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DIFFERENTIAL GAMES FOR STOCHASTIC PARTIAL
DIFFERENTIAL EQUATIONS

W.H. FLEMING a~xp M. NISIO

1. Introduction

In this paper we are concerned with zero-sum two-player finite horizon
games for stochastic partial differential equations (SPDE in short). The main aim
is to formulate the principle of dynamic programming for the upper (or lower)
value function and investigate the relationship between upper (or lower) value
function and viscocity solution of min-max (or max-min) equation on Hilbert
space.

Let us consider SPDE (1.1), a so-called controlled Zakai-equation, arising
from zero-sum two-player stochastic differential game with partial information,

Ly @, n=|%2
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with initial condition
E(x, 0) = ().

The pay-off function J is defined by
(1.2) Jt, 0, Y, Z, 9 = Efo h(EG), Y(s), Z(s) ds + g€, t<T,

where T is a given positive number and A( *, y, z) and g are functions on Hilbert
space. Moreover, W= (W, - - -, W,) is a standard m-dimensional Brownian
motion and Y and Z are admissible controls for player I and II respectively,
(Definition 2.1).
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According to W.H. Fleming and P.E. Souganidis [4], we introduce a strategy
(Definition 4.2) and formulate a notion of upper (or lower) value function (see
(6.2)). When & and g are tame functions, we can prove the principle of dynamic
programming (see (5.40) and Theorem 6.2)). This fact implies that the upper (or
lower) value function turns out to be a viscosity solution of the min-max (or
max-min) equation corresponding to (1.1) and (1.2).

Here we modify Lions’ definition of viscosity solution [8, Part 2], which seems
suitable for our problems. If a viscosity solution is unique, then the Isaacs’ condi-
tion yields the existence of value of game. The finite dimensional case, namely dif-
ferential game for stochastic differential equations, is investigated in [4] and W.H.
Fleming and P.E. Souganidis proved that the upper value function equals the
Elliott-Kalton value and turns out to be the unique viscosity solution of the
min-max equation. But, in our case, the uniqueness problem is still open and we
will consider a simple example and remark on its uniqueness problem in Section
8.

Recently H. Ishii [6] introduced a slightly different notion of viscosity solution
and proved the unique existence of solution for nonlinear second order partial dif-
ferential equations, including the min-max one. But it seems to be still open,
whether the upper value function satisfies the min-max equation in Ishii’s sense.

In Section 2, we recall some results on SPDE for later use. In particular, the
continuity with respect to time will be studied in Section 3. Since the lower value
function is investigated in the same way as the upper one, we will only consider
the upper one. Applying semi-discretization arguments, we introduce m-admissible
strategy (see Definition 4.2) and the upper value function V. If the terminal func-
tion is tame, then {V,, = = partition of [0, T']} is compact (Theorem 4.1) and the
principle of dynamic programming will be proved in Section 6. We will show that
the upper value function turns out to be a viscosity solution of the min-max equa-

tion in Section 7.

2. Preliminaries

Let ¥ and ¥ be convex compact subsets of R’ and R’ respectively. W
denotes a standard m-dimensional Brownian motion, defined on a probability
space (£, #, P). For simplicity, we assume m = 1. Put %, = o-field generated
by {W(s), s < t}.

First we will define control and strategy, according to [4].
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DeriviTiov 2.1, An admissible control process Y (resp. Z) for player I (resp.
II) is an Z,-progressively measurable process taking values ¥ (resp. Z). The set
of all admissible controls for player I (resp. II) is denoted by Ji (resp. ).

We say that Y and Y™ (€ U are the same on [f, s] and we write ¥ = y*
on [t, s], if

P(Y=Y"ae on[ts]) = 1.

A similar convention is assumed to hold for elements of V.

DeriNiTiON 2.2, An admissible strategy « (resp. ) for player I (resp. II) is a
mapping a ; N — M (resp. B8 ; M — N), such that if Z= z* (resp. Y = Y™ on
[0, s] then a(2) = a(Z™) (resp. B(Y) = B(Y™)) on [0, s] for any s € [0, T].
The set of all admissible strategies of player I (resp. II) is denoted by I (resp. 4).

Let H be a Sobolev space of functions whose generalized derivatives up to
the order p belong to L°(R"). Denote its inner product and norm by (, ), and
I Hp respectively, for p = 0, H'=H, (, )o=C,)and| [,=1 | for simplic-
ity.

For Y € Ul and Z € N, we consider SPDE (1.1) with m = 1, namely

dé(z, H = (6,(c"(x, Y, Z(B) 8,6(x, D)
+ 7' (x, YO, Z(B) 0,6(x, ) — c&(x, B)dt
+ flx, YO, Z(t) Ex, HdW (), € R", t> 0,
£(0) = n € L*(RY,

(2.1)

0 . . .
where 0, = or and we employ the convention of summation over repeated in-
. ?
dices.

DerixiTION 2.3, We say that Z,-progressively measurable process & is a
solution of (2.1), if

(i) € L2 x(0, T1; HY N L Q2 ; C0, T1; H))
and

(ii) for t€ [0, T1 and £ € C,(R") ( = infinitely differentiable function
with compact support),

€0,0= 0,0 [ (6" (Y(s), Z(s)) D.E(), 8.0) ds
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+ fo G, Z0)0E(s) — &), O ds

+ f t (F(Y(s), Z(9))E(s), ©AW(s), with probability 1.

Namely we study the Zakai equation in the frame work of [7] and [10]. Since this
definition is consistent with a weak solution [1] of partial differential equation, we
can split (2.1) into two parts to obtain suitable evaluations (see (3.9)).

Hereafter we always assume the conditions (A1)~(A4) below.

(A1) 6”C ,y,2,7C ,y,2,fC ,y, 2 <€ CR") and

(22) sup ” g( Y, Z) ”C‘(R”) S b < OO’ for g = o.i” Tt, f

W,2)eY x%¥

(A2) Lipshitz condition; there is a positive number [ = [, such that
gz, y,2 — g, vy, 2) |
Sllz—z | +ly—yl+lz—2Dtorg=0", 7 f

where | | = Euclidian norm.
(A3) uniformly elliptic; 6 = ¢’' and there is a positive number /io such that, for
any (r,y,2) ER" XY X ¥

> 6@, y, 20,0,2 4| 0F, for 6= (6,...,6) € R’
ij=1

(A4) c is a non-negative constant.
First we recall Theorem 2.1, due to N.V. Krylov and B.L. Rozovskii [5] and E. Par-
doux [8], in our convenient form.

THEOREM 2.1. There exists a unique solution €= E( ,n, Y, Z) of (2.1) and
the following properties hold

(2.3) EGsuwlét 0, Y, 0D <Klnl,
t<T
T

@4 E(f et 0, v, 2k dt) < Kl

(2.5) E(let, n, Y, D" <Klnl¥, fortel0,7],1=2,3,4,

with a constant K depending only on T, A, and the bound of coefficients.
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Since the linearlity of equation (2.1) yields, with probalility 1,
(26) Et,m, Y, 2) —&t,n,Y,2)=EC,n—n,Y,2 fort€ |0, T,

the solution depends on the initial data continuously.
Let us put

Ly, 2 =0,(6"( ,¥y, 20,0 +71'( ,y, 20,
Lt Y, 2) = LY®, Z®), L, Y, p =L, Y, BV,
Lt,a,2) =Lt aD), D), ft,Y,2) =f( ,Y®), ZO®).
Then (A3) implies the coercive condition, namely there is 4, > 0, such that
27 =< L0 +AlCF =0, for (€ H and (y,2) €Y X %,

where ¢, > = duality pairing between H' and H ' under H = H™ (= dual space
of H).
Next we consider SPDE (2.8) below

atn = (L&, Y, DL — cL®)dt + f&, Y, DCWAWE) + F(@)dt
(2.8) + GdW(t), for t>0,

£ =0,

where F and G are &,-progressively measurable and satisfy

E( fo 1R Far) < o and E( fo “lew [fat) < oo.

Then, there is a unique solution { € L*(Q x [0,71; H") N L*Q; ¢(0,T1; H))

and the following evaluations hold [7],

T
(2.9) Eswltt:Y, 0P <k f EQFO I+ 60 Pat

t<T
T T
10y E([ Iee; v, 2la) <k [ BAFGF + 160 Rt

with a constant K depending only on T, ZO and the bound of coefficients.
Now we will recall the evaluation of negative norm H H_z(: |] ”H~2) due to
P.L. Lions [8]. Let { € C”(R") satisfy the following condition;
1

C=Oon<|x]£§>,c=lon(|x]Zl)andOéC(x)éloan‘
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Put (p(x) = C(%) Then we have
THEOREM 2.2 [8].  There exists a constant K™, which is independent of Yand Z,
such that

(2.11)
El&t, A =Cn, Y, DI, <K*| (1 — ¢ l, forte (0, T1, R > 0.

Moreover, for any e € H z
* K

where ex(e) = f e(x)’dz.

|z|>(R/2)

Later, we will see that (2.12) implies weakly sequential continuity of value
function.

Remark. Let &, be a solution of (2.1) with ¢ = 0. Then we can easily see
(2.13) Et,n, Y, D ="t Y, D).

So, we employ &, instead of & when we stress ¢ = 0.

3. Continuity with respect to time

In this section we study continuous dependency of a solution on time. Fixing
Y and Z, we set L(t, w) = L(t, Y(w), Z(w)). Suppose v ; R" X 2— R satisfies
the condition,

(3.1) vz, wexp (—rlzl) €EH forall w€ Q,

with a constant » = 0.
We consider the Cauchy problem

ou
9= L(t >
32) |0t L(t, w)u fort>s,

u(s) = v(w).

Since coefficients Uﬁ, ri and f of L(¢, w) may not be continuous in ¢, we employ a
weak solution [1] of (3.2) and recall the following theorem, due to D.G. Aronson

1.
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THEOREM 3.1. Theve exists a unique weak fundamental solutlon for L(w), say
I'(x, t,y, s;w), and (3.3)~(3.6) hold.

(3.3) wlx, t;w) = f Iz, t,y,s; w)vly, w)dy
Rﬂ
is a unigue solution of (3.2)

(3.4) Lf(x,t,y,s;w)dy=1

(3.5) ulz,t;w = _j;nl‘(x, ty, 0;0uly, 0;w dy for 6 <€ [s,i.

(3.6) There exist positive numbers a,, @, and p, independent of w, such that
p e —y, t—5) <I(x, t,y, s;0) <pg,(x—y, t—s)
where

g,(x, ) = /@zx0a) "exp(— | x|’/ (46a)), i=1,2.
It follows from (3.4) and (3.5) that
lutt, ) = w6, D F= [|[ T, b, 6;0) @iy, 6, )~ utz, 6, o) dy| s
Spffgz(x, t— 0wy +z, 0, w) —uly, 0, w)’dy dx
=1 [g@ t=0lut- +2,6,0) —u(-, 6,0 [dr
and, denoting 4,u(*) = u(- + ) — u(-),
67 lutt, o) = u@, D F<p [ g t-014u6, o [ dr.

Let us set &, np, w) =&@, n, Y, Z, 0w and G, w = f(Y(, w),
Z(t, w)E,(t, n, w), for simplicity, and define X, and X, € L*(Q ; C([s,T1; H))

as follows,

dX,(t, w) = L(t, w)X,(t, w) dt, fort>s
©8) [Xl(s, w) = &(s, n, w)
and
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[dXz(t) =LY, DX, dt + GHAW(), fort>s
(3.9)

X,(s) = 0.

Since &,(s, 1, w) € H, (3.3) asserts
X@ tw) = [ T@ bty s 0, s, 0 0)dy.

Hence (3.7) implies
(3.10) 1%, @) = &G, 0, o) F<p [ g, t— 91 450, 7, o) | de.

On the other hand, (2.7) yields

Elx,® < zOfEu X, IF d6 + _/:E]I G(0) " ds.
Thus, using (2.3), we have
(3.11) EIX0F < [ expyt— 0)EI GO db
S K| FEIn Plexp@ot — o) — 11477,

and X(») = X, () + X, (9 satisfies SPDE (3.12) below,

(dX(t) =L, Y, DX®)dt+f(t, Y, 2DXBAW()
(3.12)

X(s) =&(s,n, Y, 2.
Hence, by the uniqueness of solution, X coincides with &,
(3.13) X =¢&(t,n, Y, 2, t=s, with probablility 1.
Noting &,(¢t, n, Y, 2) — &,(s, n, Y, 2) = X,(H) — X,(s) + X,(8), we get
314  El&t, 0 Y, 2 = &G0, Y, D

<2p [ g, t= E| A8, m, ¥, D Pde + 2K] fElexp Aol — 914 |7 .

Hereafter k; stands for a constant independent of Y and Z. Let us evaluate 4,5,
Putting ¢, () = 4,§,(¢, n, Y, Z), we can derive the equation (3.15) below,
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dg,(t) = L, Y, 2)q,(Ddt + (4, Y, 2)q,()dW(®)
+ [8,(4,67(t, Y, 2)0,X® + 4,7 (t, Y, 20, X(®)] dt

(3.15) -
+ 4,1, Y, DX@BAWQ),

,() = 4.,

where X() = &,( + z, t, 9, Y, Z). Applying the standard arguments, we get
(3.16) EleOF <k@amF+1zFlInl) forxeR"

Combining (3.16) with (3.14), we have

(3.17) El&t, 10, Y, 2 = &G, 0, Y, D

<kl [ at t=9lanlFdz+ = 9lnl|.

Since || A7 || tends to 0, as x— 0, the modulus of continuity in £ is independent of
Y and Z, but depends on the initial data 7. Applying the same arguments as [8,
part 2], we obtain

318)  El&t, n, Y, 2 =&, 0, Y, DI <kl t—slInl.

The above evaluation together with (2.13) yields the following proposition,
ProposiTION 3.1. There is a constant C, such that, for YE M, Z E N and

nEH

(3.19)

El&t,n, ¥, 2 —&6.n, V. DF < Gl t=slnl+ [ g6, t=9 |4 P do)

(3.20) E|&t,n,Y,2)—&s,nY, 2P, <Clt—sllnl
(321) El&t,n, Y, 2 —&s,n, Y, 2F<cClt=sllnlf joneH.

For @ € LUC(H) (= uniformly continuous functions on H with linear
growth), we put

(3.22) O, n:;Y, 2 =E0EWR Y, 2).

Then Proposition 3.1 implies the following one.
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PROPOSITION 3.2.
(1) Fore > 0, there is 7, = 7o(e, 1, ®) > 0, such that for ¥ € M and Z € N

O, 0, Y, 2) =BG, 1Y, 2D|<e iflt—s|<rt,.

(i1) For € > 0, there is 0, = 0,(e, @) > 0, such that for YE M, Z € N and
te [0, T]

|0, 1, Y, 2) =0, v, Y, D|<e iflln—1n]<34,
ProposiTion 3.3. Suppose that, for any bounded set B of H, ®,— @
uniformly in B and sup, sup.z | @,({) | < . Then, for any bounded set B C H,
@, tends to @ uniformly in [0, T1 X B X M X N.
Proof. Recalling (2.3), we have '
P&, n, Y, D|>n <Kl|nl/r"
Now taking » = 7(¢, B) = K(diam B)’¢™ and N = N(e, B) such that

sup| @, — @ | <cecon{n€H;|n|<r) weget

n=>N

| @, (t,n, Y, 2) —D(t,n, Y, 2|
e+ 2P| &, n, Y, 2| r) <e+ 28

where sup | @,({) | < B on B. This completes the proof.
Hereé we call ¢:H— Rl, a tame function, if ¢ is denoted by

(3.23) o) = ¢ley, m), -, (e, )

with suitable ¢, € H® and ¢ € C*(R’) whose first and second derivatives are
BUC (= bounded and uniformly continuous function). So, ¢ is Lipshitz continuous
and linear growth, say

(3.24) Lo | <k, + klln |l with &, = k().

Putting ¢(¢, n, Y, Z2) = E@(&(t, n, Y, Z)), we have

ProposiTiON 3.4.  There is a constant C,(¢) such that

(3.25)
Lo, n, Y, 2 —¢G,n, Y, 2| <ColInlTt=5sl, foYEMand ZE N.
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Proof. () denotes Lipshitz constant of ¢ of (3.23).
|Ep&(t, 0, Y, D)) — Ep&(s, 1, Y, 2) |
<UY) SEICU 0 Y, —E6 0 Y. D, el
i=1

<Ulg) SENEG 1, Y, D — 6,1, V. D1 le, .

So, Proposition 3.1 concludes the proof.

4. Tame terminal function

In this section, we deal with pay-off tame terminal function and show some
compactness of value functions, employing semi-discretization arguments.

Suppose 4 ; H X % X % — R"is continuous and satisfies (A5),
(A5) h(- ,y,2is tame, say h(n,y,2 =b((n, e),---,(n, ¢), ¥y, 2 and
|0,5(x, y, 2| and | 8,0,5(x, y, 2) | are bounded in (z, y, 2) € R* X ¥ X %. Let
o, H— R' be a tame function, say

o) = ¢((m, &), -+, (, &)).

Since we may assume that {;,, =1, ,p} contains {e;,, i1=1, -+, ¢}, we will
drop "
Now we define pay-off J and value V;; as follows.

J 0 Y, Z, @) = Efoth@(a, 0 Y. 2. Y. Z(6)do

(4.1) + @&, n, Y, 2)
Vaet, n, @) = inf supJ(t, 1, Y, Z, ¢) for Ml < M, N C N

zZeN Yedl

Since | h(n, y, 2) | < m, + m, | n | with m, and m,, which are independent of y
and z, (2.3) derives

(4.2) l](t,n, YyZy§D)|§m1t+k1+K(m2+kz)“T]“

whenever | () | < k, + k, [ |
Appealing to Proposition 3.4, Theorem 2.2 and (2.6), we can take a positive
numbers C; = Cy(¢@) such that
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[Jt, 0, Y, Z, o) =], Y, Z, @)
SCIA+InphVit=sl+n—¢lNfor YE M and ZE N,

[ Vie@ n, 0 = VoG, L o) | SCLA+nhvTt—=sl +ln—2¢h
for Ml C M and N C N,

(4.3)

and, putting S(R) = [I x| = %} and g, = >0, " e’ (x)dz, we have
4.4) | Ve, n, @) — Vils, ¢, o |
<Cla+ D IE=sT+1 Q=0 = Ol + (e + 1) 1n = Cll

with {p of Theorem 2.2. Moreover (4.4) implies
(4.5) VieC ) € C(0, T] xH,)

where H,, denotes the space H carrying the weak topology.
Let t={0=1¢,<t <:---<ty= T} be a partition on [0, T] and denote
| 7 | = max (¢, — ¢,_,) its mesh. We put #(x) = {¢;, i =0,---,N}.
i

DerINITION 4.1, Y € Ul (resp. Z € N) is called m-admissible for player I
(resp. II), if
Y& = Y(t) (resp. Z@t) = Z(t)), fortE€ [t t,).

M, (resp. N,) denotes the set of all m-admissible controls for player I (resp. II).

DEFINITION 4.2, a € I'is called a m-admissible strategy for player I, if & ; N/
— M, such that
(1) a(2)(s) = Z-independent for s < ¢,
(i) a( D) () = a(2) (t) ae.,if Z= Zae on [0, t).
B € A4 is called a w-admissible strategy for player II, if 8 ; Ml — N, such that
(i) B(Y)(s) = Y-independent for s < t,,
(ii) BN () = B (t) ae., if Y= Yae. on [0,4].
I, (resp. 4,) denotes the set of all 7-admissible strategies for player I (resp. I).
Let us set

J&,m, Y, B, 9) =]t 1 Y, BT, ¢)

and the upper value function V, for 7 is defined by (4.6) below,

(4.6) V.(t, n, ¢) = inf sup J(¢, n, Y, B, ¢).

Bedr YeM
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From (4.3) and (4.4), we can easily see

ProposiTioN 4.1. V(| @) has 7-independent continuity.
In particular, (4.4) implies compactness of upper value functions, namely, we have the

following theorem.

TueoreMm 4.1, Let 7r,, n = 1,2, -, be a sequence of partitions on [0, T1. Then,
Vo,( @), m=12,"", has a sequence which converges uniformly in any bounded
set of [0, T]1 X H.

For the proof, we will show the following lemma.

LemMa, Lete > 0 and B={n € H ;||n| < 7. Then we can take a finite set
D c [0, T] X B, such that for (¢, n) € [0, T] X B there is (s, {) € D satisfying

(4.7) [V .(t,n, @) — V.(s,C, @) | <e forany partition .
Proof. Let us take a large number R = R(7, ¢), such that
(4.8) Cy(0) (e + &) 20 <.

So we may assume R(7, €) — %, as e — 0. Denote S= {x € R";| x| < R) and
= (g of Theorem 2.2. Then supp (1 — O)n € S. Since B is weakly compact in
H, {1 —On, n € B} is compact in H *(S). Hence we can take a finite set E C
B, such that {(1 — O, n € E} is e(3C,(¢)) '-net in H X(S).

Let O be a finite (3C;(¢) (1 + #)) %’ -net in [0, T]. Then (4.4) asserts that,
for (¢, ) € [0, T] X B, there is (s, £) € @ X E such that

(4.9) [ V.(t,m, @) — V.(s, ¢, @) | <e for any 7.

This completes the proof of Lemma.

Proof of Theovem. Denote D of Lemma by D(7, ¢) and put ¥ = U D(r, %)

7,k=1
Since | V,( , @) |. <m T+ k,(¢) + Kim, + k,(¢)) [ n ], some subsequence
Ve, (s, £, @) converges for any (s, ) € 9. Now
Lemma implies Theorem.
Put V( , @) =lim V; ( , @). Then V also satisfies (4.3) and (4.4).
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5. Uniformly continuous terminal function with linear growth

Since an upper value function V,(+ , ¢) may not be tame, we will study
pay-off with continuous terminal function, in order to prove the principle of dyna-
mic programming in Section 6.

It is clear that J(t, - , Y, Z, ® € LUC(H) whenever @ € LUC(H).

Moreover we can easily see the following proposition.

ProposITION 5.1.
(1) Fore > 0, theve is 0, = 0,(e, ®) > 0, such that

(5.1) |Jit,n, Y, Z, ® —Jt,4,Y,Z, ®|<e
and
(5.2) [ Vielt,n, @ — Vie@, 5, &) <e

whenever | p — 7 || < 0,
(ii) Fore > 0, there is 0, = 8y(e, ¢, ) > 0, such that

(5.3) | Violt, n, @ — VoG, n, ®)| < e whenever | t — s| < 4,

Let us set

v(t, m, 2, @) =supJ(t, 0, Y, 2z, D)

5.4 | Fe
(5.4) v(t, n, ®) = inf v(t, n, 2z, D).

ze%

Then (5.2) implies that v(¢, , z, ®) € LUC(H) and
(55) v, n,z ® — vt i,z O | <eforany (¢, 2) € [0, T] X %,

whenever || — 7| < 6,

First we study the continuity of v with respect to z. Putting

EW =€, n, Y, 2 and C®) =&, 1, Y, 2 —EQ

we can see
dl(® = [L(Y(®), 2) — c[1{(Bdt + (YD), 2BDAW® + FDdt + GO AW(¢t)
o) =0

where F() = [L(Y(t, 2) — L(Y(D, 2]1E® and G@) = [F(Y(t, 2) — F(Y (D, D)IEQ).

https://doi.org/10.1017/50027763000004554 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000004554

STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS 89

Employing the standard arguments, we obtain the following one.

PRrOPOSITION 5.2.
(1) There is a constant C, independent of Y, z and 1 such that
(5.6)  E(sup|&t,n, Y, 2 =&t Y, ) <Clnllz— 2zl

t<T
(11) For € > 0 and k, there is 0, = d,(¢, @) > 0, such that

(5.7) | Jt, 0, Y, 2z, ® —Jt, 9, Y, 2 0 <e
forte [0, T], Ye M, n<€ Bk ={n] <k,

whenever | z — z| < §,.

(i11) v(¢, n, z, @) satisfies (5.7).

Now we will prove the principle of dynamic programming, applying the simi-
lar arguments as [4]. Let 513?(= ‘BZD) =1{8,7=1,2, -} be a Borel partition of
H, with diamé; < d,(e, @) (see Proposition 5.1 for §,). For simplicity, we may
assume 8; C B(j). Since ¥ is compact, for any fixed n; € §;, v(t, n,, -, @) has a
minimum point 2 = 2" (¢, 1, ®), namely

(5.8) o(t, n, 2, D) = v(t, 1, D).

Taking an approximate maximum point Y,)k = Y]*(t, n;, D, €) below,
(5.9) o(t, n,, z,*, Q) — e < Jt, n, Y]*, z,*, o) <ot 7, z,*, D)
we have

(5.10) 0<uwlt, n, ® —Jtn, Yz, 0 <e.

Hence Proposition 5.2 asserts
(5.11) lolt, n, @ — Jt, 0, V', 25, ®) | <3¢, forn €8,
Appealing to J(t, 1, ¥ 25, 0) < u(t, N z;k, QD) for Y € M, we get

y Rjy

(5.12) Jit,n, Y, 2, &) < v, g, 0+ 2.

For t={0=¢<t<-:-<ty=T}and 7€ (t,_, t,], we will define
v(#) ; LUC(H) — LUC(H) and @;(= @)) as follows

(5.13) v®OD=v(t, -, D
0,=0, O, =v(c—1,)0, O, =v(s,_)P,y, ", D, = v(s) P,
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where s, = t; — £,_;. Appealing to (5.8), we will choose an approximately optimal
strategy B, € 4, in the following way. Fixing Y€ Ml and n,, € §,(€ ﬁBf,,,k)
arbitrarily, B.(Y) is defined by

(5.14) B.(M () = I[o,t,)(a) @Z) Ig] (U)Z*(sn N1 PV
+ Iy iy (6) %J) Iy (Gt M2 (550 M0 Bp) + -

+ Ly (0) 2 I, (LG, Mz @~ t,, 0, O,
?
where I, = indicator function of A, 2 = g cqu, and {(#, 1) is a solution of
(2.1) for (Y, B.(Y)) with £(0) = n, namely,

L, ) = Zo) Iy MEE, 1, Y, 2°(sy, my,, @) = E(t, 1, Y, B(V),
A for t < ¢,
Hence B.(Y) on [f, t,) is determined by (5.14) and {(6, ) by &(6, 7,7,
B.(Y)) for 6 € [0, t,]. Repeating the same arguments, we can determine S,(Y) of
(5.14) and

(5.15) Cit, ) =6G,n, Y, B.(1) for t € [0, T].

Since B.(Y)(0) is #, -measurable and Y(6) is a Borel function of {W(#), t
<t,_} and {W(s) — W, ), t,_, < s < 6}, putting EB) =&, n, ¥V, B.), we
have

(5.16) E([ 16®), v®, 5.0 ®)d0 + 06@) /7, )
<ot —t,_y, E, ), D) + 26, a.s.
by virtue of (5.12). Thus, it follows that

(517) Jz,n, Y, B, D)
< 5| [ " hED, YO, B, O)dD + viz — t,_)BE, ) + 2]

= f ThE®, YO, BDO)dO+ 0, () + 2].

Repeating the same arguments, we obtain
(5.18) J,n, Y, B, ® <uv(s)ulsy - -vir — t,_) O(n) + 2pe.

Since Y is arbitrary, it follows that
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(5.19)  sup J(z, 1, Y, B, ® < v(spu(s) vt —t,_ )0 + 2pe.

e
From the fact B, € 4,, we see, letting e — 0,

(5.20) inf sup J(z, 1, Y, B, @) < v(s)uvlsy) - -v(r—t,_) 0.

Bed, Ye i

Now we will choose nearly optimal @, € I" in the following way. Fix 1, € §;
= ‘qu, arbitrarily. Noting the compactness of %, let us denote %g‘p ={S, .S}
a finite partition of Z, with diam S, < §;, (see (5.7)). For any z, € S, € ‘Bgm, we
will take Y™ = Y™(¢, 1,, 2, ®) € M such that

(5.21) J,n, Y 2, @ >olt, 0,2, ® —e.

Then it follows from (5.1) and (5.7) that

(5.22) J&, n, Y* z, @ > vt n,z, ) — 3¢ forn € 6,

and

(5.23) Jt, n, Y* 2, ® >uv(t, n, 2z, ® —5¢ fory €§ andz € S,

When we stress the dependence on Brownian path w, we will denote Y(6) by
Y(6, w). Putting V)5, =Y*(c—t,_, n, z, fg?,,) and Y., =Yt — t,_,, 1,
z;, @) for 1, €8, € ‘.szk and z, €S, € B, k=p—1,---,0, we define
a.(Z) as follows,

(5.24) (D)0, w) = I, (DG, I, (I (Z(O0, w) Yy, (6, w)

+ Ly (O Elo,) L (Lt M) I (Z(y, w) Yy (60— 1, w])

+ .
+ 1y, (O X, I (e, D (Z(tyy, )Y, (6= b,y wy ),

where 2y = 2geat, Sseu’, W, is a shifted path, namely w; () = w(t + 6) —
w(®, and (¢, n) = &, 1, a.(Z), Z). Applying the same arguments as (5.16)~
(5.18), we obtain

(5.25) J&,n, a, Z, ©) = v(spulsy) vz —t,_)D(n) — 5pe,
for Z € N,

Thus it follows that

(5.26) inf J(z, 1, ., Z, ®) = v(s)v(s,) " -v(r — t,_,) D(n) — 5pe.

ZeN,

Since a, € I, letting e — 0, we get
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(5.27) sup inf J(z, 9, a, Z, ®) = v(sPv(s,) vt —¢t,_) D(n).

a€l ZeN,

Combining with (5.20), we have Proposition 5.3 below,

ProposiTION 5.3. Let @€ LUCH), #,={t,7=0, - ,N} and 7€ (¢,_, t,].
Fore > 0, there exist ap € I and B, € A, such that, for Y€ M and Z € N,
(528  Jr,n, Y,B, ® —e<v(t)vlt,—t) - v(r — t,_)0()

<J@,n,a,Z, 0 +e forn € H.

Moreover, according to [4], we obtain

ProposiTION 5.4.

(5.29) inf sup J(z,n, Y, B, ®) = vtPv(t,— t) - v(r — t,_)D(n)

Bed, YeH

=sup inf J(z, 9, a, Z, D).

ael ZeEN,
For the proof, we will recall the following lemma.
LEMMA [4]. For any BE A, and a € I, there exist Y € M and Z* € N,
such that
(5.30) Je,n,a,Z% @) =]z, 0, Y, B, 9.

Outline of proof. For any fixed z, € %, let us define ¥, € M and z, € N, as
follows.

Y, (s) = a(z,)(s), Z,(s) = B(Y)(s), Y, (s) = a(Z)(s),
Z,(s) =B, -, Y (9 =alZ,_)(), Z,(s) = BY)(s), .

Then we have

(5.31) Yu=Y,on [0, t] and Z;,, = Z; on [0, ¢t).

In fact, B(Y)(s), s < ¢, is independent of ¥, since 8 € 4,. Hence it follows that
BYy) = p(Y) = --- =B(Y,) on [0, t), and

(5.32) Z,=2,=-+=2Z,0nl0,1t).

Now (ii) of Definition (4.2) yields
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(5.33) a(Z) () =alZ)@) = - = alZ)(t)
and
alZ) =a(Z) = -+ =alZ) on [0, t).

This asserts

Y,=Y,=-=Y,,0nl0,¢].
So B(Y) () = -+ = B(Y,,.) (). Since B € 4,, we see
(5.34) B(Y) = - = B(Y,,) on [t, t,).

From (5.32) and (5.34), we can see
Z,=--=/Z.,0nl0,t).

Repeating the same arguments, we can conclude (5.31).
Putting Y* = Yy and Z* = Z,_,, we get

(5.35) aZ*) =Y* and p¥Y™ = 2%,

Now the proof is completed.

Proof of Proposition 5.4. From (5.28), we can easily see

(5.36) inf sup J(r,n, Y, B, ®) < v(t)v(t,—t) - v(rt —t,_,) O(n)

Bed, Ye
<sup inf J(z,n,a, Z, D).
ael ZeN .

For € > 0, we take 8 € 4, and & € I"such that

sup J(z,n, Y, B, ®) — ¢ < inf sup J(z, n, ¥, B, @)
YeH

Bedn, Yel

G301 int J(r, 1, 4, Z, ®) + ¢ > sup inf J(z, 7, a, Z, D).

ZeN, ael ZeN,

Now it follows from Lemma that

Ja,n, Y5 B, 0 < sup J(z, n, Y, 8, @)

(5.38) J@, n, & Z% ® = inf J(z,n, & Z, O

ZeN,
Ja, 0, Y5 B, ® =J(, 0, a Z*, ®)

holds for some ¥™* € M and Z* €WN,. Thus, (5.37) and (5.38) complete the proof.
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For r={0=1¢<---<t,=T}and tE [t, t;.,), we denote 7(t) = {0
< tj+l_t< tj+2_t< e < tN_ t}.Putting

Ve(z, n, ®) = inf sup J(z, n, Y, B, D),

Bed, Yel

(5.29) yields the principle of dynamic programming below,

(5.39) Velz, n, @) =V, (t;, 0, Vo) (=, , D).
Namely, for 0 < s < T — ¢,

(5.40) Vois+t,m, @ =V, (t, 0, Voo, (s, -, D))
holds.

6. Principle of dynamic programming

For partitions 7 and %, we say 7 < 7 if #, C %, where #, denotes the set
of division points of 7 (see Section 4).

Prorosition 6.1. Suppose 7, < 7,,,, # = 1,2-- -, and put

(6.1) Vic,n, ®) = inf supJ(r,7,Y,B, D).

BEV4, YEU
Then,

62) V,( ,® 2V,

Tne1

( ,® and V, (z, n, &) — V(r, n, D) for any 7, 7.

Proof is easy.
In particular, Theorem 4.1 implies, for a tame function ¢

6.3) V. ( ,9)—V( , ¢) uniformly in any bounded set of [0, T] X H,

as B —> oo,

Moreover we will prove

Tueorem 6.1, Let 7, < 7,,, and lim || 7, || = 0. Then, V( , ®) of (6.3) does
not depend on a sequence {r,,}.

First we will prove the following lemma.

Lemva. Let P, =1{t,j=0,--, N}, P;=2, U{t} and t,_, <7<t
Then there is a constant k = k(@), independent of T, such that
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6.4) | V.(t,n, @ = Vat,m, @) | < k/t, — b, A+ 0D <Kzl Q@+ 7.

Proof of Lemma. For t € (t,_;, t;], > p, we put
(6.5) O = vty —t)vlt,, —t,) - vt —t_)o.
Since 7 and 7 have the same division points on [tl,, D, (5.29) implies

(6.6) ®(p) = inf supJ(t—+¢,, 0, Y, B, ¢) = inf supJ(t—t,n, Y,B, ¢),

Bed, Yel BeAz Ye

6.7 v, —t,, )@ = inf sup J(t—¢t,_,, n, Y, B, @), say @*(17),

Beld, YeM

and

6.8 v(r—t,,Dvlt, —D@m) = inf supJ(t—¢t,_, n, Y, B, ¢), say D).

Bedz Yelt

Therefore, we see, from (4.3),

(6.9) lo* () — 0 | < Cyl@) vE, — t,_, A+l
and
(6.10) | &) — o) | < Cyl@) VE, — £, A+ 0.

Again same arguments yield

(6.11) | Vo(t, n, @) —v(t) - v(t,_, — t,_) D(n) |
= o) vty — t,_) () — v(t) - vlt,, — t,_) D)) |
< sup E|0%EG,_, 0, Y, D) — 0EE_, 1Y, 2)|

YeM.ZeN
< Cylply ty =t A+ S};Ellé(fp_p n,Y, )< /E((P)th —t,, A+ ()

with a constant lE((p) by (2.3), and similarly for 7. This concludes the proof.
More generally, we obtain

(6.12) | V.t n, @) — Vilt, n, @) | < KX (VA + [0

with a constant k™ (¢), if Pr=%, Ulr, 5, 1,7,

Proof of Theorem 6.1. Let m V 7 be the partition with division points &, U
Pi. Setting 7, = @, V 7y, M4, k=1,2, -} and {m,,, n=1,2,- - -} again

satisfy the condition of Theorem. Put V=Im V., V, = lim,_., V; , V' =lm V;
and V, = lim,_., Ve, Then
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(6.13) Vis Ve,
holds. Moreover, (6.12) implies

(6.14) | Ve, n,0) =V, (8,1, @) | < k@I, 1A+ 7 D.
Hence, letting z to oo, we get

(6.15) V=V,k=1,2,---.

In the same way, we see

(6.16) V=V,n=12,-

Together with (6.13), we have

(6.17) V< V,,M for any #, k.

As k— o0, (6.16) and (6.17) imply

(6.18) V<V, =V.

This completes the proof of Theorem 6.1, since we can see the converse inequality
in the same way.

Now we will verify the principle of dynamic programming for V with a tame
terminal function ¢.

THEOREM 6.2. V satisfies the principle of dynamic programming, namely
(6.19) V(t+ s, n, @) = V¢, 0, Vs, -, @)).
Proof. Suppose that 7, < 7, and I T, |— 0. Appealing to Theorem 6.1, we

may assume ! € 9’,,”, n=1,2,---, for simplicity. Now the principle of dynamic
programming (5.29) yields

(6.20) V,(t+s,m, 0 =V,(t, 0, V,(s, -, )

where V, = V.

On the other hand V,( , ¢) is decreasing to V( ,¢) uniformly in any
bounded set of [0, T] X H. Thus, for any € > 0 and 7 > 0, there is a large
N = N(e, 7, such that, for n > N,

6.21) | Vo (t, n, Vi (s, , @) — V¢, 1, V(s,+, o) |
< sl}lgif(t, Y, Z, Vs, ,0)—=J@t,n Y, Z Vs, -, o)l

https://doi.org/10.1017/50027763000004554 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000004554

STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS 97
SsupE|V,(s, &, 1, Y, 2,9 =V, Etn, Y, 2), ¢
Y.z
<e+ k(@) supEQA+ &G0, Y, DI;1E¢ 0, Y, D=7
Y.z

Seth@A+ahinls™

holds. So, as n— o0, V,( , V,(s, , ¢)) is decreasing to V,( , V(s, , ¢))
uniformly in any bounded set of [0, 7] X H and partition 7. This fact together
with (6.2), implies

(6.22) V,(t,n, V,(s, @) — V(t, n, Vs, -, @) for any ¢ and 7.

Now we can conclude the proof by (6.20).

Remark. We introduce the lower value function in the same way as the up-
per one, putting

W,(t, n, ® = sup inf J(t, n, a, Z, D).

aelyr ZeN
Under the same condition of Theorem 6.1, W,[” is increasing to W, defined by

W, n, @) = sup inf J(¢, n, a, Z, D).

asUI, ZzeN
.

For a tame terminal function ¢, W(¢, 5, ¢) is independent of a sequence {z,} and
(6.19) holds.
When V and W coincide, we call it the value function.

7. Viscosity solution of min-max equation
We will study the Cauchy problem of min-max equation (7.1) arising in our

stochastic differential game.

2oult, m) + FDu(t, ), Dult, ), 1) =0 in (0, T) x H

(7.1)
#(0) = ¢, (= tame function),

where D = Fréchet derivative in H and

(7.2) F(S, p, )
= — minmax |5 (S, D, £y, D) + <P, Ly, D — ey +hin, y, D |

z€¥ ye¥y
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= maxmin| X (= SF(y, D1, £, D) + b, Ay, D> — h(n, y, D |

ZEX ye¥Y

where <, > = duality pairing between H> and H * under H= H™ and A(y, 2) =
— Ly, 2 + ¢l

Now we will define a viscosity subsolution (resp. supersolution) of (7.1),
according to [2. part 4] and [8. part 2]. Since the min-max equation is more gener-
al than Bellman equation, our definition is slightly different from theirs. Let us set

?={p<s 0, T) X H) n CU0, T] X H) ; weakly lower
semi-continuous (WLSC in short) and the following (7.3)—(7.5) hold,
(7.3) %(té is Lipschitz continuous

(7.4) D¢ is Lipschitz continuous and a continuous mapping from (0, T) X H
into H? with sup,, || D¢, - ) [, < o

(7.5) (D*p(t, On, ) is uniformly continuous in any bounded set of (0, T)
X H X H}.

DeriNITION 7.1, % € UC,, ([0, T) X H) is called a viscosity subsolution of
(7.1) if
(7.6) u is WUSC (weakly upper semi-continuous) on (0, 7)) X H and linear
growth,
(7.7) for any A > 0 and ¢ € D, the following inequality holds at each global max-
imum point (¢, ) € (0, T) X Hof u(8, n) — ¢80, n) — 2|0,

90, 0 + FD'9, O + 220, Dy(t, D, O < — 226 = A) | ¢

with A, of (2.7), and
(7.8) u(0) = o.
DeriniTION 7.2, € UC,, ([0, T) X H) is called a supersolution of (7.1), if
(7.9) uis WLSC on (0, 7) X H and linear growth,
(7.10) for any A > 0 and ¢ € D, the following inequality holds at each global
minimum point (¢, ) € (0, T) X Hof u(8, n) + ¢@, n) + A5 I,
- %9? t, O +F(—=D¢t, 0 — 221, — DY, O, O =2~ ) | ¢

with A, of (2.7), and
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(7.11) u(0) = .

u is a viscosity solution, if it is both a viscosity subsolution and a viscosity
supersolution. Hereafter, we suppress viscosity, for simplicity, and call viscosity
sub- and super- solutions just sub- and super- solutions, respectively.

Now we state the following theorem.

TueOREM 7.1. The upper value function V( , @) is a wviscosity solution of
min-max equation (7.1).

Proof. Since V € LUC([0, T1 X H) 0 C([0, T1 X H,), V(+) — a| - I} is
weakly USC and bounded above. Suppose that ¢ € @ and V(6, n) — ¢(6, ) —
A 5 IF has a global maximum at (¢, ) € (0, T) X H. Now let us assume that

(7.12) V) =V(-, ) =lmV, (-, ¢),

recalling Theorem 6.1. Since V satisfies the principle of dynamic programming, we
have

]
(7.13) 0= inf supEfo hEW@, Y, Bde+ Vit — 6, £6)) — V(t, O

peu4,, Yeu
6
< igfsngfo hE@, Y, Bdc+ pt— 0, EO) — o, O +2(E@O [P = I1CP)
where £(7) = &(z, {, Y, B). Thus, Itd’s formula yields

(7.14) 0 <infsup E [fah(s(r), Y,p) — %%i t—r, &)
B Y 0
—(Dg(t— 7, &), AV, HE@)
+ 5 (D't = 7, ED (Y, PER), AT, HED)

— 20460, A(Y, DE@) + | (¥, PE@ [de].

Using (7.3)~(7.5) and Proposition 3.1, we evaluate each term of (7.14), namely we

have (7.15) ~ (7.22) below, putting m = sup | D¢, *) |, a = %?(t, O,p=
t<T

Dy(t, 0, §=D'¢(t, O and M(z, () = | L + [ g, O 14,0 dz

(7.15) E|20 - 0~ a| < k(o] + M, )
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(7.16) E| D¢t — 7, (1), A(Y, B (E(D) — O |
SE|D¢t— 7, E@ 1A, pED - O,
< kmE| &) — ¢l < k,M(z, O).

Since, for any & > 0, there is 6 = (g, ¢, {) > 0 such that | D¢t — 7, n) —pl,
< g, whenever | 7| < dand|n — ¢ | < 6, we get

(717 E|<D¢t— 1, &) —pl, <e+2mP(|& (@ — L] o
<e+2mMi(z, 0 /5.
Denoting the Lipschitz constant of D¢ by 7, we see
(7.18) | (D*¢(8, &n, I <rlnl.
Since, for any ¢ > 0 and R > 0, there is §, = J,(¢, ) > 0 such that
| (D*¢(8, &n, n) — (D*¢B, 7, M| <e

whenever | 6 — 0| <8, [ — & <8y, Iln — 7] <8y, and | &, 1E], Inll, 171 <R,
we get

(7.19)  E|(D*t— 1, E)(FY, PO, F(Y, BO — (S, B fY, DD
<et+2r|fEICPF@UED ] > B + P E@ — ] > )
<e+2r| FEICPUENED P /RY + MP(z, O /6D)

for a large R > | fl. I C 1.

(7.20) E| Dot — 7, E@)(FY, RED), F(Y, BED)
— (Dt — 7, E@Q)FY, RO, RO

<rlflLEIE@ = +20ClEIE@ = ¢D
<rlfIEWMe, O +2]Cl Mk, O).
(7.21) — 2AE {&(n), A(Y, P&()>
= — 2AElc| €@ I — <&@, L(Y, B&(D)]
<20, — ) El&@ F =24, — ol ¢+ EQe@ P - 1]
<22~ o ¢ + k¢l Mz, O.
(722) ElfY,BOL@F — 17, BLIFI <kl CIMG, O.

https://doi.org/10.1017/50027763000004554 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000004554

STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS 101

Inserting above (7.15)~(7.22) into (7.14), we obtain
)
(7.23) 0<intsupE|[ h(C, Y, B —a— <, A¥, PO
B Y 0

+1 s+ 205, LAY, B G|
+22Q, — 9 ICIF6 + o).
Next we calculate the main term of (7.23), putting
(7.24) Ky, 2 =h({,y,2) —a— <p, Aly, 2O
+5 (S +2AD [y, D, f@, D).

Since ( is fixed, K(y, 2) is constant in H. So, it can be regarded as a tame func-
tion. Let us consider a differential game, using K instead of 4. Putting

8
(7.25) V,(60, n, ¢) = inf supE_]; K(Y(s), BV (s))ds + (&, 0, Y, B)

Bed, Yell

and P, = {tp,p=0,-~-,N}, the principle of dynamic programming (5.39)
asserts

(7.26) Vo0, n, @) = Volty 1, Ve, (0 — 1y, -, ).

Setting ¢ = 0, we have, for 6 € [¢,, t,,;) and { € H

6-t
(7.27) Vi@~ t,, §,0) =minsup E [ K(Y(s), Dds.

2€% Yep 0

Noting

t t
(7.28)  sup Ef K(Y(s), 2)ds < f max K(Y, z)ds = max K(y, 2)t
0 0

Yel Ye¥ yey

t t
=maxE [ K(y, Dds < sup E [ K(¥(s), D,
Yel 0

yEY (1]
we get

(7.29) Vea, (0 — t,, ¢, 0) = min max K(y, 2) (6 — t,) = p(6 — ¢t,)
2€¥ Ye¥

where ¢ = min max K(y, 2). Again it follows from (5.39) that
2€% Yeds

(730) Vﬂ(tﬁ, n, ﬂ(ﬁ - tp)) = Vn(tp—ly 7, IA/n'(tp_l)(tp - tp-—l’ * #(0 - ti’))’
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and
Velt,_) @, (60— 1)) = pt + (60— t,).
Thus, we obtain
V.(6, 1, 0) = ub.

Therefore

6
(7.31) ir;f sngj; K(Y(s), (V) (s))ds = lim V, (6, 0, 0) = pb,

holds. Now, (7.23) concludes
(7.32) — 220, — O I CIF < po.

Recalling the definition of g, (7.32) asserts that Vis a subsolution.

Since we can prove that V is a supersolution in the similar way, the proof is
completed.

In the finite dimensional case (see [3], [5]), a subsolution (resp. supersolution)
can be defined by super differential (resp. subdifferential) instead of test func-
tions. But, in our case, this equivalence is open. Here we remark on super differen-
tial J"u (resp. subdifferential J %) for # € UC,,,((0, T) X H). J"u is defined by
(7.33)

(733) Jult, ) ={(a,p, ) ER' X H* X &;

wt+ 0, C+m) Sult, O +ab+ o, m) +5 S, m + ol 6]+ 7 )

for (¢, € (0, 7) XH,
where % = space of all continuous linear operators from H to H*(= H) (J~ (w)
is defined by (7.33) with the opposite inequality).
Remark. Let u € UC,,.([0, T) X H) be weakly USC and bounded above, say

M = sup u(6, n). Suppose

o0
(7.34) sup (6, n) = — o, as | 5| — oo,

6€(0,T]

Let us fix (¢, ) € (0, ) X H and 0 > 0 arbitrarily. Then, for any a >
M= ult, ) +1)/4,

(7.35) @, n) —alln—CP,+16—t" <ut,O—1
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holds, whenever | n — CHz_l + |6 —¢>> 8. On the other hand, it follows from
(7.34) that there is a positive number #, such that

(7.36) w,n) <ult,O—1, ifln]> m.

But, | [, is WLSC, because || 7 |-, = sup{(n, ¢) ; ¢ € H, and | e| = 1}. Hence
u—oa - — C||Z~1+ | - — ¢1* has a global maximum point (8, &), such that

(7.37) ICl<mand | {—CIE,+16—t] <a.

Therefore, setting B = (I — 4) ™', where 4 = Laplacian operator,
u@+6,C+n <u@ O +2a6—06+2aBCL-0,n +aBy, n +ab’
holds. Noting B(E — Q) € H® and B € € we get

(7.38) Qa6 —1,2aBE— 0, aB) € J"u6, D.

Since ¢, { and d are arbitrary, (7.37) and (7.38) yield that {(4, n) € (0, T) X H ;
J u(6, p) #+ ¢} is dense in R* X H '-topology.

8. Example

In this section, we will deal with a simple example, where the upper value
function is a unique viscosity solution in a class of finite dimensional functions on

H.
Setting 0, = % let us consider SPDE (8.1) below,
n N
(8.1) de(x, b = X o' (YD), Z() @ — (x2/4)E(x, ©) dt
i—1

+ f(Y(®), Z()E(x, )dW(D),
with initial condition
&z, 0 =n.

Although SPDE (8.1) does not satisfy the condition; ¢ = constant, we can easily
see the same results, using an Hermite base of H. Let us assume (al)~(a3) below.
(al) ai(y, z) and f(y, 2z) are Lipschitz continuous in ¥ X %,

(a2) there is a positive number 2™ such that

0'(y, 2) = 2¥ for any y and

(a3) k(- ,y, 2 and an initial function ¢ are tame functions of Hermite base e,
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and bounded.

Here the Hermite base is defined as follows. For a multi-index k = (k;,- -, k,),
k, > 0.

n
(8.2) e, =1e(r) forz= (x, -, z,)ER"

i=1

2
where e,(x) = (272‘)_1/4exp(* %) for £ € R', and

e,(r) = (— l)m(\/ﬁm!)_l/z[exp<%2)] <%)m exp< 2“72) forr€R Y m=1,2,--.

Appealing to the following fact,

d _1

%em(x) =5 (m+1 e,., (@ —yme,_ (),
we have, for n = 2 ¢, e, € H,
(8.3) on = % (Z vk +1 ey, — 2 i)

where kI, = (k, -+ -, k; £ 1, -+, k,). Therefore 0;n € H, if and only if
> CZ k; < oo, Repeating this argument, we see

ProposiTION 8.1.
If ek’ <oo thenn € H’, p=0,1,2, .

Moreover, e,, satisfies the following equation

(8.4) e, — (x*/0e, = — (m + %)em, m=20,1,2,---.

Hence, employing the formal expantion of (), say
(85) &0 = 5 X, (e,
we have SDE
y [dX&(t) = — (=o' v, z0) (K +1)) at + rvd, z0)x,Oawd
X0 = @, ).

(8.6) has a unique solution with continuous path and
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®.7) EI X0 <1 %,0 Fexp(— 24" k] + 2 + | 7))

holds, where | k| = 2k, and | f|,, = sup,, |f(y, 2) |.

Now for & of (8.5), we can easily see that £ € L*(2 x (0, T) ; H) N L*(Q;
C([0, T1; H)) and & provides a unique solution of (8.1). Moreover, the evaluation
(2.3)~(2.5) and Proposition 3.1 hold. Therefore the upper value function V(+ , ¢)
is a viscosity solution of the min-max equation (8.8) below.

% (t, ») — min max [%If(y, 2) |2(D*u(t, D, 1)

z€¥ ye¥Y
(8:8) + <Dutt, ), Ly, 0> + hn, y, 2] =0
u(0, ) = ¢(n),
where
(8.9) Ly, 2 =30y, 2@ — (&2/4)).

By (a3), 2 and ¢ can be written by
h(n,y,2 =h((n,e), ., e,y 2
and
o) = ¢Un, e), (1, &)

where e, = e, for k = lﬁj = k], -,k;). Let us set P = orthogonal projection onto
the linear space generated by (e, * * *,ey). Then, (8.6) derives that V(¢, n, ¢)
depends only on ((n, e)),"*,(n, ey)), namely

(8.10) V(t, n, ) = V&, Py, ¢).
Define v by
(8.11) u(t, by, -,by) = V(t, be, + -+ + byey; ©).

Again (8.6) implies that v is a unique viscosity solution of the following finite
dimensional min-max equation (8.12), and bounded by (a3),

ov . 1 i)
3 (¢, ) — min max L@, 2 e 50,05 & DB

8.12 no i i
( ) + Zfil 20y, 2 (k: +%‘

v(0, b) = ¢(b).

ov ~ _
> bjﬁb—j (t, b +h,y, z)] =0

From (8.10), we see V(t, 1, @) = v(t, (1, e), - -,(n, ey)).
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THEOREM 8.1. Suppose that W € BUC([0, T] X H) is a viscosity solution of
(8.8) and W(t, ) = W, Py). Then W=V.

Proof. Suppose that ¢ € C*((0, T) X R") has the two properties below,
(1) %[;— is Lipschitz continuous
and

(11) 5;0— and ﬂg)— are bounded.

Put ¢(t, ) = ¢(t, (n, ), *,(n, €y)). Then ¢ € D by (i) and (ii).
The function %, defined by
w(t, by, -,by) = W(t, be,+ -+ -+ byey)
is continuous, since W is weakly continuous, and
(8.13) wt, n) =, (n,e),  ,(n, e))

holds.

Soppose that @ — ¢ has a unique maximum at (f, b) € (0, T) x R", and
Wi(t, n) — ¢(t, n) — A n |’ has a global maximum at (¢, 1,). Appealing to
IPnll < lnl we have

So, we may assume P7n, = 71,. Therefore, as A — 0, ¢, and (n,, e;) tend to t and I;j
respectively and £, > 0 for small A. Fixing A arbitrarily and putting f, = s,
(n,, ) = B, and B = (B, *,By), we can easily see

815 2,0 —minmax| 5 1%, 2 255 g, + 21 81

y k,j=1 aﬁ anB
+ % %} o' (y, z)(kf %) M + h(B, y, z)]

<224, BI%

Tending A to 0, (8.15) imllies that @ is a subsolution of (8.12).
By the same argument, we can show that @ is a super solution. Hence we get
W = v. Recalling (8.13), we conclude the proof.
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