
Forum of Mathematics, Sigma (2022), Vol. 10:e84 1–23
doi:10.1017/fms.2022.77

RESEARCH ARTICLE

Betti maps, Pell equations in polynomials and almost-Belyi
maps
Fabrizio Barroero 1, Laura Capuano 2 and Umberto Zannier 3

1Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Largo San Murialdo 1, 00146, Roma, Italy;
E-mail: fabrizio.barroero@uniroma3.it.
2Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Largo San Murialdo 1, 00146, Roma, Italy;
E-mail: laura.capuano@uniroma3.it.
3Classe di Scienze, Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126, Pisa, Italy; E-mail: u.zannier@sns.it.

Received: 11 October 2021; Revised: 9 March 2022; Accepted: 4 August 2022

2020 Mathematics Subject Classification: Primary – 11G10; Secondary – 11D09, 14E22, 14D22

Abstract
We study the Betti map of a particular (but relevant) section of the family of Jacobians of hyperelliptic curves
using the polynomial Pell equation 𝐴2 − 𝐷𝐵2 = 1, with 𝐴, 𝐵, 𝐷 ∈ C[𝑡] and certain ramified covers P1 → P

1

arising from such equation and having heavy constrains on their ramification. In particular, we obtain a special
case of a result of André, Corvaja and Zannier on the submersivity of the Betti map by studying the locus of the
polynomials D that fit in a Pell equation inside the space of polynomials of fixed even degree. Moreover, Riemann
existence theorem associates to the abovementioned covers certain permutation representations: We are able to
characterize the representations corresponding to ‘primitive’ solutions of the Pell equation or to powers of solutions
of lower degree and give a combinatorial description of these representations when D has degree 4. In turn, this
characterization gives back some precise information about the rational values of the Betti map.
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1. Introduction

In the last few years Betti maps associated to sections of abelian schemes have been extensively studied
and applied to problems of diophantine nature. In this article, we present an apparently new approach,
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already sketched by the third author in [34], to study Betti maps in a special case, which is strictly related
to the polynomial Pell equation. In particular, we explain how some properties of certain ramified covers
of the projective line with prescribed ramification and arising from such equations can be used to prove
a special case of a result by André, Corvaja and the third named author [2] on the distribution of the
rational values of the Betti map given by a particular section of the family of Jacobians of hyperelliptic
curves. In this special case, our approach actually gives something more precise than the result in [2]
and allows in principle to obtain a description of the preimage of the set of rational points with fixed
denominator; see Corollary 1.6 and the subsequent discussion.

Given an abelian scheme A → 𝑆 of relative dimension 𝑔 ≥ 1 over a smooth complex algebraic
variety S and a section 𝜎 : 𝑆 → A, a Betti map for A and 𝜎 is a real analytic map 𝛽 : 𝑆 → R2𝑔, where
𝑆 is the universal covering of 𝑆(C). This map is of particular relevance in many different contexts; for
example, rational points in the image of 𝛽 correspond to torsion values for the section, thus linking the
Betti map to other diophantine problems. For an account about the use and the study of Betti maps, see
[2, Section 1].

The rank rk 𝛽 of the Betti map, namely the maximal value of the rank of the derivative 𝑑𝛽(𝑠) when
𝑠 runs through 𝑆, is of particular interest. Indeed, if dim 𝑆 ≥ 𝑔, its maximality is equivalent to the fact
that the image of the map contains a dense open subset of R2𝑔 and implies that the preimage of the set
of torsion points of A via 𝜎 is dense in 𝑆(C); see [2, 2.1.1 Proposition].

In [11], the authors studied the rank of Betti maps associated to abelian surface schemes in the context
of a relative Manin–Mumford problem. This work initiated more general investigations that led to [2],
in which the authors conjectured a sufficient condition for the maximality of rk 𝛽, proving it under some
quite general and natural hypotheses (see also [16] for further results on this topic).

In particular, in [2], the authors handled the case of a specific nontorsion section of the Jacobian of
the universal hyperelliptic curve of genus 𝑔 > 0. This case is relevant by itself, but it is also linked to
an issue raised by Serre [30], who noticed a gap in an article by Robinson [27], in which the family of
hyperelliptic curves over the real numbers appears in connection with the Pell equation in polynomials.
In [2, Section 9], the authors give an argument fixing this gap using Betti maps; see also [7, 25, 31, 18]
for independent proofs of the same result.

In the first part of this paper, we give an alternative proof of this result in the complex case for a
particular but significant section. We obtain this as a consequence of the characterization of the dimension
of particular subvarieties arising from solvable Pell equations in the ‘moduli space’ of polynomials of
even degree ≥ 4.

Let B2𝑑 be the Zariski-open subset of A2𝑑
C

defined by

B2𝑑 := {(𝑠1, . . . , 𝑠2𝑑) ∈ A2𝑑
C

: the discriminant of 𝑡2𝑑 + 𝑠1𝑡
2𝑑−1 + · · · + 𝑠2𝑑 is nonzero}. (1.1)

Given a point 𝑠 = (𝑠1, . . . , 𝑠2𝑑) ∈ B2𝑑 , we consider the affine hyperelliptic curve defined by 𝑦2 =
𝑡2𝑑 + 𝑠1𝑡

2𝑑−1 + · · · + 𝑠2𝑑 . If we homogenize this equation, we obtain a projective curve which is singular
at infinity. There exists, however, a nonsingular model 𝐻𝑠 with two points at infinity which we denote
by ∞+ and ∞−. We fix them by stipulating that the function 𝑡𝑑 ± 𝑦 has a zero at ∞±. The curve 𝐻𝑠 is
then a hyperelliptic curve of genus 𝑑 − 1.

We denote by J𝑠 the Jacobian variety of 𝐻𝑠; then, letting 𝑠 vary in B2𝑑 , we have an abelian scheme
J → 𝑆 := B2𝑑 of relative dimension 𝑔 := 𝑑 − 1. We call 𝜎 : 𝑆 → J the section corresponding to the
point [∞+ − ∞−].

Let us give an informal definition of the Betti map associated to 𝜎; for a precise definition we refer
to [2, Section 3].

In the constant case (that is, when J is a complex abelian variety), an abelian logarithm of a point
of J (C) can be expressed as an R-linear combination of the elements of a basis of the period lattice.
These real coordinates are called Betti coordinates. Note that they depend on the choice of the abelian
logarithm and of the basis of the period lattice.
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In the relative setting, the Betti map describes the variation of the Betti coordinates; locally (in the
complex topology) on 𝑆(C), the Lie algebra Lie(J ) is the trivial vector bundle of rank g. Moreover,
the kernel of the exponential map is a locally constant sheaf on 𝑆(C). One can then locally define a real
analytic function that associates a point 𝑠 of 𝑆(C) to the Betti coordinates of 𝜎(𝑠).

Betti maps are defined for general abelian schemes, and one of the easiest cases which has been deeply
studied in literature is that of the Legendre scheme L. In this case, the base S is the curve P1 \ {0, 1,∞}
and L → P1 is the abelian scheme having fibers in P2 defined by

𝑍𝑌2 = 𝑋 (𝑋 − 𝑍) (𝑋 − 𝜆𝑍),

for every 𝜆 ∈ P1 \ {0, 1,∞}. Consequently, L is embedded in P1 \ {0, 1,∞} × P2. Locally, one can
define a basis of periods using the hypergeometric functions. Indeed, for example, for 𝜆 in the region
𝐷 = {|𝜆 | < 1 and |1 − 𝜆 | < 1} ⊆ 𝑆, a suitable basis of periods is given by 𝑓 (𝜆) := 𝜋𝐹 (𝜆) and
𝑔(𝜆) := 𝜋𝑖𝐹 (1 − 𝜆), where 𝐹 (𝜆) =

∑∞
𝑚=0

(𝑚!)2

24𝑚 (𝑚!)4𝜆
𝑚. Given a section 𝜎 : 𝑆 → L, locally over D one

can take its elliptic logarithm z and write it as 𝑧 = 𝑢1 𝑓 + 𝑢2𝑔, where the functions 𝑢𝑖 are real analytic
functions. Hence, the Betti map 𝛽 : 𝐷 → R2 associated to 𝜎 is given by 𝛽(𝜆) = (𝑢1(𝜆), 𝑢2 (𝜆)).

In general, this map cannot be extended to the whole of 𝑆(C) because of monodromy, but we can
pass to the universal covering 𝑆 of 𝑆(C) and define a Betti map 𝛽 : 𝑆 → R2(𝑑−1) , which is not unique
and depends on several choices. The following is our first result.

Theorem 1.1. Let d be an integer ≥ 2, and let J → 𝑆 and 𝜎 : 𝑆 → J be the abelian scheme and the
section defined above. Then the corresponding Betti map 𝛽 : 𝑆 → R

2(𝑑−1) satisfies rk 𝛽 ≥ 2(𝑑 − 1);
equivalently, 𝛽 is submersive on a dense open subset of 𝑆. In particular, the set of 𝑠 ∈ 𝑆(C) such that
𝜎(𝑠) is torsion on J𝑠 is dense in 𝑆(C) in the complex topology.

The above theorem is a special case of [2, 2.3.3 Theorem]; however, we are going to give a different
proof of it in Section 3. Our proof makes use of the connection between the torsion values of the section
𝜎 : 𝑆 → J corresponding to the point [∞+ − ∞−] and the polynomial Pell equation.

We recall that the classical Pell equation is an equation of the form 𝐴2 − 𝐷𝐵2 = 1 where D is a
positive integer to be solved in integers A and B with 𝐵 ≠ 0. A theorem of Lagrange says that such an
equation is nontrivially solvable if and only if D is not a perfect square.

We consider the polynomial analogue of this problem, replacing Z by a polynomial ring over a field.
This variant is old as well and can be dated back to studies by Abel [1] especially in the context of
integration in finite terms of certain algebraic differentials. Lately, these studies have been carried out
by several authors (see [8, 30, 23] for more details). Apart from their link with points of finite order
in Jacobians of hyperelliptic curves, the polynomial Pell equation, which from now on we will call
a Pell–Abel equation as suggested by Serre in [30], has several connections with other mathematical
problems, like polynomial continued fractions [35] and elliptical billiards [13, 12] but also problems in
mathematical physics [9] and dynamical systems [20].

Let K be a field of characteristic 0. For a nonconstant polynomial𝐷 (𝑡) ∈ 𝐾 [𝑡], we look for solutions of

𝐴(𝑡)2 − 𝐷 (𝑡)𝐵(𝑡)2 = 1, (1.2)

where 𝐴(𝑡), 𝐵(𝑡) ∈ 𝐾 [𝑡] and 𝐵 ≠ 0; if such a solution exists, we call the polynomial D Pellian. Clearly,
necessary conditions for a polynomial D to be Pellian are that D has even degree and it is not a square
in 𝐾 [𝑡], but the leading coefficient is a square in K. Unlike the integer case, these conditions are not
sufficient to guarantee the existence of a nontrivial solution, and there are examples of non-Pellian
polynomials satisfying these conditions (see, for example, [34]).

If K is algebraically closed (in particular 𝐾 = C) there is a criterion, attributed to Chebyshev in [4],
that links the solvability of a Pell–Abel equation to the order of the point [∞+ −∞−] in the Jacobian of
the hyperelliptic curve defined by the equation 𝑦2 = 𝐷 (𝑡).
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Proposition 1.2 (see [34, Proposition 12.1]). Let 𝐷 ∈ 𝐾 [𝑡] be a squarefree polynomial of degree
2𝑑 ≥ 4. Then the Pell–Abel equation 𝐴2 − 𝐷𝐵2 = 1 has a nontrivial solution 𝐴, 𝐵 ∈ 𝐾 [𝑡] with 𝐵 ≠ 0
if and only if the point [∞+ − ∞−] has finite order in the Jacobian of the smooth projective model of
the affine hyperelliptic curve of equation 𝑦2 = 𝐷 (𝑡). Moreover, the order of [∞+ − ∞−] is the minimal
degree of the polynomial A of a nontrivial solution.

We point out that a similar criterion holds as well in the case of nonsquarefree D, by using generalized
Jacobians (for more on this, see [35]).

As in the integer case, if 𝐷 (𝑡) is Pellian, then the associated Pell–Abel equation has infinitely many
solutions in 𝐾 [𝑡]. Indeed, a possible nontrivial solution (𝐴, 𝐵) generates infinitely many ones by taking
powers 𝐴𝑚 +

√
𝐷𝐵𝑚 := ±

(
𝐴 ±

√
𝐷𝐵

)𝑚
. Moreover, solutions to the Pell–Abel equation correspond to

the units of the ring 𝐾 [
√
𝐷] which form a group isomorphic to Z ⊕ Z/2Z.

We will call a solution primitive if it has minimal degree among all the nontrivial ones. On the other
hand, we say that a solution (𝐴𝑚, 𝐵𝑚) is an m-th power when it can be obtained from another one as
explained above. Notice that every solution of the Pell–Abel equation will then be a power of a primitive
one.

We call degree of a solution (𝐴, 𝐵) the degree of A. Thus, the order of [∞+ − ∞−], if finite, is the
degree of a primitive solution of the corresponding Pell–Abel equation.

If we consider the abelian scheme J → 𝑆 = B2𝑑 as above and the section 𝜎 : 𝑆 → J corresponding
to the point [∞+ − ∞−], we have that the polynomial 𝐷𝑠 = 𝑡2𝑑 + 𝑠1𝑡

2𝑑−1 + · · · + 𝑠2𝑑 is Pellian with
primitive solution of degree n if and only if 𝜎(𝑠) is a torsion point of order n.

We define the Pellian locus P2𝑑 in B2𝑑 to be

P2𝑑 := {𝑠 = (𝑠1, . . . , 𝑠2𝑑) ∈ B2𝑑 : the polynomial 𝐷𝑠 = 𝑡
2𝑑 + 𝑠1𝑡

2𝑑−1 + · · · + 𝑠2𝑑 is Pellian}. (1.3)

We have the following result.

Theorem 1.3. For 𝑑 ≥ 2, the set P2𝑑 (C) of Pellian complex polynomials is dense in B2𝑑 (C) with
respect to the complex topology.

We point out here that the distribution of Pellian polynomials in families, and its connection to
problems of unlikely intersections has been investigated (often using Betti maps) in recent years, mainly
in the case of curves in B2𝑑 where the behaviour is completely opposite to what happens in the setting
of the above theorem (for a general account on the problems of unlikely intersections, see [33]). Indeed,
for instance, in [22] and [23], the authors show that a generic curve in B2𝑑 , where 𝑑 ≥ 3, contains at
most finitely many complex points that correspond to Pellian polynomials. One can see also [6] and
[29] for the nonsquarefree case and [3] for similar results for the generalized Pell–Abel equation.

Clearly, Theorem 1.3 is a consequence of Proposition 1.2 and Theorem 1.1 (and thus of [2]); however,
in this paper we present a different proof of these two results with the principal aim of showing the link
between the Betti maps and some properties of certain ramified covers of the projective line with fixed
ramification. Moreover, we are able to study more deeply the Pellian locus P2𝑑 ⊆ B2𝑑 and to show that
it consists of a denumerable union of algebraic subvarieties of B2𝑑 of dimension at most 𝑑 + 1 (see
Proposition 3.1), each one coming from the preimage of a rational point of a Betti map 𝛽. If 𝛽 did not
have maximal rank, then these preimages would have dimension strictly larger than 𝑑 + 1.

To study the Pellian locus P2𝑑 , we associate to a degree n solution (𝐴, 𝐵) of a Pell–Abel equation
the ramified cover of degree 2𝑛 given by 𝐴2 : P1(C) → P

1 (C). Because of the Pell–Abel equation,
the latter has to be ramified above 0, 1 and ∞ and, by the Riemann–Hurwitz formula, at most 𝑑 − 1
additional points, independently of n. For this reason, we call these maps, following the third author
in [34], almost-Belyi maps.

The Riemann existence theorem gives a link between such covers and permutation representations.
To be more precise, if our cover of degree 2𝑛 has h branch points, an h-tuple Σ of elements of 𝑆2𝑛 can
be associated to it. These permutations satisfy certain properties, for example, they have very strong
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constrains on their cycle structure. On the other hand, fixing the branch points and a tuple of permutations
satisfying these properties determines the map up to automorphisms of the domain.

It turns out that one can determine whether a solution associated to a certain representation is primitive
or a power of another one by looking at the partitions of {1, . . . , 2𝑛} preserved by the subgroup of 𝑆2𝑛
generated by the same representation, that is, the monodromy group of the cover.

Theorem 1.4 (Theorem 6.2). Let (𝐴, 𝐵) be a solution of degree n of a Pell–Abel equation 𝐴2−𝐷𝐵2 = 1
with deg𝐷 = 2𝑑, and let 𝐺𝐴 be the monodromy group of 𝐴2. Then, for every integer 𝑚 | 𝑛 with 𝑛

𝑚 ≥ 𝑑,
(𝐴, 𝐵) is the m-th power of another solution if and only if𝐺𝐴 preserves a partition of the set {1, . . . , 2𝑛}
in 2𝑚 subsets, each of cardinality 𝑛

𝑚 .

In [34], the third author gives an example of a permutation representation associated to a Pell–Abel
equation of arbitrary degree; see Example 2.4 below. Using the above criterion it is easy to see that the
corresponding solution of the Pell–Abel equation is primitive, and this implies that, after fixing their
degree, there are Pellian polynomials with primitive solutions of any possible degree.

Corollary 1.5. Let 𝑑, 𝑛 be positive integers with 𝑛 ≥ 𝑑 ≥ 2. Then there exists a squarefree Pellian
𝐷 ∈ C[𝑡] of degree 2𝑑 such that a primitive solution of the corresponding Pell–Abel equation (1.2) has
degree n.

Going back to our Betti map 𝛽 : 𝑆 → R
2(𝑑−1) associated to the abelian scheme J → 𝑆, we can

deduce some properties of the rational points in the image 𝛽(𝑆). We call the denominator of a rational
point of R2(𝑑−1) the positive least common denominator of the coordinates of the point.

It is easy to see that there are no nonzero points of denominator < 𝑑, since a nontrivial solution of
the Pell–Abel equation has degree at least d. From [2], one can easily deduce that 𝛽(𝑆) contains rational
points of every denominator ≥ 𝑛0 for some large enough natural number 𝑛0. Our Corollary 1.5 implies
the following result.

Corollary 1.6. The image 𝛽(𝑆) of the Betti map contains a point of denominator n for all 𝑛 ≥ 𝑑.

In a recent work [10], the authors consider the distribution of points of the base of an elliptic scheme
where a section takes torsion values. Those are exactly the points of the base where the corresponding
Betti map takes rational values. More specifically, they prove that the number of points where the Betti
map takes a rational value with denominator (dividing) n is, for large n, essentially 𝑛2 times the area of
the base with respect to the measure obtained locally by pulling back the Lebesgue measure on R2 by
the Betti map. Moreover, they show that the constant of the main term is equal to ℎ̂(𝜎), where ℎ̂ is the
canonical height associated to twice the divisor at infinity on the elliptic scheme.

The corresponding result for our family of Jacobians J → 𝑆 and our section would probably give
an asymptotic formula for the number of equivalence classes of polynomials D of fixed degree 2𝑑 ≥ 4
satisfying a Pell–Abel equation 𝐴2 − 𝐷𝐵2 = 1 with A of degree n, for n tending to infinity.

On the other hand, using the correspondence given by the Riemann existence theorem explained
above, one is able to determine the exact number of equivalence classes of Pell–Abel equations of fixed
degree n. In Section 8, we compute this number in the case 𝑑 = 2. We point out that, as d grows, the
combinatorics behind the problem becomes more complicated, but this approach would still work in
principle.

In turn, this complete classification should allow to compute the number of components ofP2𝑑 ⊆ B2𝑑
that map via the Betti map to rational points of fixed denominator rather than just an asymptotic formula
analogous to the one in [10].

Right before this article was published, Fedor Pakovich pointed out his paper [24] to the authors.
It contains several remarks about the Pell–Abel equation, points of finite order on Jacobians and Belyi
maps which are deeply related to our work.
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2. Almost-Belyi maps

Given a (squarefree) Pellian polynomial 𝐷 (𝑡) of degree 2𝑑 and a solution (𝐴, 𝐵) of degree n of the
corresponding Pell–Abel equation 𝐴2 − 𝐷 (𝑡)𝐵2 = 1, we consider the map 𝜙𝐴 := 𝐴2 : P1 (C) → P1 (C)
of degree 2𝑛.

It is easy to see that the Pell–Abel equation forces the branching of the map 𝜙𝐴 to be ‘concentrated’
in 0, 1 and ∞. First, since 𝜙𝐴 is a polynomial, there is total ramification above ∞. Moreover, as 𝜙𝐴

is a square and 𝜙𝐴 − 1 = 𝐷𝐵2, we have that the ramification indices above 0 are all even, while the
ones above 1 are all even with the exception of 2𝑑 points (the simple roots of 𝐷 (𝑡)). Hence, counting
the branching of 𝜙𝐴 as the sum of 𝑒 − 1 over the ramification indices e, we have that above 0 the
branching is at least n, above 1 at least 𝑛 − 𝑑 and above ∞ it is exactly 2𝑛 − 1. On the other hand, by the
Riemann–Hurwitz formula (see [17, Theorem A.4.2.5., p. 72]), the total branching is equal to 4𝑛 − 2.
This means that the branching outside 0, 1,∞ is at most 𝑑 − 1, and thus there cannot be more than 𝑑 − 1
further branch points. Following the third author [34], we call 𝜙𝐴 an almost-Belyi map as its branching
is ‘concentrated’ above 0, 1,∞ (in the sense that the number of branch points outside this set does not
depend on the degree n of 𝜙𝐴 but only on the degree of D which is fixed)1 .

To each such map, we can associate a monodromy permutation representation in the following way
(for references see [15], [21] or [32]).

Let us call B = {𝑏1, . . . , 𝑏ℎ} the set of the branch points of 𝜙𝐴 (where ℎ ≤ 𝑑 +2), and let us choose a
base point q different from the 𝑏𝑖 . Let us moreover call𝑉 := P1 (C) \B. The fundamental group 𝜋1 (𝑉, 𝑞)
of V is a free group on h generators [𝛾1], . . . , [𝛾ℎ] modulo the relation

[𝛾1] · · · [𝛾ℎ] = 1,

where each 𝛾𝑖 : [0, 1] → 𝑉 is a closed path which winds once around 𝑏𝑖 . Now, consider the fiber 𝜙−1
𝐴 (𝑞)

above q, and denote by 𝑞1, . . . , 𝑞2𝑛 the 2𝑛 distinct points in this fiber. Every loop 𝛾 ⊆ 𝑉 based at q and
not passing through the 𝑏𝑖 can be lifted to 2𝑛 paths �̃�1, . . . , �̃�2𝑛, where �̃� 𝑗 is the unique lift of 𝛾 starting
at 𝑞 𝑗 . Hence, �̃� 𝑗 (0) = 𝑞 𝑗 for every j. Now, consider the endpoints �̃� 𝑗 (1); these also lie in the fiber
𝜙−1
𝐴 (𝑞) and indeed form the entire preimage set {𝑞1, . . . , 𝑞2𝑛}. We call 𝜎( 𝑗) the index in {1, . . . , 2𝑛}

such that �̃� 𝑗 (1) = 𝑞𝜎 ( 𝑗) . The function 𝜎 is then a permutation of the set {1, . . . , 2𝑛} which depends
only on the homotopy class of 𝛾; therefore, we have a group homomorphism 𝜌 : 𝜋1 (𝑉, 𝑞) −→ 𝑆2𝑛
called the monodromy representation of the covering map 𝜙𝐴. This is clearly determined by the images
𝜎𝑖 = 𝜌([𝛾𝑖]) of the generators of 𝜋1 (𝑉, 𝑞), and the image of 𝜌 must be a transitive subgroup of 𝑆2𝑛, as
V is connected.

Note that these permutations must have a precise cycle structure depending on the branch points of the
map. Following the notation of [5], we say that a branch point c of a rational map f is of type (𝑚1, . . . , 𝑚𝑘 )
if, for 𝑓 −1(𝑐) = {𝑐1, . . . , 𝑐𝑘 }, the point 𝑐 𝑗 has ramification index 𝑚 𝑗 for every 𝑗 = 1, . . . , 𝑘 . The type
of a branch point corresponds to the cycle structure of the corresponding permutation, meaning that,
going back to 𝜙𝐴, if 𝑏𝑖 is of type (𝑚1, . . . , 𝑚𝑘 ), then 𝜎𝑖 is the product of k disjoint cycles 𝜏1, . . . , 𝜏𝑘
with 𝜏𝑗 of length 𝑚 𝑗 .

We just showed how to associate to a covering a certain tuple of permutations satisfying some specific
decomposition properties; the Riemann existence theorem tells us that we can do the opposite, that is,
to any tuple of permutations satisfying certain properties we can associate a covering. One can actually
say more: There exists a 1-1 correspondence between these two sets if one mods out by the following
equivalence relations on both sides.

Definition 2.1. Two rational maps 𝐹1, 𝐹2 : P1 (C) −→ P
1 (C) are called equivalent if there is an

automorphism 𝜑 of P1 (C) such that 𝐹1 = 𝐹2 ◦ 𝜑.

1We remark that a link between Belyi maps and the Pell–Abel equation was already noted in [24].
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Definition 2.2. If Σ = (𝜎1, 𝜎2, · · · , 𝜎ℎ) and Σ′ = (𝜎′
1, 𝜎

′
2, · · · , 𝜎

′
ℎ) are two h-tuples of permutations

of 𝑆2𝑛, we say that they are conjugated if there exists a 𝜏 ∈ 𝑆2𝑛 such that 𝜏−1𝜎𝑖𝜏 = 𝜎′
𝑖 for every

𝑖 = 1, . . . , ℎ. If this holds, we use the notation 𝜏−1Σ𝜏 = Σ′.

We can finally state this consequence of the Riemann existence theorem.

Theorem 2.3 ([21], Corollary 4.10). Fix a finite set B = {𝑏1, . . . , 𝑏ℎ} ⊆ P1(C). Then there is a 1-1
correspondence between⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

equivalence classes
of rational maps

𝐹 : P1 (C) −→ P1(C)
of degree 2𝑛

whose branch points lie in B

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
and

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
conjugacy classes (𝜎1, . . . , 𝜎ℎ) ∈ 𝑆ℎ2𝑛

such that 𝜎1 · · ·𝜎ℎ = id,
the subgroup generated by the 𝜎𝑖

is transitive and
∑

𝑖, 𝑗 (𝑚𝑖 𝑗 − 1) = 4𝑛 − 2,
where (𝑚𝑖1, . . . , 𝑚𝑖𝑘𝑖 ) is the cycle structure of 𝜎𝑖

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

Moreover, given the tuple of permutations (𝜎1, . . . , 𝜎ℎ), for each 𝑖 = 1, . . . , ℎ there are 𝑘𝑖 preimages
𝑏𝑖1, . . . , 𝑏𝑖𝑘𝑖 of 𝑏𝑖 for the corresponding cover 𝐹 : P1 (C) −→ P1(C), with 𝑒𝐹 (𝑏𝑖 𝑗 ) = 𝑚𝑖 𝑗 .

As seen before, given a Pell–Abel equation (1.2) with A of degree n and D of degree 2𝑑, we
get the map 𝜙𝐴 that is branched in {0, 1,∞} and in further 𝑘 points, where 0 ≤ 𝑘 ≤ 𝑑 − 1. Call
B := {0, 1,∞, 𝑏1, . . . , 𝑏𝑘 } and 𝑉 := P1 (C) \ B. We fix a 𝑞 ∈ 𝑉 , and we let 𝜌 : 𝜋1 (𝑉, 𝑞) −→ 𝑆2𝑛
be the associated monodromy representation (as explained above). We now let 𝛾0, 𝛾∞, 𝛾1 be closed
paths winding once around 0,∞, 1, respectively, and 𝛿𝑖 be a closed path winding once around 𝑏𝑖 for all
𝑖 = 1, . . . , 𝑘 . Then [𝛾0] [𝛾∞][𝛾1] [𝛿1] · · · [𝛿𝑘 ] = 1 and all these classes generate 𝜋1 (𝑉, 𝑞).

We let 𝜎0 = 𝜌(𝛾0), 𝜎∞ = 𝜌(𝛾∞), 𝜎1 = 𝜌(𝛾1) and 𝜏𝑖 = 𝜌(𝛿𝑖) for 𝑖 = 1, . . . , 𝑘 . Then we have that

1 - 𝜎0𝜎∞𝜎1𝜏1 · · · 𝜏𝑘 = id;
2 - the subgroup of 𝑆2𝑛 generated by these permutations is transitive;
3 - 𝜎0 and 𝜎∞ do not fix any index;
4 - 𝜎1 fixes exactly 2𝑑 indexes.

Moreover, concerning the decomposition of these permutations in disjoint cycles we have that

5 - all nontrivial cycles in 𝜎0 and 𝜎1 have even length;
6 - 𝜎∞ must be a 2𝑛-cycle;
7 - the sum over all cycles of 𝜎0, . . . , 𝜏𝑘 of their lengths minus 1 must give 4𝑛 − 2.

The permutations 𝜎0, . . . , 𝜏𝑘 depend on the chosen labelling of the preimages of q, so a Pell–Abel
equation gives exactly one conjugacy class of (𝑘 + 3)-tuples and a B for some 𝑘 ∈ {0, . . . , 𝑑 − 1}.

On the other hand, fixing 𝑘 ∈ {0, . . . , 𝑑 − 1} and B, a conjugacy class of (𝑘 + 3)-tuples satisfying the
above conditions gives a cover P1 (C) → P1 (C) that is a polynomial branched exactly in B. Moreover,
the cycle structures of 𝜎0 and 𝜎1 make this polynomial satisfy a Pell–Abel equation.

We see an example.

Example 2.4. Let us consider the case in which the branching outside 0, 1,∞ is maximal, that is,
𝑘 = 𝑑 − 1. In this case, 𝜎1 is the product of 𝑛 − 𝑑 transpositions, 𝜎0 is the product of n transpositions
and each 𝜏𝑖 consists of a single transposition.

A possible choice given by the third author in [34] and leading to a Pell–Abel equation (1.2), is
𝜎∞ = (2𝑛, . . . , 1), 𝜎0 = (1, 2𝑛) (2, 2𝑛 − 1) · · · (𝑛, 𝑛 + 1), 𝜎1 = (1, 2𝑛 − 1) (2, 2𝑛 − 2) · · · (𝑛 − 𝑑, 𝑛 + 𝑑)
and 𝜏𝑖 = (𝑛 − 𝑖, 𝑛 + 𝑖), 𝑖 = 1, . . . , 𝑑 − 1. We will prove in the next sections that this example corresponds
to a primitive solution of a Pell–Abel equation.

3. Proof of Theorem 1.1

This section is devoted to proving Theorem 1.1. For the reader’s convenience, we recall the notations
and the statement of the theorem. Given a point 𝑠 = (𝑠1, . . . , 𝑠2𝑑) ∈ B2𝑑 , we denote by 𝐻𝑠 a nonsingular
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model of the hyperelliptic curve defined by 𝑦2 = 𝑡2𝑑 + · · · + 𝑠2𝑑 with two points at infinity that we call
∞+ and ∞−, and by J𝑠 its Jacobian variety. We denote by J → 𝑆 = B2𝑑 the abelian scheme of relative
dimension 𝑑 − 1 whose fibers are the J𝑠 and by 𝜎 : 𝑆 → J the section corresponding to the point
[∞+ − ∞−]. We recall moreover that 𝑆 is the universal covering of 𝑆(C).
Theorem. Let 𝛽 : 𝑆 → R2(𝑑−1) be the Betti map associated to the section 𝜎; then rk 𝛽 ≥ 2(𝑑 − 1) and,
equivalently, 𝛽 is submersive on a dense open subset of 𝑆. In particular, the set of 𝑠 ∈ 𝑆(C) such that
𝜎(𝑠) is torsion on J𝑠 is dense in 𝑆(C) with respect to the complex topology.
Proof. The rank of 𝛽 is trivially bounded from above by 2(𝑑 − 1), so it is enough to show that there
exists a point 𝑠 ∈ 𝑆 where the rank is ≥ 2(𝑑 − 1).

Recall that S has dimension 2𝑑. Suppose by contradiction that the maximal rank is 𝑟 < 2(𝑑 − 1);
then the nonempty fibers of 𝛽 are complex analytic varieties of dimension ≥ 2𝑑 − 𝑟/2 > 𝑑 + 1; see [11,
Propositions 2.1 and 2.2].

Now, by applying Example 2.4 and Theorem 2.3, we have that the set of Pellian polynomials of
degree 2𝑑 is not empty, and this gives the existence of a rational point, with denominator say n, in the
image of 𝛽. We call �̃� an irreducible component of the preimage of that point; we may assume it has
dimension > 𝑑 + 1. Moreover, we let V be its image in 𝑆(C); this must again have dimension > 𝑑 + 1
and we have that each point of 𝜎(𝑉) is a torsion point of order n in the respective fiber.

Then we have 𝑉 ⊆ P2𝑑 (C), where P2𝑑 is the Pellian locus defined in equation (1.3) as, by Proposi-
tion 1.2, points of V correspond to some Pellian polynomials with a solution of degree n.

The following Proposition 3.1 concludes the proof of Theorem 1.1 since it contradicts the lower
bound dim𝑉 > 𝑑 + 1. �

Proposition 3.1. The Pellian locus P2𝑑 consists of denumerably many algebraic subvarieties of B2𝑑 of
dimension at most 𝑑 + 1.
Proof. As the irreducible components of P2𝑑 correspond to rational values of the Betti map, we clearly
have that the number of components of P2𝑑 is countable. Moreover, they are components of projections
on B2𝑑 of intersections of torsion subgroup schemes of J with the image of the section 𝜎. Therefore,
they are algebraic subvarieties of B2𝑑 .

Fix now a component U of P2𝑑 of dimension > 𝑑 + 1 mapping to a rational point of denominator n.
Then every point of U corresponds to a Pellian polynomial with a solution of degree n. We let W be the
closure of

{(𝑎0, . . . , 𝑎2𝑛) ∈ A2𝑛+1
C

: 𝑎0𝑡
2𝑛 + 𝑎1𝑡

2𝑛−1 + · · · + 𝑎2𝑛 = 𝐴2 is a square
and 𝐴2 − 𝐷𝑠𝐵

2 = 1 for some 𝑠 ∈ 𝑈}

in

A2𝑛 := {(𝑎0, . . . , 𝑎2𝑛) ∈ A2𝑛+1
C

: 𝑎0 ≠ 0}.

Note that W is the closure of the projection on A2𝑛 of

{(𝑎0, . . . , 𝑎2𝑛,𝑏0, . . . , 𝑏2𝑛−2𝑑 , 𝑠) ∈ A2𝑛 × A2𝑛−2𝑑+1
C

×𝑈 :
𝑎0𝑡

2𝑛 + · · · + 𝑎2𝑛 = 𝐴2 and 𝑏0𝑡
2𝑛−2𝑑 + · · · + 𝑏2𝑛−2𝑑 = 𝐵2 are squares

and 𝐴2 − 𝐷𝑠𝐵
2 = 1}.

Such projection has finite fibers, therefore W has dimension > 𝑑 + 1.
Note that it is possible to compose any degree 2𝑛 complex polynomial f with a linear polynomial

and obtain a monic polynomial with no term of degree 2𝑛 − 1. Moreover, there are at most 2𝑛 possible
polynomials of this special form that can be obtained in this way from a given f. We let

C2𝑛 := {(𝑐2, . . . , 𝑐2𝑛) ∈ A2𝑛−1
C

} and L := {(𝑎, 𝑏) ∈ A2
C

: 𝑎 ≠ 0}
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and define the morphism 𝜑 : C2𝑛 × L → A2𝑛,

𝜑((𝑐2, . . . , 𝑐2𝑛), (𝑎, 𝑏)) = (𝑎0, . . . , 𝑎2𝑛) ⇐⇒
𝑎0𝑡

2𝑛 + · · · + 𝑎2𝑛 = (𝑎𝑡 + 𝑏)2𝑛 + 𝑐2 (𝑎𝑡 + 𝑏)2𝑛−2 + · · · + 𝑐2𝑛−1 (𝑎𝑡 + 𝑏) + 𝑐2𝑛.

By the above considerations, 𝜑 is surjective and the fibers are finite of cardinality at most 2𝑛.
If we let 𝜋 be the projection C2𝑛 ×L → C2𝑛 and 𝑍 = 𝜋(𝜑−1 (𝑊)), as the fibers of 𝜋 have dimension 2,

Z must have dimension > 𝑑 − 1.
Now, for 𝑐 = (𝑐2, . . . , 𝑐2𝑛) ∈ 𝑍 , the corresponding polynomial 𝑓𝑐 (𝑡) = 𝑡2𝑛 + 𝑐2𝑡

2𝑛−2 + · · · + 𝑐2𝑛 is a
square and we have 𝑓𝑐 (𝑡) −𝐷 (𝑡)𝐵(𝑡)2 = 1 for some polynomials 𝐷 (𝑡), 𝐵(𝑡) with D of degree 2𝑑. We let

�̃� = {(𝑐, 𝑐′2, . . . , 𝑐
′
2𝑛−1, 𝑟1, . . . , 𝑟2𝑛−1) ∈ 𝑍 × A2𝑛−2

C
× A2𝑛−1

C
: 𝑓 ′𝑐 = 2𝑛𝑡2𝑛−1 + 𝑐′2𝑡

2𝑛−3 + · · · + 𝑐′2𝑛−1

and 𝑓 ′𝑐 = 2𝑛(𝑡2𝑛−1 + 𝜎2(𝑟1, . . . , 𝑟2𝑛−1)𝑡2𝑛−3 + · · · + 𝜎2𝑛−1 (𝑟1, . . . , 𝑟2𝑛−1))},

where 𝜎𝑖 (𝑋1, . . . , 𝑋2𝑛−1) is the i-th elementary symmetric polynomial in 2𝑛 − 1 variables and 𝑓 ′
𝑐

is the
derivative of 𝑓𝑐 . In other words, given 𝑐 ∈ 𝑍 , 𝑐′2, . . . , 𝑐

′
2𝑛−1 are the coefficients of the derivative of the

polynomial 𝑓𝑐 (𝑡) and 𝑟1, . . . , 𝑟2𝑛−1 are the ramification points of the same polynomial (not necessarily
distinct). Clearly, �̃� must have dimension > 𝑑 − 1.

Finally, if we consider the morphism 𝜓 : �̃� → A2𝑛−1
C

defined by

(𝑐, 𝑐′2, . . . , 𝑐
′
2𝑛−1, 𝑟1, . . . , 𝑟2𝑛−1) ↦→ ( 𝑓𝑐 (𝑟1), . . . , 𝑓𝑐 (𝑟2𝑛−1)),

then 𝑓𝑐 (𝑟1), . . . , 𝑓𝑐 (𝑟2𝑛−1) are the (not necessarily distinct) branch points of 𝑓𝑐 . By the Riemann
existence theorem and the above considerations, the fibers of 𝜓 are finite and have cardinality at most 2𝑛,
and therefore 𝜓(�̃�) has dimension > 𝑑 − 1.

This gives a contradiction because the considerations of the previous section imply that the polynomial
𝑓𝑐 , since it fits in a Pell–Abel equation, may have not more than 𝑑 + 1 finite branch points, two of which
are 0 and 1. Therefore, not more than 𝑑 − 1 branch points are allowed to vary and 𝜓(�̃�) must have
dimension ≤ 𝑑 − 1, as wanted. �

4. Chebychev polynomials and powers of solutions of the Pell–Abel equation

This section is devoted to describing the group of solutions of a Pell–Abel equation. As seen in the
introduction, if a Pell–Abel equation 𝐴2 −𝐷𝐵2 = 1 has a nontrivial solution, then it has infinitely many
ones, obtained by taking powers 𝐴𝑚 +

√
𝐷𝐵𝑚 = (𝐴 +

√
𝐷𝐵)𝑚. Our goal for this section is to prove that

𝐴2
𝑚 = 𝑓𝑚(𝐴2), for some polynomial 𝑓𝑚 related to the m-th Chebychev polynomial.
We recall that Chebychev polynomials of the first kind are defined recursively as⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑇0 (𝑡) = 1,
𝑇1 (𝑡) = 𝑡,
𝑇𝑛+1 (𝑡) = 2𝑡𝑇𝑛 (𝑡) − 𝑇𝑛−1 (𝑡),

so 𝑇𝑛 is a polynomial of degree n, and, for every 𝑛 > 1, the two terms of highest degree of 𝑇𝑛 are 2𝑛−1𝑡𝑛

and −𝑛2𝑛−3𝑡𝑛−2. This polynomial satisfies many important properties; for example, for every 𝑛 ≥ 0, we
have that 𝑇𝑛 (𝑡 + 𝑡−1) = 𝑡𝑛 + 𝑡−𝑛. Explicitly, we have that

𝑇𝑛 (𝑡) :=
[𝑛/2]∑
ℎ=0

(
𝑛

2ℎ

)
𝑡𝑛−2ℎ (𝑡2 − 1)ℎ , (4.1)

where [·] denotes the floor function. For a survey on these topics, see [19].
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Suppose now that (𝐴, 𝐵) is a solution of the Pell equation 𝐴2 − 𝐷𝐵2 = 1. Then (𝐴𝑚, 𝐵𝑚) defined
by 𝐴𝑚 +

√
𝐷𝐵𝑚 = (𝐴 +

√
𝐷𝐵)𝑚 is another solution of the same Pell–Abel equation, and 𝐴𝑚 =∑[𝑚/2]

𝑗=0
(𝑚
2 𝑗
)
(𝐷𝐵2) 𝑗𝐴𝑚−2 𝑗 . Using that 𝐷𝐵2 = 𝐴2 − 1, we have

𝐴𝑚 =
[𝑚/2]∑
𝑗=0

(
𝑚

2 𝑗

)
(𝐴2 − 1) 𝑗𝐴𝑚−2 𝑗 = 𝑇𝑚 (𝐴). (4.2)

For the rest of the paper, we will denote by 𝜙 the square function 𝜙(𝑡) = 𝑡2 and by 𝜙𝑔 the composition
𝜙 ◦ 𝑔 = 𝑔2.

For our purposes, it will be useful to express 𝜙𝐴𝑚 as a function of 𝜙𝐴. By equation (4.2), one can see
that 𝜙𝐴𝑚 = 𝑓𝑚(𝜙𝐴), where

𝑓2𝑘 (𝑤) := ���
𝑘∑
𝑗=0

(
2𝑘
2 𝑗

)
(𝑤 − 1) 𝑗𝑤𝑘− 𝑗���

2

, (4.3)

and

𝑓2𝑘+1(𝑤) := 𝑤���
𝑘∑
𝑗=0

(
2𝑘 + 1

2 𝑗

)
(𝑤 − 1) 𝑗𝑤𝑘− 𝑗���

2

. (4.4)

For every 𝑚 ≥ 1 we call 𝑓𝑚 the m-th power polynomial. Notice that 𝑓𝑚 ◦ 𝜙 = 𝜙 ◦ 𝑇𝑚.
For our purposes we will also need a description of the branch locus of the 𝑓𝑚; this can be easily

done by looking at the branch locus of the Chebychev polynomials which is well-known in the literature.
We recall that, given a polynomial f, we say that a branch point b of f is of type (𝜇1, . . . , 𝜇𝑘 ) if the 𝜇𝑖
are the ramification indexes of the points in the preimage of b. This is also equal to the array of the
multiplicities of the roots of 𝑓 (𝑡) − 𝑏.
Proposition 4.1. The polynomials 𝑓𝑚 are branched only at 0, 1 and ∞. Moreover,
◦ if m is even, then 0 is of type (2, 2, . . . , 2) and 1 is of type (1, 1, 2, . . . , 2); furthermore, the two

unramified points above 1 are 0 and 1;
◦ if m is odd, then 0 is of type (1, 2, . . . , 2), and 0 is the only unramified point above 0; furthermore,

1 is of type (1, 2, . . . , 2), and 1 is the only unramified point above 1.
Proof. For 𝑚 = 2 we have that 𝑓𝑚(𝑡) = (2𝑡 − 1)2, and the proposition holds trivially. We will then
assume that 𝑚 ≥ 3.

The Chebychev polynomials are strictly related to Dickson polynomials 𝐷𝑚(𝑥, 𝑎) (for a definition of
these polynomials and their properties, see [5, Section 3]). Indeed, we have that 𝑇𝑚 (𝑡) = 1

2𝐷𝑚 (2𝑡, 1).
Using this relation and [5, Proposition 3.3, (b)] we have that, if 𝑚 ≥ 3, the finite branching of 𝑇𝑚
happens only in ±1. If m is odd, both ±1 are of type (1, 2, . . . , 2), while if m is even we have that 1 is of
type (1, 1, 2, . . . , 2) and −1 is of type (2, . . . , 2). Using that 𝜙 ◦𝑇𝑚 = 𝑓𝑚 ◦ 𝜙, the finite branch points of
𝑓𝑚 are exactly the ones of 𝜙 ◦ 𝑇𝑚,that is, 0 and 1. Moreover, since 0 is not a branch point for 𝑇𝑚, then
the ramification points of 𝑓𝑚 ◦ 𝜙 have ramification index 2.

Assume first that m is even. By equation (4.3), since 𝑓𝑚 is a square, then 0 is a branch point for 𝑓𝑚.
As 0 is not contained 𝑓 −1

𝑚 (0), then it is of type (2, 2, . . . , 2). Let us now consider the branch point 1;
notice that {0, 1} ⊆ 𝑓 −1

𝑚 (1). Since 𝜙 is ramified in 0, we have that 𝑓𝑚 is unramified in 0. Using that
𝑓𝑚 ◦ (1 − 𝑡) = 𝑓𝑚, this implies that 𝑓𝑚 is unramified also in 1. By comparing the other ramification
indexes, it follows that 1 is of type (1, 1, 2, . . . , 2) as wanted.

Assume now m odd. By equation (4.4), we have 𝑓𝑚 is unramified in 0, and all the other points in the
preimage of 0 have ramification index 2, so 0 is of type (1, 2, . . . , 2). Using the relation

(1 − 𝑡) ◦ 𝑓𝑚 ◦ (1 − 𝑡) = 𝑓𝑚, (4.5)
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we have that the type of 0 and the type of 1 are the same, and 1 is the unramified point over 1, concluding
the proof. �

5. Monodromy groups and polynomial decompositions

The problem of finding (functional) decompositions of polynomials is very classical and was studied
first by Ritt in [26] and then by several authors (see, for instance, [14]). In this section, we recall some
basic facts that will be used in the paper.

Let f be a nonconstant polynomial in C[𝑡], let u be transcendental over C and L be the splitting field
of 𝑓 (𝑡) −𝑢 over C(𝑢). The monodromy group Mon( 𝑓 ) of f is the Galois group of L over C(𝑢), viewed as
a group of permutations of the roots of 𝑓 (𝑡) −𝑢. By Gauss’ lemma, it follows that 𝑓 (𝑡) −𝑢 is irreducible
over C(𝑢), so Mon( 𝑓 ) is a transitive permutation group. If x is a root of 𝑓 (𝑡) −𝑢 in L, then 𝑢 = 𝑓 (𝑥) and
Mon( 𝑓 ) = Gal(𝐿/C( 𝑓 (𝑥))). We denote moreover by H the stabilizer of x, that is, 𝐻 = Gal(𝐿/C(𝑥)).
Note that, by Theorem 2.3, the polynomial f of degree n seen as a map P1(C) → P1 (C) corresponds
to a conjugacy class of h-tuples of permutations in 𝑆𝑛, where h is the cardinality of the branch locus
of f. Then, once we fix a labelling of the roots of 𝑓 (𝑡) − 𝑢 (which corresponds to fixing a representative
(𝜎1, . . . , 𝜎ℎ) in the conjugacy class), the monodromy group of f is isomorphic to the subgroup of 𝑆𝑛
generated by 𝜎1, . . . , 𝜎ℎ . Applying Lüroth’s theorem [28, Theorem 2] and [28, Theorem 4], we have
the following proposition.

Proposition 5.1. Given a polynomial 𝑓 ∈ C[𝑥], there is a correspondence between polynomial de-
compositions of f and subfields of C(𝑥) containing C( 𝑓 (𝑥)). Moreover, if C( 𝑓 (𝑥)) ⊆ 𝐾 ⊆ C(𝑥), then
𝑓 = 𝑔 ◦ ℎ with 𝑔, ℎ polynomials and deg ℎ = [C(𝑥) : 𝐾].

Using the Galois correspondence, this shows that the study of the polynomial decompositions of f
reduces to the study of subgroups of the monodromy group of f containing H.

We give the following definition.

Definition 5.2. We say that two polynomials 𝑓 , 𝑔 ∈ C[𝑡] are linearly equivalent if there exists two linear
polynomials ℓ1, ℓ2 ∈ C[𝑡] such that 𝑓 = ℓ1 ◦ 𝑔 ◦ ℓ2.

Notice that, if 𝑓 = 𝑔 ◦ ℎ, we can always change the decomposition up to composing with linear
polynomials, so it makes sense to study the polynomial decompositions up to linear equivalence.
Moreover, notice that two linearly equivalent polynomials have the same monodromy group.

We are now interested in computing the monodromy group of the polynomials 𝑓𝑚 defined in the
previous section.

Proposition 5.3. For every 𝑚 ≥ 2, the monodromy group of 𝑓𝑚 is exactly 𝐷2𝑚, where 𝐷2𝑚 denotes the
dihedral group of order 2𝑚.

Proof. By Proposition 4.1, the polynomials 𝑓𝑚 are branched only in 0 and 1, both of type (1, 2 . . . , 2)
if m is odd or of type (2, . . . , 2) and (1, 1, 2 . . . , 2), respectively, if m is even. Applying [5, Theorem
3.4], this implies that 𝑓𝑚 is linearly equivalent to the Dickson polynomial 𝐷𝑚 (𝑥, 𝑎) with 𝑎 ≠ 0. By [5,
Theorem 3.6], the monodromy group of 𝐷𝑚 (𝑥, 𝑎) with 𝑎 ≠ 0 is the dihedral group 𝐷2𝑚, which gives
that Mon( 𝑓𝑚) = 𝐷2𝑚 as wanted. �

6. Characterization of primitivity

In this section, we want to give a criterion to detect the primitivity of a solution of the Pell–Abel equation
in terms of the associated conjugacy class of permutations. We start with a definition.

Definition 6.1. For positive integers 𝑛, ℓ with ℓ | 2𝑛, we call a partition F = {𝐹1, . . . , 𝐹ℓ } of {1, . . . , 2𝑛}
an ℓ-partition if F consists of ℓ subsets each of cardinality 2𝑛

ℓ . A subgroup 𝐺 < 𝑆2𝑛 is said to be
ℓ-imprimitive if there exists an ℓ-partition F = {𝐹1, . . . , 𝐹ℓ } which is preserved by the action of G, that
is, for every 𝜎 ∈ 𝐺 and every 𝑎 ∈ {1, . . . , ℓ}, there exists 𝑏 ∈ {1, . . . , ℓ} such that 𝜎(𝐹𝑎) = 𝐹𝑏 .
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It is well-known (see [26]) that, if 𝑓 = 𝑔 ◦ ℎ is a polynomial of degree r which is the composition of
two polynomials g and h, where deg ℎ = 𝑠 and deg 𝑔 = 𝑟 , then Mon( 𝑓 ) is r-imprimitive. Indeed, if q is
not a branch point for f, then the set of its preimages via f is partitioned in subsets whose elements map
via h to the same preimage of q via g.

We now give a criterion for determining whether a solution (𝐴, 𝐵) of a Pell–Abel equation is primitive
or an m-th power for some 𝑚 ≥ 2, and this behavior is completely determined by the monodromy group
𝐺𝐴 of 𝜙𝐴. Note that 𝐺𝐴 is always 2-imprimitive since 𝜙𝐴 is the square of a polynomial.

Theorem 6.2. Let (𝐴, 𝐵) be a solution of degree n of a Pell–Abel equation 𝐴2 − 𝐷𝐵2 = 1 with
deg𝐷 = 2𝑑, and let 𝐺𝐴 be the monodromy group of 𝜙𝐴. Then, for every integer 𝑚 | 𝑛 with 𝑛

𝑚 ≥ 𝑑,
(𝐴, 𝐵) is the m-th power of another solution if and only if 𝐺𝐴 is 2𝑚-imprimitive.

We will prove the above theorem in the next section. Before this, we show how Corollary 1.5 can be
deduced from Theorem 6.2.

Proof of Corollary 1.5. We prove that a solution (𝐴, 𝐵) associated to the conjugacy class of the tuple
(𝜎0, 𝜎∞, 𝜎1, 𝜏1, . . . , 𝜏𝑑−1) given in Example 2.4 is primitive for every 𝑛 ≥ 𝑑 ≥ 2.

We recall that 𝜎∞ = (2𝑛, . . . , 1), 𝜎0 = (1, 2𝑛) (2, 2𝑛 − 1) · · · (𝑛, 𝑛 + 1), 𝜎1 = (1, 2𝑛 − 1)
(2, 2𝑛 − 2) · · · (𝑛 − 𝑑, 𝑛 + 𝑑) and 𝜏𝑖 = (𝑛 − 𝑖, 𝑛 + 𝑖), for 𝑖 = 1, . . . , 𝑑 − 1.

Suppose by contradiction that (𝐴, 𝐵) is the m-th power of another solution (𝐴′, 𝐵′) for some 𝑚 | 𝑛,
1 < 𝑚 < 𝑛. By Theorem 6.2, 𝐺𝐴 has to preserve a 2𝑚-partition of {1, . . . , 2𝑛}. We see that the only
2𝑚-partition preserved by 𝜎∞ is F2𝑚 := {𝐹1, . . . , 𝐹2𝑚}, where for every 1 ≤ ℎ ≤ 2𝑚, we set

𝐹ℎ = {𝑎 ∈ {1, . . . , 2𝑛} : 𝑎 ≡ ℎ mod 2𝑚}.

On the other hand, 𝜏1 = (𝑛 − 1, 𝑛 + 1) and 𝑛 − 1, 𝑛 + 1 are not in the same congruence class modulo
2𝑚 if 𝑚 ≥ 2, so F2𝑚 is not preserved by 𝐺𝐴. This implies that 𝐺𝐴 does not preserve any 2𝑚-partition,
hence proving the theorem. �

7. Proof of Theorem 6.2

In view of what we explained in the previous section, one direction is quite easy. Indeed, let (𝐴, 𝐵) be
a solution of a Pell–Abel equation that is the m-th power of another solution (𝐴′, 𝐵′). In Section 4, we
showed that 𝜙𝐴 = 𝑓𝑚(𝜙𝐴′ ) = 𝑓𝑚 ◦ 𝜙 ◦ 𝐴′, where 𝜙(𝑡) = 𝑡2. As 𝑓𝑚 is a polynomial of degree m, it follows
immediately that 𝐺𝐴 is 2𝑚-imprimitive.

The proof of the converse is much more involved.
Let us consider a solution (𝐴, 𝐵) with A of degree n and the associated almost-Belyi map 𝜙𝐴. By

Theorem 2.3, the map 𝜙𝐴 corresponds to the conjugacy class of a (𝑘 + 3)-tuple of permutations in 𝑆2𝑛
given by Σ𝐴 := (𝜎0, 𝜎∞, 𝜎1, 𝜏1, . . . , 𝜏𝑘 ) with 𝑘 ≤ 𝑑 − 1, where we recall that 𝜎∞ is a 2𝑛-cycle, 𝜎0 is
the product of disjoint cycles of even length, 𝜎1 fixes exactly 2𝑑 indexes and is the product of disjoint
cycles of even length; see properties 1 to 7 after Theorem 2.3. We call 𝑏1, . . . , 𝑏𝑘 the further k branch
points different from 0, 1,∞.

Conjugating by a suitable permutation, we can and will always assume that 𝜎∞ = (2𝑛, 2𝑛−1, . . . , 1).
We recall that the sum over all cycles of 𝜎0, . . . , 𝜏𝑘 of their lengths minus 1 must give 4𝑛−2. Looking

at the cycle structure of 𝜎0, 𝜎∞ and 𝜎1 we have that 𝜎1 fixes 2𝑑 indexes and
∑

𝑖, 𝑗 (𝑚𝑖 𝑗 − 1) ≤ 𝑑 − 1,
where (𝑚𝑖1, . . . , 𝑚𝑖ℎ𝑖 ) is the cycle structure of 𝜏𝑖 . Therefore, there are at least two indexes which are
fixed by 𝜎1 and, at the same time, by every 𝜏𝑖 . Without loss of generality, we are going to assume that
one of them is 2𝑛. Moreover, each 𝜏𝑖 must fix at least 2𝑛 − 2(𝑑 − 1) indexes.

The monodromy group 𝐺𝐴 of 𝜙𝐴 is the subgroup of 𝑆2𝑛 generated by 𝜎0, 𝜎∞, 𝜎1, 𝜏1, . . . , 𝜏𝑘 ; by
assumption, 𝐺𝐴 preserves a 2𝑚-partition of {1, . . . , 2𝑛}. As mentioned before, the only 2𝑚-partition
preserved by 𝜎∞ is F2𝑚 = {𝐹1, . . . , 𝐹2𝑚}, where, for every ℎ = 1, . . . , 2𝑚, we defined 𝐹ℎ = { 𝑗 ∈
{1, . . . , 2𝑛} : 𝑗 ≡ ℎ mod 2𝑚}; we can then assume that 𝐺𝐴 preserves this specific partition.
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For ℎ = 1, . . . , 𝑚 we let 𝐸ℎ = { 𝑗 ∈ {1, . . . , 2𝑛} : 𝑗 ≡ ℎ mod 𝑚}. Then E𝑚 = {𝐸1, . . . , 𝐸𝑚} gives
another partition of {1, . . . , 2𝑛} and we have that 𝐸ℎ = 𝐹ℎ ∪ 𝐹𝑚+ℎ . We start by proving the following
lemma.

Lemma 7.1. Suppose𝐺𝐴 preserves the 2𝑚-partition F2𝑚, then𝐺𝐴 preserves the m-partition E𝑚. More
precisely, the action of 𝜎0, 𝜎∞, 𝜎1, 𝜏1, . . . , 𝜏𝑘 on F2𝑚 and E𝑚 is the following:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜎∞(𝐹1) = 𝐹2𝑚 and 𝜎∞(𝐹𝑖) = 𝐹𝑖−1 ∀𝑖 = 2, . . . , 2𝑚;
𝜎1(𝐹2𝑚) = 𝐹2𝑚 and 𝜎1(𝐹𝑖) = 𝐹2𝑚−𝑖 ∀𝑖 = 1, . . . , 2𝑚 − 1;
𝜎0(𝐹𝑖) = 𝐹2𝑚−𝑖+1 ∀𝑖 = 1, . . . , 2𝑚;
𝜏𝑗 (𝐹𝑖) = 𝐹𝑖 ∀𝑖 = 1, . . . , 2𝑚 and 𝑗 = 1, . . . , 𝑘 .

(7.1)

and: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜎∞(𝐸1) = 𝐸𝑚 and 𝜎∞(𝐸𝑖) = 𝐸𝑖−1 ∀𝑖 = 2, . . . , 𝑚;
𝜎1(𝐸𝑚) = 𝐸𝑚 and 𝜎1(𝐸𝑖) = 𝐸𝑚−𝑖 ∀𝑖 = 1, . . . , 𝑚 − 1;
𝜎0(𝐸𝑖) = 𝐸𝑚−𝑖+1 ∀𝑖 = 1, . . . , 𝑚;
𝜏𝑗 (𝐸𝑖) = 𝐸𝑖 ∀𝑖 = 1, . . . , 𝑚 and 𝑗 = 1, . . . , 𝑘 .

In particular, by equation (7.1), Fix(𝜎1) := {𝑎 ∈ {1, . . . , 2𝑛} | 𝜎1(𝑎) = 𝑎} ⊆ 𝐸𝑚.

Proof. By construction 𝜎1(2𝑛) = 2𝑛, thus we have 𝜎1(𝐹2𝑚) = 𝐹2𝑚. Moreover, we have that |𝐹ℎ | =
𝑛
𝑚 ≥ 𝑑 for all h, and for all i at most 2𝑑 − 2 indexes are not fixed by 𝜏𝑖 . This implies that 𝜏𝑖 (𝐹ℎ) = 𝐹ℎ
for every 𝑖 = 1, . . . , 𝑘 and ℎ = 1, . . . , 2𝑚.

In what follows the indexes of the 𝐹ℎ are considered modulo 2𝑚. Using 𝜎0𝜎∞𝜎1
∏𝑘

𝑖=1 𝜏𝑖 = id, we
deduce that 𝜎0𝜎∞𝜎1(𝐹ℎ) = 𝐹ℎ for every ℎ = 1, . . . , 2𝑚. As we know that 𝜎∞(𝐹ℎ) = 𝐹ℎ−1, this gives
that {

𝜎0(𝐹𝑖1) = 𝐹𝑖2 ⇒ 𝜎1(𝐹𝑖2−1) = 𝐹𝑖1 ;
𝜎1(𝐹𝑗1 ) = 𝐹𝑗2 ⇒ 𝜎0(𝐹𝑗2 ) = 𝐹𝑗1+1.

(7.2)

Moreover, we claim that, if 𝜎1(𝐹𝑘1 ) = 𝐹𝑘2 for some indexes 𝑘1 and 𝑘2, we must have that 𝜎1(𝐹𝑘2 ) = 𝐹𝑘1 .
Indeed, suppose by contradiction that this is not the case; since the nontrivial cycles appearing in 𝜎1
have even length, there exist pairwise distinct 𝑘1, 𝑘2, 𝑘3, 𝑘4 ∈ {1, . . . , 2𝑚} such that 𝜎1(𝐹𝑘1 ) = 𝐹𝑘2 ,
𝜎1(𝐹𝑘2 ) = 𝐹𝑘3 and 𝜎1(𝐹𝑘3 ) = 𝐹𝑘4 . Now, each of the 𝑛/𝑚 elements of 𝐹𝑘1 gives a contribution of at least
3 to the branching above 1, where we recall that we count the branching of 𝜙𝐴 above a point p as the
sum of 𝑒 − 1 over the ramification indices e of the preimages of p.

Using moreover that 𝜎1 fixes 2𝑑 points, we have that the branching above 1 must be at least
3 𝑛
𝑚 + (𝑛 − 2 𝑛

𝑚 − 𝑑) ≥ 𝑛 since 𝑛
𝑚 ≥ 𝑑, and this is impossible as the branching above 1 can be at most

𝑛 − 1 (recall properties 1–7 after Theorem 2.3).
Therefore, we can rewrite equation (7.2) as{

𝜎0(𝐹𝑖1) = 𝐹𝑖2 ⇒ 𝜎1(𝐹𝑖1) = 𝐹𝑖2−1;
𝜎1(𝐹𝑗1 ) = 𝐹𝑗2 ⇒ 𝜎0(𝐹𝑗2 ) = 𝐹𝑗1+1.

(7.3)

Now, since 𝜎1(𝐹2𝑚) = 𝐹2𝑚, using equation (7.3) we have that

𝜎1(𝐹2𝑚) = 𝐹2𝑚 and 𝜎1(𝐹𝑖) = 𝐹2𝑚−𝑖 ∀𝑖 = 1, . . . , 2𝑚 − 1,

and

𝜎0(𝐹𝑖) = 𝐹2𝑚−𝑖+1 ∀𝑖 = 1, . . . , 2𝑚.
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Now, for every ℎ = 1, . . . , 𝑚, the set 𝐸ℎ is equal to 𝐹ℎ ∪𝐹𝑚+ℎ . Using the previous relations, we have that
𝜎1(𝐸ℎ) = 𝐹2𝑚−ℎ ∪ 𝐹𝑚−ℎ = 𝐸𝑚−ℎ; 𝜎0(𝐸ℎ) = 𝐹2𝑚−ℎ+1 ∪ 𝐹𝑚−ℎ+1 = 𝐸𝑚−ℎ+1, 𝜏𝑖 stabilizes {𝐸1, . . . , 𝐸𝑚}
for every 𝑖 = 1, . . . , 𝑑 − 1 and 𝜎∞(𝐸ℎ) = 𝐹ℎ−1 ∪ 𝐹𝑚+ℎ−1 = 𝐸ℎ−1, which concludes the proof. �

For 𝐺 < 𝑆2𝑛 and 𝐶1, . . . , 𝐶ℓ ⊆ {1, . . . , 2𝑛}, we define

Stab𝐺 (𝐶1, . . . , 𝐶ℓ) :=
ℓ⋂
𝑖=1

Stab𝐺 (𝐶𝑖),

where, for every 𝑖 = 1, . . . , ℓ,

Stab𝐺 (𝐶𝑖) = {𝜎 ∈ 𝐺 : 𝜎(𝐶𝑖) = 𝐶𝑖}.

First, we prove this preliminary lemma.

Lemma 7.2. Let us assume that𝐺𝐴 preserves F2𝑚, and set 𝑆 := Stab𝐺𝐴 ({2𝑛}). Then there exist 𝐻1, 𝐻2
subgroups of 𝐺𝐴 satisfying 𝑆 ⊆ 𝐻1 < 𝐻2 < 𝐺𝐴 with [𝐺𝐴 : 𝐻2] = 𝑚 and [𝐻2 : 𝐻1] = 2. Moreover,
if 𝑚 > 2, then there exists a normal subgroup K of 𝐺𝐴 containing S and contained in 𝐻2 such that
𝐺𝐴/𝐾 � 𝐷2𝑚.

Proof. As by assumption 𝐺𝐴 preserves F2𝑚, by Lemma 7.1 it preserves also E𝑚, hence it induces an
action on {𝐹1, . . . , 𝐹2𝑚} and on {𝐸1, . . . , 𝐸𝑚}.

Let us define 𝐻1 := Stab𝐺𝐴 (𝐹2𝑚) and 𝐻2 := Stab𝐺𝐴 (𝐸𝑚). As 2𝑛 ∈ 𝐹2𝑚 ⊆ 𝐸𝑚, by Lemma 7.1 it
follows that 𝑆 ⊆ 𝐻1 ⊆ 𝐻2.

The group 𝐺𝐴 acts transitively on {1, . . . , 2𝑛}; therefore, the action on {𝐹1, . . . , 𝐹2𝑚} and on
{𝐸1, . . . , 𝐸𝑚} is transitive as well, so the orbits of 𝐹𝑖 and 𝐸 𝑗 have cardinality 2𝑚 and m, respectively.
This implies that |𝐺𝐴 |/|𝐻2 | = |𝐺𝐴 · 𝐸𝑚 | = 𝑚 and |𝐺𝐴 |/|𝐻1 | = |𝐺𝐴 · 𝐹2𝑚 | = 2𝑚, where 𝐺𝐴 ·𝐶 denotes
the orbit of C with respect to the action of 𝐺𝐴. This proves that [𝐺𝐴 : 𝐻2] = 𝑚 and [𝐻2 : 𝐻1] = 2 as
wanted.

We now prove the second part of the statement.
For 𝑚 > 2 let us define 𝐾 := Stab𝐺𝐴 (𝐸1, . . . , 𝐸𝑚). Note that 𝐾 ⊆ 𝐻2 and, if 𝑚 > 2, then 𝐾 ≠ 𝐻2

(as 𝜎1 ∈ 𝐻2 and 𝜎1 ∉ 𝐾). To conclude the proof, we have to show that K is a normal subgroup of 𝐺𝐴

and 𝐺𝐴/𝐾 � 𝐷2𝑚.
First, let us prove that 𝐾 �𝐺𝐴. Take ℎ ∈ 𝐾 and 𝑔 ∈ 𝐺𝐴, then, if 𝑔(𝐸𝑖) = 𝐸 𝑗𝑖 for some 𝑗𝑖 , we have that

𝑔−1ℎ𝑔(𝐸𝑖) = 𝑔−1ℎ(𝐸 𝑗𝑖 ) = 𝑔−1(𝐸 𝑗𝑖 ) = 𝐸𝑖 for all 𝑖 = 1, . . . , 𝑚,

so 𝑔−1ℎ𝑔 ∈ 𝐾 as wanted.
Finally, we show that 𝐺𝐴/𝐾 � 𝐷2𝑚. As 𝐺𝐴 induces an action on {𝐸1, . . . , 𝐸𝑚}, we can define a

homomorphism 𝜑 : 𝐺𝐴 → 𝑆𝑚 given by 𝜑(𝛼) = 𝛽 where 𝛽 ∈ 𝑆𝑚 is defined by 𝛽(𝑖) = 𝑗 if 𝛼(𝐸𝑖) = 𝐸 𝑗 .
Since𝐾 = Stab𝐺𝐴 (𝐸1, . . . , 𝐸𝑚), then 𝜑 induces an injective homomorphism �̃� : 𝐺𝐴/𝐾 → 𝑆𝑚. We want
now to prove that �̃�(𝐺𝐴/𝐾) � 𝐷2𝑚. By Lemma 7.1, �̃�(𝜏𝑖) = id for every 𝑖 = 1, . . . , 𝑘 , so �̃�(𝐺𝐴/𝐾) is
generated by the images of 𝜎∞ and 𝜎1, which we denote by r and s, respectively. We have to prove that
𝑟𝑚 = id, 𝑠2 = id and 𝑠𝑟𝑠𝑟 = id. Notice that, if 𝜎∞ = (2𝑛, 2𝑛 − 1, . . . , 1), then 𝑟 = (𝑚, 𝑚 − 1, . . . , 1),
so 𝑟𝑚 = id. Moreover, by Lemma 7.1, s is a product of transpositions, so it has order 2 as wanted.
Let us finally prove that 𝑠𝑟𝑠𝑟 = id. By Lemma 7.1 we have that 𝜎1(𝐸𝑚) = 𝐸𝑚, 𝜎1(𝐸𝑖) = 𝐸𝑚−𝑖 for all
𝑖 = 1, . . . , 𝑚 − 1 and 𝜎∞(𝐸1) = 𝐸𝑚 and 𝜎∞(𝐸 𝑗 ) = 𝐸 𝑗−1 for all 𝑗 = 2, . . . , 𝑚. So, for every 𝑖 = 1, . . . , 𝑚,

𝑠𝑟𝑠𝑟 (𝐸𝑖) = 𝑟𝑠𝑟 (𝐸𝑚−𝑖) = 𝑠𝑟 (𝐸𝑚−𝑖−1) = 𝑟 (𝐸𝑖+1) = 𝐸𝑖 .

This shows that 𝐺𝐴/𝐾 � 𝐷2𝑚, concluding the proof. �

Using the previous lemma, we can finally prove the following result about the polynomial decompo-
sition of 𝜙𝐴, which concludes the proof of Theorem 6.2.
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Proposition 7.3. Suppose 𝐺𝐴 preserves F2𝑚 with 𝑚 ≥ 2 and 𝑛/𝑚 ≥ 𝑑. Then 𝜙𝐴 = 𝑓𝑚(𝜙𝐴′ ), where 𝐴′

is another solution of the same Pell–Abel equation.
Proof. By Lemma 7.2, there exists a chain of groups

Stab𝐺𝐴 ({2𝑛}) < 𝐻1 < 𝐻2 < 𝐺𝐴,

where [𝐺𝐴 : 𝐻2] = 𝑚 and [𝐻2 : 𝐻1] = 2, where we recall that 𝐻1 = Stab𝐺𝐴 (𝐹2𝑚) and 𝐻2 =
Stab𝐺𝐴 (𝐸𝑚). By Galois theory, this implies that there exists a tower of subfields of C(𝑡)

𝑇 := C(𝜙𝐴) ⊂ 𝐿2 ⊂ 𝐿1 ⊂ C(𝑡),

with [𝐿2 : C(𝜙𝐴)] = 𝑚 and [𝐿1 : 𝐿2] = 2. Together with Proposition 5.1, this implies that

𝜙𝐴 = ℎ2 ◦ ℎ1 ◦ 𝑧,

where ℎ1, ℎ2 and z are polynomials with deg ℎ1 = 2 and deg ℎ2 = 𝑚.
Let us first prove that ℎ2 is linearly equivalent to 𝑓𝑚. If 𝑚 = 2, this is trivial since polynomials of

degree 2 are linearly equivalent to each other, so let us assume that 𝑚 > 2. By Lemma 7.2, the subgroup
𝐾 = Stab𝐺𝐴 (𝐸1, . . . , 𝐸𝑚) is a normal subgroup of 𝐺𝐴 contained in 𝐻2 and such that 𝐺𝐴/𝐾 � 𝐷2𝑚.
Then K corresponds to a field 𝐹 ⊆ C(𝑡) containing 𝐿2 and such that 𝐹/𝑇 is a normal extension. We
want to show that 𝐹/𝑇 is the Galois closure of 𝐿2/𝑇 .

As the action of 𝐺𝐴 on {𝐸1, . . . , 𝐸𝑚} is transitive, the subgroups Stab𝐺𝐴 (𝐸1), . . . , Stab𝐺𝐴 (𝐸𝑚) are
exactly all the conjugates of Stab𝐺𝐴 (𝐸𝑚) = Gal(C(𝑡)/𝐿2) in𝐺𝐴. Therefore, the Galois closure of 𝐿2/𝑇
will be equal to the subfield of C(𝑡) corresponding to Stab𝐺𝐴 (𝐸1) ∩ . . . ∩ Stab𝐺𝐴 (𝐸𝑚) = 𝐾 that is F as
wanted.

As by construction Gal(𝐹/𝐾) = Mon(ℎ2) � 𝐷2𝑚, by Proposition 5.3 we have that the polynomial
ℎ2 is linearly equivalent to the Chebychev polynomial 𝑇𝑚, and so to 𝑓𝑚 as proved in Section 5. This
gives that there exist linear polynomials 𝛼1 and 𝛼2 such that

𝜙𝐴 = 𝛼1 ◦ 𝑓𝑚 ◦ 𝛼2 ◦ ℎ1 ◦ 𝑧 = 𝛼1 ◦ 𝑓𝑚 ◦ ℎ3 ◦ 𝑧,

where ℎ3 = 𝛼2 ◦ ℎ1 is a polynomial of degree 2.
We want to prove that 𝜙𝐴 = 𝑓𝑚 ◦ 𝜙 ◦ 𝐴′ where 𝐴′ fits in the same Pell–Abel equation of A.
For the rest of the proof, as we are dealing with polynomials, we only consider branching at finite

points.
By Section 4, 𝑓𝑚 has two branch points, namely 0 and 1. As 𝛼1 is a linear map, 𝛼1 ◦ 𝑓𝑚 will be

branched only at 𝜉0 = 𝛼1 (0) and 𝜉1 = 𝛼1(1) with the same ramification indexes. As the branch points
of 𝛼1 ◦ 𝑓𝑚 lie among the ones of 𝜙𝐴, this means that 𝜉0, 𝜉1 ∈ {0, 1, 𝑏1, . . . , 𝑏𝑘 }. We now consider two
cases and write 𝛼1(𝑡) = 𝑝𝑡 + 𝑞. We recall that in Proposition 4.1 we gave a characterization of the
ramification behavior of 𝑓𝑚, and we are going to use this for the rest of the proof.

If m is even, as 0 is the only point with no simple preimage via 𝜙𝐴, we necessarily have 𝜉0 = 0 and thus
𝑞 = 0. If 𝑚 > 2, we have that the branching above 𝜉1 is at least (𝑚 − 2)/2 · (𝑛/𝑚) ≥ (𝑚/2− 1)𝑑 > 𝑑 − 1
while above any of 𝑏1, . . . , 𝑏𝑘 is at most 𝑑 − 1. This forces 𝜉1 = 1 and 𝑝 = 1. If 𝑚 = 2, we have
𝛼1 ◦ 𝑓2 = 𝑝(2𝑡 − 1)2 = (2(√𝑝𝑡 + (1−√

𝑝)/2) − 1)2 = 𝑓2 ◦ (
√
𝑝𝑡 + (1−√

𝑝)/2). In any case, we have or
we may suppose that 𝛼1 = 𝑡.

Assume now m is odd; then the branching above 𝜉0 is at least (𝑚 − 1)/2 · (𝑛/𝑚) ≥ 𝑑 > 𝑑 − 1
and the same for 𝜉1. As before, above 𝑏1, . . . , 𝑏𝑘 the branching is at most 𝑑 − 1. This implies that
{𝜉0, 𝜉1} = {0, 1}. In particular, if 𝜉0 = 0 and 𝜉1 = 1, then 𝛼1 = 𝑡 while if 𝜉0 = 1 and 𝜉1 = 0 we have
𝛼1 = 1 − 𝑡. We can reduce to the first case by noticing that (1 − 𝑡) ◦ 𝑓𝑚 = 𝑓𝑚 ◦ (1 − 𝑡).

Finally, we have

𝜙𝐴 = 𝑓𝑚 ◦ ℎ3 ◦ 𝑧,

where ℎ3 is a polynomial of degree 2.
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We write 𝑤 = ℎ3 ◦ 𝑧 and let r be the unique finite branch point of ℎ3. We claim that 𝑟 ∈ {0, 1}.
Suppose not; the fact that 𝑓𝑚({0, 1}) ⊆ {0, 1} and that 𝜙𝐴 fits in a Pell–Abel equation implies that
𝑤−1 ({0, 1}) contains exactly 2𝑑 simple preimages, and thus the sum of the branching above 0 and 1
of w is at least 2(𝑛/𝑚) − 𝑑. On the other hand, the branching of w above r is at least 𝑛/𝑚 making the
whole branching to be at least 3(𝑛/𝑚) − 𝑑 ≥ 2(𝑛/𝑚) = deg𝑤. This contradicts the Riemann–Hurwitz
formula, and we have 𝑟 ∈ {0, 1}.

If m is odd, then we must have 𝑟 = 0 because 1, being the only simple preimage of 1 via 𝑓𝑚 must
have simple preimages via w.

If m is even and 𝑟 = 1, we observe that 𝑓𝑚 = 𝑓𝑚◦ (1− 𝑡). We then can simply replace ℎ3 by (1− 𝑡) ◦ℎ3,
and thus we may assume 𝑟 = 0.

In any case, we have ℎ3 = 𝑠𝑡2 = (
√
𝑠𝑡)2 and then, possibly composing with a suitable linear polynomial

on the right, we can assume that ℎ3 is exactly the square function 𝜙, so

𝜙𝐴 = 𝑓𝑚 ◦ 𝜙 ◦ 𝐴′.

We are left with proving that 𝐴′ is another solution of the same Pell–Abel equation, that is, that
𝜙𝐴′ − 1 = 𝐷𝐵′2 for some polynomial 𝐵′. Notice that, since A is a solution of the Pell–Abel equation,
𝜙−1
𝐴 (1) contains exactly 2𝑑 simple points {𝑟1, . . . , 𝑟2𝑑} (the zeros of D); as 1 (and 0 if m is even) is the

only point in 𝑓 −1
𝑚 (1) with ramification index 1 and 𝜙𝐴′ = 𝜙 ◦ 𝐴′ is a square, then {𝑟1, . . . 𝑟2𝑑} ⊂ 𝜙−1

𝐴′ (1).
This shows that (𝜙𝐴′ − 1)/𝐷 = 𝐵′2 for some polynomial 𝐵′ as wanted. �

Corollary 7.4. Let m be a positive integer. Let (𝐴, 𝐵) be a solution of degree n of the Pell–Abel equation
𝐴2 − 𝐷𝐵2 = 1, and, for 𝑖 = 1, . . . , 2𝑚, let 𝐹𝑖 = { 𝑗 ∈ {1, . . . , 2𝑛} | 𝑗 ≡ 𝑖 mod 2𝑚}, and, after
conjugating, assume that 𝜎∞ = (2𝑛, 2𝑛 − 1, . . . , 1) and that one of the points which are fixed by 𝜎1 and
by all the 𝜏𝑖 is 2𝑛. Then (𝐴, 𝐵) is the 𝑚𝑡ℎ-power of a solution (𝐴′, 𝐵′) of the same Pell–Abel equation
if and only if the permutations 𝜎∞, 𝜎0, 𝜎1, 𝜏1, . . . , 𝜏𝑘 associated to A satisfy the following conditions:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜎∞(𝐹1) = 𝐹2𝑚 and 𝜎∞(𝐹ℎ) = 𝐹ℎ−1 ∀ℎ = 2, . . . , 2𝑚;
𝜎1(𝐹2𝑚) = 𝐹2𝑚 and 𝜎1(𝐹ℎ) = 𝐹2𝑚−ℎ ∀ℎ = 1, . . . , 2𝑚 − 1;
𝜎0(𝐹𝑖) = 𝐹2𝑚−𝑖+1 ∀𝑖 = 1, . . . , 2𝑚;
𝜏𝑗 (𝐹𝑖) = 𝐹𝑖 ∀𝑖 = 1, . . . , 2𝑚 and 𝑗 = 1, . . . , 𝑘 .

(7.4)

Example 7.5. Let us see an example with 𝑛 = 6 and 𝑑 = 2, so the permutations are in 𝑆12. In this case,
we have that the solution of the Pell–Abel equation can be either primitive or a square of a solution of
degree 3 or the cube of a solution of degree 2.

Consider 𝜎∞ = (12, 11, . . . , 1) and 𝜎0 = (1, 12) (2, 11) (3, 10) (4, 9) (5, 8) (6, 7). As 𝜎0𝜎∞𝜎1𝜏1 = 1,
we have that 𝜎1𝜏1 = (1, 11) (2, 10) (3, 9) (4, 8) (5, 7). So the solution will depend on the choice of 𝜏1
among these transpositions. In particular, if we choose 𝜏1 = (1, 11) or 𝜏1 = (5, 7), the associated solution
is primitive. In fact, by equation (7.4), we have that the solution associated to these permutations is
neither a square nor a cube (otherwise, 1, 11 or 5, 7 would lie in the same congruence class modulo 4
in the case of a square or modulo 6 in the case of a cube). Moreover, if 𝜏1 = (2, 10) or 𝜏1 = (4, 8), the
solutions are squares. In fact, in this case it is easy to see that (𝜎∞, 𝜎0, 𝜎1, 𝜏1) satisfies equation (7.4) for
𝑚 = 2, while, if 𝜏1 = (3, 9), the solution is a cube. Note, however, that the two 4-tuples with 𝜏1 = (2, 10)
and 𝜏1 = (4, 8) are actually conjugated by 𝜎6

∞.

8. Counting the conjugacy classes of permutations

In this section, we want to show how to apply Theorem 2.3 and use combinatorial arguments to count
equivalence classes of Pellian polynomials with a solution of degree n.

As discussed in the introduction, the advantage of the combinatorial argument is that it allows to
compute the precise number instead of only an asymptotic formula, and this can be done algorithmically
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given n and d. On the other hand, the combinatorics becomes more difficult as soon as d grows due to the
number of different configurations that the permutations can have. For this reason, in this section we are
going to stick to the case 𝑑 = 2 and to maximal branching, that is when the map 𝜙𝐴 is branched over 0, 1,
∞ and over another point which we will denote by b. In this case, using the arguments of Section 2 and
the Riemann–Hurwitz formula, if we count the branching of 𝜙𝐴 as the sum of 𝑒−1 over the ramification
indices e, we have that, above 0 the branching is exactly n, above 1 is 𝑛−1, above ∞ it is 2𝑛−1 and above
b is 1. This implies that the cycle decomposition of 𝜎0, 𝜎∞, 𝜎1 and 𝜏1 =: 𝜏 is fixed, and we have that:

1 - 𝜎0 is the product of n disjoint transpositions;
2 - 𝜎∞ is a 2𝑛-cycle;
3 - 𝜎1 is the product of 𝑛 − 1 disjoint transpositions;
4 - 𝜏 is a transposition.

Moreover, we know that 𝜎0, 𝜎∞, 𝜎1 and 𝜏 satisfy 𝜎0𝜎∞𝜎1𝜏 =id.
As said before each conjugacy class of 4-tuples (𝜎0, 𝜎∞, 𝜎1, 𝜏) has at least one representative with

𝜎∞ = (2𝑛, 2𝑛 − 1, . . . , 1) since 𝜎∞ is a 2𝑛-cycle and one can relabel the element using a suitable
conjugation. Moreover, there are at least two indexes that are fixed by 𝜎1 and by 𝜏; without loss of
generality we will always assume that one of the two indexes is 2𝑛. We will call such a representative
special.

Now, since 𝜎1 is the product of 𝑛 − 1 disjoint transpositions and 𝜏 is a transposition, we have three
different cases:

◦ 𝜎1 and 𝜏 are disjoint permutations;
◦ 𝜎1𝜏 is the product of 𝑛 − 2 transpositions and a 3-cycle;
◦ 𝜎1𝜏 is the product of 𝑛 − 3 transpositions and a 4-cycle.

In what follows, we are going to study the special 4-tuples, analysing in particular how many special
4-tuples we have in each conjugacy class. As the conjugation preserves the cycle decomposition, we
have to analyse these three cases separately.

8.1. The disjoint case

Let Σ be a special 4-tuple, that is, 𝜎∞ = (2𝑛, 2𝑛− 1, . . . , 1) and 𝜎1 and 𝜏 both fix 2𝑛. Suppose moreover
that 𝜎1 and 𝜏 are disjoint permutations.

Since 2𝑛 is fixed by both 𝜎1 and 𝜏 and 𝜎0𝜎∞𝜎1𝜏 =id, then 2𝑛 is fixed by 𝜎0𝜎∞; moreover, as
𝜎0𝜎∞𝜎1𝜏 =id, we must have that 𝜎0(2𝑛) = 1. Since 𝜎0 is composed only by transpositions, we have
also that 𝜎0(1) = 2𝑛, hence 𝜎1𝜏(2𝑛 − 1) = 1. Now as 𝜎1𝜏 is composed only by transpositions,
we have that 𝜎1𝜏(1) = 2𝑛 − 1, so 𝜎0(2𝑛 − 1) = 2 and so on. Going on with this argument, we
have that 𝜎0 must have the form (1, 2𝑛) (2, 2𝑛 − 1) · · · (𝑛, 𝑛 + 1) and 𝜎0𝜎∞ fixes also n. In this case,
𝜎1𝜏 = (1, 2𝑛 − 1) (2, 2𝑛 − 2) · · · (𝑛 − 1, 𝑛 + 1) and we may choose as 𝜏 any of the 𝑛 − 1 transpositions
(1, 2𝑛 − 1), (2, 2𝑛 − 2), · · · , (𝑛 − 1, 𝑛 + 1).

Now, assume that Σ′ = (𝜎′
0, 𝜎∞, 𝜎

′
1, 𝜏

′) is another special 4-tuple lying in the same conjugacy class
of Σ, that is, Σ′ = 𝛾−1Σ𝛾 for some 𝛾 ∈ 𝑆2𝑛; then, since by assumption 𝜎∞ has to be fixed by the
conjugation, we have that 𝛾 will be a power of 𝜎∞. Furthermore, since we want 𝜎′

1 and 𝜏′ both to fix
2𝑛, then the conjugation has to permute 2𝑛 with n (which is the only other point fixed by 𝜎1 and 𝜏);
consequently, 𝛾 = 𝜎𝑛

∞. Notice finally that, given a special 4-tuple Σ, we have 𝜎−𝑛
∞ Σ𝜎𝑛

∞ = Σ if and only
if n is even and 𝜏 =

(
𝑛
2 , 2𝑛 −

𝑛
2
)
.

This implies that:

◦ if n is odd, then we have 1
2 (𝑛 − 1) conjugacy classes, because every conjugacy class contains two

special 4-tuples;
◦ if n is even, then we have 1

2𝑛 conjugacy classes because every conjugacy class contains exactly two
special 4-tuples, except for the conjugacy class of the 4-tuple with 𝜏 =

(
𝑛
2 , 2𝑛 −

𝑛
2
)

which contains
only one special 4-tuple.
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In general we have

# conjugacy classes =
⌊𝑛

2

⌋
. (8.1)

We point out that, in the disjoint case, Corollary 7.4 gives an easier way to detect whether the solution
(𝐴, 𝐵) is primitive by looking only at the corresponding 𝜏 of a special representative.
Proposition 8.1. Consider the 4-tuple Σ = (𝜎0, 𝜎∞, 𝜎1, 𝜏) with 𝜎∞ = (2𝑛, 2𝑛 − 1, . . . , 1) and 𝜎0 =
(1, 2𝑛) (2, 2𝑛 − 1) . . . (𝑛, 𝑛 + 1) associated to a solution (𝐴, 𝐵) of a Pell–Abel equation. Then (𝐴, 𝐵) is
the m-th power of another solution if and only if 𝜏 = (ℎ, 2𝑛 − ℎ) with 𝑚 | ℎ.

In particular, there are exactly 𝜑(𝑛)/2 equivalence classes corresponding to primitive solutions.
Proof. By Corollary 7.4, Σ corresponds to an m-th power if and only if equation (7.4) holds. The
conditions on 𝜎0, 𝜎∞ are always satisfied. The condition on 𝜏 is satisfied if and only if 𝜏 = (ℎ, 2𝑛 − ℎ)
with ℎ ≡ 2𝑛 − ℎ ≡ −ℎ mod 2𝑚, that is, 𝑚 | ℎ. Finally, if 𝑚 | ℎ, also 𝜎1 satisfies the conditions of
equation (7.4), proving the claim. �

8.2. The 3-cycle case

Let Σ = (𝜎0, 𝜎∞, 𝜎1, 𝜏) be a special 4-tuple, that is, with 𝜎∞ = (2𝑛, . . . , 1) and such that 𝜎1 and 𝜏 fix
both 2𝑛, and assume that 𝜎1𝜏 decomposes as a product of 𝑛 − 3 transpositions and a 3-cycle.

First, we are going to prove the following result that describes the possible shapes of 𝜎0 and 𝜎1𝜏 of
such a 4-tuple.
Proposition 8.2. Let Σ = (𝜎0, 𝜎∞, 𝜎1, 𝜏) be a special 4-tuple such that 𝜎1𝜏 contains a 3-cycle. Then
there exist ℎ, 𝑘 with 1 ≤ ℎ ≤ 𝑛 − 2, ℎ < 𝑘 < 2𝑛 − ℎ and ℎ ≡ 𝑘 mod 2 such that

𝜎0 =
ℎ∏
𝑖=1

(𝑖, 2𝑛 + 1 − 𝑖)
𝑘−ℎ

2∏
𝑗=1

(ℎ + 𝑗 , 𝑘 + 1 − 𝑗)
2𝑛−ℎ−𝑘

2∏
𝑡=1

(𝑘 + 𝑡, 2𝑛 − ℎ + 1 − 𝑡); (8.2)

𝜎1𝜏 =
ℎ−1∏
𝑖=1

(𝑖, 2𝑛 − 𝑖)
𝑘−ℎ

2 −1∏
𝑗=1

(ℎ + 𝑗 , 𝑘 − 𝑗)
2𝑛−ℎ−𝑘

2∏
𝑡=1

(𝑘 + 𝑡, 2𝑛 − ℎ − 𝑡) (2𝑛 − ℎ, ℎ, 𝑘).

In particular, 𝜎1𝜏 fixes 3 indexes: 2𝑛, 𝑘+ℎ2 and 2𝑛−ℎ+𝑘
2 . Moreover, there are three different Σ satisfying

equation (8.2) corresponding to different choices of 𝜏, that is, 𝜏 ∈ {(ℎ, 𝑘), (ℎ, 2𝑛 − ℎ), (𝑘, 2𝑛 − ℎ)}.
Proof. Let Σ = (𝜎0, 𝜎∞, 𝜎1, 𝜏) be a special 4-tuple and assume that 𝜎1𝜏 is a product of 𝑛 − 3 disjoint
transpositions and a disjoint 3-cycle. In this case, 𝜎1𝜏 fixes 3 indexes, and one of them is 2𝑛. Then, since
𝜎0𝜎∞𝜎1𝜏 = id, we must have that 𝜎0(2𝑛) = 1. As 𝜎0 is the product of n disjoint transpositions, we have
also that 𝜎0(1) = 2𝑛, hence 𝜎1𝜏(2𝑛 − 1) = 1. Now, we have two choices: Either 𝜎1𝜏(1) = 2𝑛 − 1 (so
(2𝑛 − 1, 1) is one of the disjoint transpositions in the decomposition of 𝜎1𝜏), or 𝜎1𝜏(1) = 𝑘 ≠ 2𝑛 − 1
(giving rise to the 3-cycle in the product). We can go on as in the disjoint case described in the previous
section until we reach the situation in which there exist 1 ≤ ℎ ≤ 𝑛 − 2 and ℎ + 1 ≤ 𝑘 ≤ 2𝑛 − ℎ − 1 such
that 𝜎0 contains the disjoint transpositions (1, 2𝑛), (2, 2𝑛 − 1) · · · (ℎ, 2𝑛 − ℎ + 1) and 𝜎1𝜏 contains the
disjoint transpositions (1, 2𝑛 − 1) . . . , (2𝑛 − ℎ + 1, ℎ − 1) and the 3-cycle (2𝑛 − ℎ, ℎ, 𝑘).

Notice that 𝑘 ≠ ℎ + 1, 2𝑛 − ℎ − 1, otherwise 𝜎0𝜎∞𝜎1𝜏 = id would imply that 𝜎0 fixes ℎ + 1 (or in the
second case 2𝑛− ℎ− 1), which is impossible because 𝜎0 has no fixed points. So, ℎ + 1 < 𝑘 < 2𝑛− ℎ− 1.
Now, if 𝜎1𝜏(ℎ) = 𝑘 , as 𝜎0𝜎∞𝜎1𝜏 = id, we have 𝜎0(𝑘) = ℎ + 1 and so 𝜎0(ℎ + 1) = 𝑘 . This means that
𝜎1𝜏(ℎ+1) = 𝑘 −1 and 𝜎1𝜏(𝑘 −1) = ℎ+1 and so on. This process ends when one reaches the conditions
𝜎0

(
𝑘+ℎ

2

)
= 𝑘+ℎ

2 + 1 and vice versa, 𝜎1𝜏
(
𝑘+ℎ

2 − 1
)
= 𝑘+ℎ

2 + 1 and vice versa and 𝑘+ℎ
2 is fixed by 𝜎1𝜏.

Notice that this gives the additional condition that ℎ ≡ 𝑘 mod 2.
On the other hand, if𝜎1𝜏 contains the 3-cycle (2𝑛−ℎ, ℎ, 𝑘), we also have that𝜎1𝜏(𝑘) = 2𝑛−ℎ, giving

other conditions to satisfy. In fact, 𝜎0𝜎∞𝜎1𝜏 = id implies 𝜎0(2𝑛 − ℎ) = 𝑘 + 1 and 𝜎0(𝑘 + 1) = 2𝑛 − ℎ.
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This means, as before, that 𝜎1𝜏(2𝑛 − ℎ − 1) = 𝑘 + 1 and vice versa, and so on. This process ends when
one reaches the conditions 𝜎0

(
2𝑛−ℎ+𝑘

2

)
= 2𝑛−ℎ+𝑘

2 + 1 and viceversa, 𝜎1𝜏
(

2𝑛−ℎ+𝑘
2 − 1

)
= 2𝑛−ℎ+𝑘

2 + 1 and
2𝑛−ℎ+𝑘

2 is fixed by 𝜎1𝜏, proving the first part of the assertion.
Finally, let us denote by

𝛼ℎ𝑘 := 𝜎1𝜏(2𝑛 − ℎ, ℎ, 𝑘)−1,

that is, the product of the 𝑛 − 2 disjoint transpositions that appear in the decomposition of 𝜎1𝜏.
Notice that, if 𝜎1𝜏 contains the 3-cycle (2𝑛−ℎ, ℎ, 𝑘), then we have three choices for 𝜎1 and 𝜏, namely

𝜎1 = 𝛼ℎ𝑘 (2𝑛 − ℎ, ℎ) and 𝜏 = (2𝑛 − ℎ, 𝑘) or 𝜎1 = 𝛼ℎ𝑘 (ℎ, 𝑘) and 𝜏 = (ℎ, 2𝑛 − ℎ) or 𝜎1 = 𝛼ℎ𝑘 (𝑘, 2𝑛 − ℎ)
and 𝜏 = (𝑘, ℎ), giving three different special 4-tuples as wanted. �

We now want to count how many special 4-tuples are contained in each conjugacy class. First of
all, notice that if we have two special 4-tuples Σ = (𝜎0, 𝜎∞, 𝜎1, 𝜏) and Σ′ = (𝜎′

0, 𝜎
′
∞, 𝜎

′
1, 𝜏

′) with
𝜎∞ = 𝜎′

∞ = (2𝑛, 2𝑛 − 1, . . . , 1) and such that Σ′ = 𝛾−1Σ𝛾 for some 𝛾 ∈ 𝑆2𝑛, then 𝛾 must be equal to a
power of 𝜎∞. We will consider this conjugation from a geometric point of view; namely, if we consider
the regular 2𝑛-gon with vertices labelled by 1, 2, . . . , 2𝑛, then conjugating by a permutation of the form
𝜎ℓ
∞ with ℓ ∈ {1, . . . , 2𝑛} corresponds to a rotation of angle 𝜋

𝑛 ℓ.
Let us denote by 𝑝 := 𝑘+ℎ

2 and 𝑞 := 2𝑛−ℎ+𝑘
2 the two points different from 2𝑛 fixed by 𝜎1𝜏. Then, if

we conjugate the set {2𝑛, 𝑞, 𝑝} by a power of 𝜎∞, it corresponds to a rotation of the triangle of vertices
{2𝑛, 𝑞, 𝑝}. As we want Σ′ to be special, then 𝜎′

1𝜏 has to fix 2𝑛, hence we are interested in the rotations
which send one of the vertices to 2𝑛. This means that we can conjugate only by 𝜎2𝑛−𝑝

∞ or by 𝜎2𝑛−𝑞
∞ . In

the first case, the set of fixed points {2𝑛, 𝑝, 𝑞} is sent to {2𝑛, 2𝑛 − 𝑝, 𝑞 − 𝑝}, while, in the second case,
it is sent to {2𝑛, 2𝑛 − (𝑞 − 𝑝), 2𝑛 − 𝑞}.

We have the following result:

Proposition 8.3. Let Σ be a special 4-tuple (𝜎∞, 𝜎0, 𝜎1, 𝜏) such that 𝜎1𝜏 contains the 3-cycle (2𝑛 −
ℎ, ℎ, 𝑘). Then the conjugacy class of Σ contains exactly three special 4-tuples.

Proof. Since the 4-tuple Σ = (𝜎∞, 𝜎0, 𝜎1, 𝜏) is special, we have that 𝜎∞ = (2𝑛, 2𝑛 − 1, . . . , 1) and 𝜎1𝜏
fixes 2𝑛; moreover, by assumption it contains the 3-cycle (2𝑛 − ℎ, ℎ, 𝑘). Then, as proved before, 𝜎0 and
𝜎1𝜏 will have the shape (8.2). As discussed before, if Σ′ ≠ Σ is a special 4-tuple conjugated to Σ, then

Σ′ = 𝛾−1Σ𝛾 with 𝛾 ∈
{
𝜎

2𝑛− 𝑘+ℎ
2

∞ , 𝜎
2𝑛− 2𝑛−ℎ+𝑘

2
∞

}
. To prove the assertion, we have to show that no 4-tuple

is fixed by such a conjugation. To do this, we consider two cases.
Assume first that 3 | 𝑛 and that the 3-cycle contained in 𝜎1𝜏 is

(
𝑛
3 ,

5
3𝑛, 𝑛

)
, that is, (ℎ, 𝑘) = ( 𝑛3 , 𝑛). By

the description above, 𝜏 ∈
{(

𝑛
3 , 𝑛

)
,
(
𝑛, 5

3𝑛
)
,
(
𝑛
3 ,

5
3𝑛

)}
and 𝜎1𝜏 fixes

{ 2𝑛
3 ,

4𝑛
3 , 2𝑛

}
(which are the vertices

of an equilateral triangle). Let us assume without loss of generality that 𝜏 =
(
𝑛
3 , 𝑛

)
. If we conjugate

Σ by 𝛾 ∈
{
𝜎

2𝑛
3

∞ , 𝜎
4𝑛
3

∞

}
, then 𝛾−1𝜎0𝛾 = 𝜎0 and 𝛾−1 (𝜎1𝜏)𝛾 = 𝜎1𝜏; hence, Σ will be conjugated to

Σ′ =
(
𝜎∞, 𝜎0, 𝜎

′
1,

(
5
3𝑛, 𝑛

))
and Σ′′ =

(
𝜎∞, 𝜎0, 𝜎

′′
1 ,

(
𝑛
3 ,

5
3𝑛

))
.

Assume now (ℎ, 𝑘) ≠ ( 𝑛3 , 𝑛). As the conjugation preserves the disjoint cycle structure, 𝜎1𝜏 will
contain a 3-cycle and by construction one of the indexes fixed by 𝜎1𝜏 is 2𝑛, so the conjugated 4-tuples
will have the shape (8.2). We have only to compute the images of the 3-cycles. A direct computation
shows that, if we conjugate by 𝜎

2𝑛− 𝑘+ℎ
2

∞ we have Σ′ with (ℎ′, 𝑘 ′) =
(
𝑘−ℎ

2 , 2𝑛 − 3ℎ+𝑘
2

)
while if we

conjugate by 𝜎2𝑛− 2𝑛−ℎ−𝑘
2

∞ we have Σ′ with (ℎ′, 𝑘 ′) =
(
𝑛 − ℎ+𝑘

2 , 𝑛 + 3ℎ−𝑘
2

)
, as wanted. �

Using these two propositions we can count the different conjugacy classes of 4-tuples such that 𝜎1𝜏
contains a 3-cycle.
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Let us consider a special 4-tupleΣ = (𝜎0, 𝜎∞, 𝜎1, 𝜏1) such that𝜎1𝜏1 contains the 3-cycle (2𝑛−ℎ, ℎ, 𝑘).
By equation (8.2), we have ℎ ≡ 𝑘 mod 2; moreover, every choice of the couple (ℎ, 𝑘) gives rise to three
different choices of the couple (𝜎1, 𝜏), and by the previous proposition, each conjugacy class contains
exactly three special 4-tuples. Consequently, the number of conjugacy classes is equal to the number of
different choices of the couple (ℎ, 𝑘), that is, to the number of couples {ℎ, 𝑘} such that 1 ≤ ℎ ≤ 𝑛 − 2,
ℎ + 1 < 𝑘 < 2𝑛 − ℎ − 1 and ℎ ≡ 𝑘 (mod 2), hence

# conjugacy classes =
𝑛−2∑
ℎ=1

2𝑛 − 2(ℎ + 1)
2

=
𝑛−2∑
ℎ=1

(𝑛 − ℎ − 1) =
𝑛−2∑
𝑗=1

𝑗 =
(𝑛 − 1) (𝑛 − 2)

2
.

8.3. The 4-cycle case

Let Σ = (𝜎0, 𝜎∞, 𝜎1, 𝜏) be a special 4-tuple, that is, with 𝜎∞ = (2𝑛, . . . , 1) and such that 𝜎1 and 𝜏 fix
both 2𝑛, and assume that 𝜎1𝜏 is a product of 𝑛 − 4 disjoint transpositions and a disjoint 4-cycle.

As in the previous section, our first result describes the shape of a special 4-tuple of this kind.

Proposition 8.4. Let Σ = (𝜎0, 𝜎∞, 𝜎1, 𝜏) be a special 4-tuple such that 𝜎1𝜏 contains a 4-cycle. Then
there exist 1 ≤ ℎ < 𝑘1 < 𝑘2 < 2𝑛 − ℎ with ℎ ≡ 𝑘1 ≡ 𝑘2 mod 2 such that

𝜎0 =
ℎ∏
𝑖=1

(𝑖, 2𝑛 + 1 − 𝑖)

𝑘1−ℎ
2∏
𝑗=1

(ℎ + 𝑗 , 𝑘1 + 1 − 𝑗)

𝑘2−𝑘1
2∏

𝑡=1
(𝑘1 + 𝑡, 𝑘2 + 1 − 𝑡)

2𝑛−ℎ−𝑘2
2∏

𝑣=1
(𝑘2 + 𝑣, 2𝑛 − ℎ + 1 − 𝑣); (8.3)

𝜎1𝜏 =
ℎ−1∏
𝑖=1

(𝑖, 2𝑛 − 𝑖)

𝑘1−ℎ
2 −1∏
𝑗=1

(ℎ + 𝑗 , 𝑘1 − 𝑗)

𝑘2−𝑘1
2 −1∏
𝑡=1

(𝑘1 + 𝑡, 𝑘2 − 𝑡)

2𝑛−ℎ−𝑘2
2 −1∏
𝑣=1

(𝑘2 + 𝑣, 2𝑛 − ℎ − 𝑣) (2𝑛 − ℎ, ℎ, 𝑘1, 𝑘2).

In particular 𝜎1𝜏 fixes four indexes: 2𝑛, 𝑘1+ℎ
2 , 𝑘1+𝑘2

2 and 2𝑛−ℎ+𝑘2
2 . Moreover, there are two different Σ

satisfying equation (8.3) corresponding to different choices of 𝜏, that is, 𝜏 ∈ {(ℎ, 𝑘2), (𝑘1, 2𝑛 − ℎ)}.

Proof. Let Σ = (𝜎0, 𝜎∞, 𝜎1, 𝜏) be a special 4-tuple, and assume that 𝜎1𝜏 is a product of 𝑛 − 4 disjoint
transpositions and a disjoint 4-cycle. In this case, 𝜎1𝜏 fixes 4 indexes, and one of them is 2𝑛. Then, as
𝜎0𝜎∞𝜎1𝜏 = id, we have that 𝜎0(2𝑛) = 1. As 𝜎0 is composed only by transpositions, we have also that
𝜎0(1) = 2𝑛, hence 𝜎1𝜏(2𝑛 − 1) = 1. Now, we have two choices: Either 𝜎1𝜏(1) = 2𝑛 − 1 (so (2𝑛 − 1, 1)
is one of the disjoint transpositions in the decomposition of 𝜎1𝜏), or 𝜎1𝜏(1) = 𝑘 ≠ 2𝑛−1 (giving rise to
the 4-cycle in the product). We go on as in the disjoint case described in Subsection 8.1 until we reach
the situation in which there exist 1 ≤ ℎ ≤ 𝑛 − 2, ℎ + 1 ≤ 𝑘1 ≤ 2𝑛 − ℎ − 3, 𝑘1 + 1 ≤ 𝑘2 ≤ 2𝑛 − ℎ − 1
such that 𝜎0 contains the disjoint transpositions (1, 2𝑛), (2, 2𝑛 − 1) · · · (ℎ, 2𝑛 − ℎ + 1) and 𝜎1𝜏 contains
the disjoint transpositions (1, 2𝑛 − 1), . . . , (2𝑛 − ℎ + 1, ℎ − 1) and the 4-cycle (2𝑛 − ℎ, ℎ, 𝑘1, 𝑘2). It is
easy to see that 𝑘1 ≠ ℎ + 1, 2𝑛 − ℎ − 3 and 𝑘2 ≠ 𝑘1 + 1, 2𝑛 − ℎ − 1. For example, let us assume by
contradiction that 𝑘1 = ℎ + 1; then, as we have that 𝜎0𝜎∞𝜎1𝜏1 = id, we would have that 𝜎0 fixes ℎ + 1,
which is impossible because 𝜎0 has no fixed points. For the other cases we can argue similarly. So,
ℎ + 2 ≤ 𝑘1 ≤ 2𝑛 − ℎ − 4 and 𝑘1 + 2 ≤ 𝑘2 ≤ 2𝑛 − ℎ − 2, which implies that 1 ≤ ℎ ≤ 𝑛 − 3.

Now, if 𝜎1𝜏(ℎ) = 𝑘1, then by 𝜎0𝜎∞𝜎1𝜏 = id we have 𝜎0(𝑘1) = ℎ + 1 and so 𝜎0(ℎ + 1) = 𝑘1. This
means that 𝜎1𝜏(ℎ + 1) = 𝑘1 − 1 and 𝜎1𝜏(𝑘1 − 1) = ℎ + 1 and so on. This process ends when one reaches
the conditions 𝜎0

(
𝑘1+ℎ

2

)
= 𝑘1+ℎ

2 + 1 and vice versa, 𝜎1𝜏
(
𝑘1+ℎ

2 − 1
)
= 𝑘1+ℎ

2 + 1 and vice versa and 𝑘1+ℎ
2
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is fixed by 𝜎1𝜏. Notice that also in this case this gives the additional condition that ℎ ≡ 𝑘1 mod 2. Here
we also see that 𝑘2 cannot lie between h and 𝑘1.

On the other hand, if 𝜎1𝜏 contains the 4-cycle (2𝑛− ℎ, ℎ, 𝑘1, 𝑘2), we also have that 𝜎1𝜏(𝑘1) = 𝑘2 and
𝜎1𝜏(𝑘2) = 2𝑛 − ℎ, giving other conditions to satisfy. Indeed, by 𝜎0𝜎∞𝜎1𝜏 = id, we have 𝜎0(2𝑛 − ℎ) =
𝑘2 + 1 and 𝜎0(𝑘2 + 1) = 2𝑛 − ℎ. This implies that 𝜎1𝜏(2𝑛 − ℎ − 1) = 𝑘2 + 1 and vice versa, and so
on. This process ends when one reaches the conditions 𝜎0

(
2𝑛−ℎ+𝑘2

2

)
= 2𝑛−ℎ+𝑘2

2 + 1 and vice versa,

𝜎1𝜏
(

2𝑛−ℎ+𝑘2
2 − 1

)
= 2𝑛−ℎ+𝑘2

2 +1 and 2𝑛−ℎ+𝑘2
2 is fixed by 𝜎1𝜏. With the same argument, as 𝜎1𝜏(𝑘1) = 𝑘2,

by 𝜎0𝜎∞𝜎1𝜏 = id, we have 𝜎0(𝑘1 + 1) = 𝑘2 and 𝜎0(𝑘2) = 𝑘1 + 1. This means that 𝜎1𝜏(𝑘1 + 1) = 𝑘2 − 1
and vice versa, and so on. This process ends when one reaches the conditions 𝜎0

(
𝑘1+𝑘2

2

)
= 𝑘2+𝑘2

2 +1 and

vice versa, 𝜎1𝜏
(
𝑘1+𝑘2

2 − 1
)
= 𝑘1+𝑘2

2 + 1 and 𝑘1+𝑘2
2 is fixed by 𝜎1𝜏. This gives, as before, the additional

condition that 𝑘1 ≡ 𝑘2 mod 2. This proves that 𝜎0 and 𝜎1𝜏 have the shape (8.3), proving the first part
of the proposition.

In particular 𝜎1𝜏 fixes 4 indexes, that is, 𝑘1+ℎ
2 , 𝑘1+𝑘2

2 and 2𝑛−ℎ+𝑘2
2 and 2𝑛. Let us denote by

𝛽ℎ𝑘1𝑘2 =: 𝜎1𝜏(2𝑛 − ℎ, ℎ, 𝑘1, 𝑘2)−1,

that is, the product of the disjoint transpositions appearing in the decomposition of𝜎1𝜏. Then we have two
different choices for the couple (𝜎1, 𝜏) giving the same product, namely 𝜎1 = 𝛽ℎ𝑘1𝑘2 (2𝑛− ℎ, ℎ) (𝑘1, 𝑘2)
and 𝜏 = (2𝑛 − ℎ, 𝑘1) or 𝜎1 = 𝛽ℎ𝑘1𝑘2 (ℎ, 𝑘1) (2𝑛 − ℎ, 𝑘2) and 𝜏 = (ℎ, 𝑘2). This concludes the proof. �

As in the previous section, we want to count the number of special 4-tuples such that 𝜎1𝜏 contains a
4-cycle in a given conjugacy class.

Notice that, if we have two special 4-tuples Σ = (𝜎0, 𝜎∞, 𝜎1, 𝜏1) and Σ′ = (𝜎′
0, 𝜎

′
∞, 𝜎

′
1, 𝜏

′
1) with

𝜎∞ =𝜎′
∞ = (2𝑛, 2𝑛−1, . . . , 1) and such that Σ′ = 𝛾−1Σ𝛾 for some 𝛾 ∈ 𝑆2𝑛, then 𝛾 must be a power of 𝜎∞.

Let us call 𝑝 := 𝑘1+ℎ
2 , 𝑞 := 𝑘1+𝑘2

2 and 𝑟 := 2𝑛−ℎ+𝑘2
2 the three indexes other than 2𝑛 fixed by 𝜎1𝜏. Since

we are interested in conjugations by permutations of the form 𝜎ℓ
∞ that send the set {𝑝, 𝑞, 𝑟, 2𝑛} into a set

containing {2𝑛}, the only admissible 𝛾 will be 𝜎2𝑛−𝑝
∞ , 𝜎2𝑛−𝑞

∞ or 𝜎2𝑛−𝑟
∞ . In particular, in the first case the

set {2𝑛, 𝑝, 𝑞, 𝑟} is sent to {2𝑛, 2𝑛− 𝑝, 𝑞− 𝑝, 𝑟 − 𝑝}; in the second case to {2𝑛, 2𝑛− (𝑞− 𝑝), 𝑟 −𝑞, 2𝑛−𝑞}
and, in the last case, to {2𝑛 − 𝑟, 2𝑛 − (𝑟 − 𝑝), 2𝑛 − (𝑟 − 𝑞), 2𝑛}.

The following proposition describes how many special 4-tuples we have in every conjugacy class of
a 4-tuple; in this case, this depends on the configuration of {𝑝, 𝑞, 𝑟, 2𝑛}.
Proposition 8.5. Let Σ = (𝜎0, 𝜎∞, 𝜎1, 𝜏1) be a special 4-tuple such that 𝜎1𝜏 contains the 4-cycle
(ℎ, 𝑘1, 𝑘2, 2𝑛 − ℎ), then we have two possibilities.
◦ If n is even and the 4-cycle is of the form (ℎ, 𝑛 − ℎ, 𝑛 + ℎ, 2𝑛 − ℎ), then the conjugacy class of Σ

contains only two special 4-tuples;
◦ If not, then the conjugacy class of Σ contains exactly four special 4-tuples.

We point out that, looking at the symmetry of the problem, the number of special 4-tuples contained
in the conjugacy class of Σ depends on the configuration of the points fixed by 𝜎1𝜏. Indeed, in the first
case, the set of fixed points is exactly

{
𝑛
2 , 𝑛,

3
2𝑛, 2𝑛

}
, which are the vertices of a square.

Proof. Since 4-tuple Σ = (𝜎∞, 𝜎0, 𝜎1, 𝜏) is special, we have that 𝜎∞ = (2𝑛, 2𝑛−1, . . . , 1) and 𝜎1𝜏 fixes
2𝑛; moreover, by assumption it contains the 4-cycle (ℎ, 𝑘1, 𝑘2, 2𝑛 − ℎ). Then, as proved before, 𝜎0 and
𝜎1𝜏 will have the shape (8.3). As discussed before, if Σ′ ≠ Σ is a special 4-tuple conjugated to Σ then

Σ′ = 𝛾−1Σ𝛾 with 𝛾 ∈
{
𝜎

2𝑛− ℎ+𝑘1
2

∞ , 𝜎
2𝑛− 𝑘1+𝑘2

2
∞ , 𝜎

2𝑛− 2𝑛−ℎ+𝑘2
2

∞

}
. We distinguish two cases.

Suppose that n is even and the 4-cycle is of the form (ℎ, 𝑛− ℎ, 𝑛+ ℎ, 2𝑛− ℎ)2; then the points fixed by
𝜎1𝜏 are exactly

{
𝑛
2 , 𝑛,

3
2𝑛, 2𝑛

}
. As discussed before, the other special 4-tuples contained in the conjugacy

2Note that this configuration of the 4-cycle is not possible if n is odd since h, 𝑛 − ℎ and 𝑛 + ℎ would not have the same parity.
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class of Σ will be of the form 𝛾−1Σ𝛾, with 𝛾 ∈
{
𝜎

𝑛
2
∞ , 𝜎

𝑛
∞, 𝜎

3
2 𝑛
∞

}
. But for this special configuration, a

direct computation shows that 𝜎−𝑛
∞ Σ𝜎𝑛

∞ = Σ, and 𝜎−𝑛/2
∞ Σ𝜎𝑛/2

∞ = 𝜎𝑛/2
∞ Σ𝜎−𝑛/2

∞ ≠ Σ, hence there are only
two special 4-tuples contained in the conjugacy class of Σ.

Suppose now that the 4-cycle contained in 𝜎1𝜏 is not of the previous shape; we have that either
𝑘1 ≠ 𝑛 − ℎ or 𝑘2 ≠ 𝑛 + ℎ. In this case, a direct computation shows that if we conjugate Σ by some

𝛾 ∈
{
𝜎

2𝑛− ℎ+𝑘1
2

∞ , 𝜎
2𝑛− 𝑘1+𝑘2

2
∞ , 𝜎

2𝑛− 2𝑛−ℎ+𝑘2
2

∞

}
, then 𝜎0 is not fixed, hence every conjugation gives rise to a

special 4-tuple in the conjugacy class of Σ, which concludes the proof. �

Using the proposition, we can count the number of different conjugacy classes such that 𝜎1𝜏 contains
a 4-cycle; in this case, we have to distinguish the case n odd and n even.

Suppose first n odd; in this case, by Proposition 8.5, every conjugacy class contains exactly four
special 4-tuples. Moreover, a special 4-tuple containing a 4-cycle (ℎ, 𝑘1, 𝑘2, 2𝑛 − ℎ) with ℎ < 𝑘1 < 𝑘2
will have the shape (8.3), and there are two different choices of the couple (𝜎1, 𝜏) which gives the same
permutation 𝜎1𝜏.

Putting all together, we have to count the number of ordered 3-tuples ℎ < 𝑘1 < 𝑘2 with ℎ ≡ 𝑘1 ≡ 𝑘2
mod 2 and such that 1 ≤ ℎ ≤ 𝑛 − 3, ℎ + 2 ≤ 𝑘1 ≤ 2𝑛 − 4 − ℎ and 𝑘1 + 2 ≤ 𝑘2 ≤ 2𝑛 − 2 − ℎ, which are
equal to

𝐶1 =
𝑛−3∑
ℎ=1

⎡⎢⎢⎢⎢⎢⎣
2𝑛−4−ℎ∑
𝑘=ℎ+2

𝑘≡ℎ mod 2

(
𝑛 − 1 − 𝑘 + ℎ

2

)⎤⎥⎥⎥⎥⎥⎦ .
Then we have that, if n is odd, the number of conjugacy classes of a 4-tuple such that 𝜎1𝜏 contains a
4-cycle is

# conjugacy classes = 2 · 𝐶1
4

=
𝐶1
2
.

Suppose now n even; in this case, we have to distinguish the cases in which the 4-cycle is of the
special form (ℎ, 𝑛 − ℎ, 𝑛 + ℎ, 2𝑛), which are 𝐶2 = 𝑛

2 − 1. Recall that, for every configuration of the
4-cycle, we have two choices of the couple (𝜎1, 𝜏) giving rise to the same product. For this special
configuration of the 4-cycle, the conjugacy class contains indeed only two special 4-tuples. The number
of conjugacy classes in this case is given by

# conjugacy classes = 2 · 𝐶1 − 𝐶2
4

+ 2 · 𝐶2
2

=
𝐶1 + 𝐶2

2
.
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