 71 -» [0,1] such that p, s l o n Af, and p. s 0 off
Nr We can now define multipliers mi oi A by

note that although p^^ is not defined on all of T, whenever we have <£ = 0 off
A^ the function pju~4> does extend to be continuous on T, and simple calculations
show that under the usual multiplication rule this gives a multiplier of A. Further,
the cocycle identity shows that for t e Mt

so that w, implements a over Mt. Moreover, the same cocycle identity also gives
^iJ{t)mJ(t) = mi{t) for r e MtJ,

and we deduce that f(a) is represented by the cocycle {A/,, /i,y} (see [13, Section
5]). This defines the same class as the one we started with, and therefore f(a) = c.

Of course, we cannot expect to represent an arbitrary class in H2(T, Z) relative
to a fixed open cover (and we will come back to this question later), but if we
start with classes d e H3(T, Z) and c e H2(T, Z) then we can always represent
them as 5x-valued cocycles relative to the same cover. Hence the argument in the
preceding paragraph proves the following result:

PROPOSITION 2. Let T be a locally compact paracompact space, and let d e
H3(T,Z), c G H2(T,Z). Then there are a continuous trace C*-algebra A with
spectrum T, with 8(A) = d, and with only finite-dimensional irreducible representa-
tions, and an automorphism a e AutC(r) A such that £A(a) = c.

https://doi.org/10.1017/S1446788700023661 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700023661


|8l Continuous trace C*-algebras 401

REMARK. Alex Kumjian has noticed independently that, given a cocycle ju,- •:
fj -» S \ one can write down an automorphism a of the C*-algebra C*(4>)

associated to the local homeomorphism $: UjNt -> T such that f(a) is represented
by {Nj, Hjj). In fact, it was his observation that alerted us to the realisation of A
as the twisted groupoid C*-algebra C*(G, a) (see Remark (3) in Section 1). The
automorphism a can be conveniently viewed in this realisation too: define a
continuous 1-cocycle c: G -» S1 by

c(x, y) = /*,(*)<<

and then the automorphism a of C*(G, a) is defined by

«(/)(*, y) = c(x, y)f(x, y) for/e CC(G),

as in [12, Proposition II.5.1].

COROLLARY 3 ([8, Theorem 2.1]). Let A be a separable stable continuous trace
C*-algebra with spectrum T. Then the homomorphism £A is surjective.

t. PROOF. Let c e H2(T, Z). Then by the proposition there are an algebra B and
f an automorphism a e AutC(T) B such that 8(B) = 8(A) and ffl(a) = c. Since the

Dixmier-Douady class determines a separable continuous trace C*-algebra up to
stable isomorphism, we have

A = A~® K(H) s B~® K(H),

and we may assume that this isomorphism induces the identity map from T = A
to T = B = (B^K(H))" (see [10, Lemma 4.3]). If m e M(B) implements a
over N then

m « l e M(fi)®" M(K(H)) c M(B~® K(H))

implements a ® id over N, so HB9KiH)(a ® id) = JB(a) = c, and the correspond-
ing automorphism fi of A therefore satisfies HA(B) = c.

REMARK. Corollary 3 holds for arbitrary C*-algebras with paracompact spec-
trum T [10, Corollary 3.12]. However, the proof given there involves establishing
surjectivity for A = C0(T, K(H)) first, and this seems to be more complicated
than our Proposition 2.

As we have seen above, if A is the C*-algebra of Theorem 1 corresponding to a
cocycle \ijk: Nijk -* S1 then the range of £A contains the subgroup H\Jf, Sf) of
H\T, Sf) = H2(T,Z) consisting of those classes realisable on the cover JT=
{Nt). It is quite easy to see that, while this range need not be all of H2(T,Z), it
may contain more than Hl{^, £f). First of all, take the one set cover {T} of a
space with H2(T, Z) # 0; then A = C0(T) and the range of $A is {0} # H2(T, Z).
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This example is more general than it appears, since if Y is a compact set
contained in only one member of the cover, then A\Y = C(Y) and no element of
H2(T, Z) whose image in H2(Y, Z) is non-zero can come from a C(T)-automor-
phism of A. On the other hand, if we take the trivial cover Nx = N2 = T
consisting of two sets, then A = C(T, M2) and there can be automorphisms a for
which f (a) ¥= 0 and hence does not belong to Hx{J/~, Sf). This argument is also
more general than it first appears, since if Y is a compact subset of NY n N2 which
meets no other Nt, then A\ Y s C(Y, M2) and there could be automorphisms of A
which do not trivialise over A^ n N2.

3. Central separable algebras

Let R be a commutative ring with identity, let A be an /?-algebra (not
necessarily with an identity) and let Z(A) denote the ring of A — A bimodule
endomorphisms of A. There is always a natural map i: R -» Z(A) and we call A
central if this is an isomorphism. Following [14, Section 2] we say A is separable if
A1 = A, A is projective as an A — A bimodule, and for each maximal ideal M of
Z(A) we have MA # A. An immediate property of such algebras is that the
multiplication map: A ®RA -* A is split as an A —A bimodule homomorphism.
Our main theorem can be strengthened as follows.

PROPOSITION 4. Let T be a compact Hausdorff space and let d e H3(T, Z). Then
there is a continuous trace C*-algebra A with S(A) = d which is also a central
separable C(T)-algebra.

PROOF. Let {iV,} be a finite open cover of T such that d is represented by a
cocycle \iJk: NiJk -» S1, and let A be the algebra constructed in Theorem 1.
Choose another cover {A/,} with A/, c Nt, and functions p, e C0(iV,) with p, = 1
on A/,. We define A — A bimodule homomorphisms w, on A ®C(T)A by inter-
changing the two copies of T(H}) in

and multiplying by p,. Let 8 be the module of A — A homomorphisms generated
by the «,-, and let tr: A ®C ( r )B -» Z(A) be as in [14, page 174]. We have
Z(A) = C(T), since Z(A) is by definition the centre of the multiplier algebra of
A. Thus it will follow from [14, Proposition 3.8] that A is central separable if we
can prove that the range of tr is not contained in any maximal ideal of C(T).
However, a straightforward calculation shows that if t e A/, then tr(p,e,, ® «,)
cannot vanish at t, and the result is proved.
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This last result raises an obvious question: what is the relationship between the
classes of C*-algebras with compact spectrum T and central separable algebras
over C(T)? It is well-known that the central separable C ( r )-algebras with
identity are precisely the locally homogeneous C*-algebras with spectrum T, but
the situation for algebras without identity is rather more complicated. For
example, the algebra FR(H) of finite rank operators on a separable (!) Hilbert
space H is central separable over C (we have FR(H) = H ®CH) but it is not a
C*-algebra unless H is finite-dimensional. Our next proposition gives an answer
to this question—and shows, among other things, that Proposition 4 does say
more than Theorem 1.

PROPOSITION 5. (1) Let A be a C*-algebra with compact Hausdorff spectrum T
which is also a central separable C(T)-algebra for the natural action of C(T) on A.
Then A is a continuous trace C*-algebra whose irreducible representations have
finite, bounded dimensions.

(2) There are continuous trace C*-algebras A with compact spectrum and {dim •n:
IT e A) bounded which are not central separable algebras.

The proof of this result will depend on a series of simple lemmas. We begin
with a purely algebraic result which is implicit in [14].

LEMMA 6. Let B be a central separable algebra over a commutative ring R, and
suppose that p e B is a rank one idempotent (i.e., pBp = Rp). Then the map
ap ® pb -* apb induces an isomorphism of Bp ®R pB onto B.

PROOF. This is a consequence of the proofs of Proposition 4.2 and 4.3 of [14]
with N = Bp, M = pB and X: N ®RM -> B given by the multiplication in B; the
regularity of N, M follows from [14, Propositions 1.1 and 1.6]. The proof of
Proposition 4.2 shows that if A = M ®BN, then X induces an isomorphism of
N ®AM onto B. However, the last argument in the proof of Proposition 4.3
shows that the multiplication also induces an isomorphism of A = pB ®BBp onto
pBp, which is just Rp since/? is rank one. We therefore deduce that B = Bp ®R pB
as claimed.

LEMMA 7. Let A be a C*-algebra which is also a central separable C(T)-algebra.
Then every closed 2-sided ideal in A is regular, and has the form I A for some 2-sided
ideal I in C(T).

PROOF. The multiplication map A ®C(7-) A -* A is split and A is therefore a
regular 2-sided A -module. If M is a 2-sided ideal in A, then we have MA = M
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(see, for example, [7, 1.4.5]) and M is regular by [14, Proposition 1.6]. The result
now follows from [14, Proposition 3.5].

LEMMA 8. Let A be a C*-algebra which is central separable over C. Then
A s Mn(C).

PROOF. Let it: A -* B(H) be an irreducible representation; by Lemma 7 A has
no non-trivial ideals so IT must be faithful. By [14, Proposition 4.8] A must
contain a rank one idempotent/?: we claim that P = ir(p) e B{H) is also rank
one. For suppose £ e PH, £ ¥= 0 and TJ e P*H satisfies (£|TJ) = 0. Then for any
a e A

(i,hr(fl)O = (P*v\*(a)P0 = (V\*(pap)0 e C(r,\i) = 0.

Since P*H = ((/ - P)H)X this says that

and because w is irreducible it follows that £ and (I - P)H span //. Thus
PH = C£ and P is rank one. The irreducibility of IT implies that ir(A)o K(H),
and as A has no ideals IT(A) = K(H). But the latter consists of finite rank
operators so H must be finite-dimensional. This will be a *-isomorphism if P is
chosen so that P* = P.

PROOF OF PROPOSITION 5(1). Let IT: A -» B(H) be irreducible. By Lemma 7
ker <n is a regular ideal of the form I A for some ideal / in C(T). The extension w
of 7T to the multiplier algebra restricts to a representation of C(T) in n(A)' = Cl,
and hence ker w is the ideal /, of functions vanishing at some point / of T. We
then have ItA c ker tt and the maximality of /, shows that I,A = ker IT. Thus by
[14, Propositions 2.7 and 3.5] A/VSXTT is central separable over C(T)/It = C,
hence isomorphic to Mn(C) by Lemma 8, and IT is finite-dimensional.

We now prove that A satisfies Fell's condition. Let IT G A and choose a & A
such that ir(a) is a rank one projection. The map p -> ||p(a)|| is continuous on A,
so ||p(a)2 — p(a)\\ is small for p near IT, and if / = 1 near 1, / = 0 near 0 then
p = f(a) will satisfy p(p)2 = p(/?) = p(p)* for p near TT. If JV is a compact
neighbourhood of IT then / ^p l^ = A/INA is central separable over C(N) and
has an identity; therefore by shrinking N we may supposepAp\N = C(N, Mn) for
some n. As ir(p) is rank one, n = 1 and p(^) is rank one throughout AT. Thus A
has continuous trace.

Suppose now that irn e A and dimwn > n for all n. As 4̂ is compact, we may
assume irn -» w (technically, we might have to pass to a subnet, but the idea's the
same). Pick an e A with dn ^ 0 and rank 7rn(an) > «, and let a - Lf=12~kak.
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Then a > 0 and we have

/ 00 \

rank *n(a) = rank £ *&Tkak) > rank •nn{
1"'an) > »•

\k-l I

By restricting to a compact neighbourhood N of IT we may suppose that 4̂ has a
rank one idempotent p, and then by Lemma 6 multiplication gives an isomor-
phism fi: Ap ®CiN)pA -* A. In particular, we can write

a = n

but this is impossible since the rank of wnQLaipbi) is at most m for each n.
The proof of the second part of Proposition 5 consists of building an example.

We are grateful to Shaun Disney for providing the following topological lemma.

LEMMA 9. Let Ln be the canonical complex line bundle over complex projective
space CP". Then any n sections of Ln have a common zero.

PROOF. Let ^l,...,^n be n sections of L = Ln, and suppose they do not
simultaneously vanish. Then the direct sum nL of n copies of L has a non-vanish-
ing section, and so can be decomposed as nL = 1 © F, where 1 denotes the trivial
line bundle. The first Chern class of 1 is 0, so

But the cohomology ring H*(CP", Z) is a truncated polynomial ring generated by
c^L), and in particular H2n(CP",Z) = Z is generated by c^L)". We therefore
have a contradiction, and the £, must vanish simultaneously.

COROLLARY 10. Let Ln be the field of Hilbert spaces over CP" obtained by putting
a Hermitian structure on the canonical line bundle, and let An = F(2l(Ln)) be the
C*-algebra defined by Ln. Then the identity in An cannot be written in the form
ir-i£i ® Vtfor £„ 7), G T(Ln) unless m> n. {In fact An = C(CP"), but this is not
important here.)

PROOF OF PROPOSITION 5(2). Let Ln be as in Corollary 10, and define a field of
Hilbert spaces K over the disjoint union X = U ^ C P " by taking K = Ln on
CP". We now define a field H over the compactification T = X U {oo} by

H(x) = C © K(x) = C2, 7/(oo) = C, T(H) = C(T)®T0{K).

Let A be the C*-algebra r(2((#)) defined by H; we claim that A is not just
T(H) ®C(r) T(H). For A contains the closure of ro(A;) ®C(r) T0(K), which is
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the co-direct sum of the C*-algebras An. If we define/ e An by

then/cannot be written in the form EJljl, ® ij, for any finite m, and so does not
belong to the algebraic tensor product T0(K) ® T0(K); this justifies the claim.
The algebra A contains the idempotent p = 1C(7-) ® lc(r)> an<^ i* *s e a s v t o s e e

that pAp = C(T), sop is rank one, and if A were central separable we would have
A s Ap <8>C(TypA by Lemma 6. However, Ap = T(H) so we have just shown this
is not the case.

Finally, we observe that, although continuous trace C*-algebras with compact
spectrum are not in general central separable, they do always have a dense ideal
which is. For any continuous trace C*-algebra with spectrum T can be con-
structed from a cover {Nt} of T, fields of Hilbert spaces Ht over Nt, and
isomorphisms htJ: Hj\N -» H\N which satisfy

Ad htj{t) oAd hJk(t) = Ad hJk(t) for t e Nijk

[3, 10.7.11]. For convenience we suppose Nt is compact. Then the algebraic tensor
product At = F( / / , ) <8>C(Ar)r(//() is a central separable C(iV,)-algebra, and the
isomorphisms Ad htj map ^4,1^ onto At\N . We can therefore use them to piece
together a central separable algebra (cf. the proof of Proposition 4) which is
clearly dense in A. Conversely, if A is a C*-algebra with Hausdorff spectrum T
and A contains a dense central separable C ( r )-subalgebra then as in the proof of
Proposition 5 it is not hard to see that A satisfies Fell's condition. Thus this
property characterises continuous trace C*-algebras.
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