ON THE RANGE OF AN INTEGRAL TRANSFORMATION

P. G. ROONEY

ABSTRACT. The range of the \mathscr{y}_{ν} transformation, defined by

$$
\left(Y_{\nu} f\right)(x)=\int_{0}^{\infty}(x t)^{\frac{1}{2}} Y_{\nu}(x t) f(t) d t
$$

is characterized on the spaces $\mathcal{L}_{\mu, p}$ defined by the norm

$$
\|f\|_{\mu, p}=\left(\int_{0}^{\infty}\left|x^{\mu} f(x)\right|^{p} \frac{d x}{x}\right)^{\frac{1}{p}}<\infty, \quad 1<p<\infty
$$

for $\mu=\frac{1}{2}-\nu$.

1. Introduction. Denote by \mathbf{C}_{0} the collection of complex-valued functions continuous and compactly supported in $(0, \infty)$ and by $[X, Y]$ the collection of bounded linear transformations from the Banach space X to the Banach space $Y,[X, X]$ being abbreviated to $[X]$. Also, if $1<p<\infty$, let $\gamma(p)=\max \left(1 / p, 1 / p^{\prime}\right)$, where $p^{\prime}=p /(p-1)$. The integral transformation we will study in this article is the \mathscr{Y}_{ν} transformation defined for $f \in \mathbf{C}_{0}$ by

$$
\begin{equation*}
\left(Y_{\nu} f\right)(x)=\int_{0}^{\infty}(x t)^{\frac{1}{2}} Y_{\nu}(x t) f(t) d t \tag{1}
\end{equation*}
$$

where Y_{ν} is the Bessel function of the second kind. We have studied this transformation earlier on the spaces $\mathcal{L}_{\mu, p}$ defined to consist of those complex-valued Lebesgue measurable functions on $(0, \infty)$ such that $\|f\|_{\mu, p}<\infty$, where

$$
\begin{equation*}
\|f\|_{\mu, p}=\left(\int_{0}^{\infty}\left|x^{\mu} f(x)\right|^{p} \frac{d x}{x}\right)^{\frac{1}{p}}, \quad 1<p<\infty \tag{2}
\end{equation*}
$$

In [6] it was shown that if $1<p<\infty$ and $\gamma(p) \leq \mu<\frac{3}{2}-|\nu|$, then $\mathscr{Y}_{\nu} \in\left[\mathcal{L}_{\mu, p}, \mathcal{L}_{1-\mu, q}\right.$] for all $q \geq p$ such that $q^{\prime} \geq 1 / \mu$. It was also shown there that, except when $\mu=\frac{1}{2}-\nu$, the range of \mathscr{Y}_{ν} on such $\mathcal{L}_{\mu, p}$ was the same as the range of the Hankel transformation H_{ν} on $\mathcal{L}_{\mu, p}$, that is $\mathscr{Y}_{\nu}\left(\mathcal{L}_{\mu, p}\right)=H_{\nu}\left(\mathcal{L}_{\mu, p}\right)$, where H_{ν} is defined for $\nu>-1$ and $f \in \mathbf{C}_{0}$ by

$$
\begin{equation*}
\left(H_{\nu} f\right)(x)=\int_{0}^{\infty}(x t)^{\frac{1}{2}} J_{\nu}(x t) f(t) d t, \tag{3}
\end{equation*}
$$

and J_{ν} is the Bessel function of the first kind. Since $H_{\nu}\left(\mathcal{L}_{\mu, p}\right)$ was given a fairly simple characterization in [5, Theorem 2], this characterization also applies to $\mathscr{Y}_{\nu}\left(\mathcal{L}_{\mu, p}\right)$ except when $\mu=\frac{1}{2}-\nu$. When $\mu=\frac{1}{2}-\nu$, in which case $-\frac{1}{2}<\nu \leq 0$, it is known that $\mathscr{Y}_{\nu}\left(\mathcal{L}_{\mu, p}\right) \subseteq$

[^0]$H_{\nu}\left(\mathcal{L}_{\mu, p}\right)$, but it was shown in [1, Theorem 5.1 and Corollary] that $\mathscr{y}_{\nu}\left(\mathcal{L}_{\mu, p}\right) \neq H_{\nu}\left(\mathcal{L}_{\mu, p}\right)$, and $\mathscr{Y}_{\nu}\left(\mathcal{L}_{\mu, p}\right)$ has not been characterized except when $\nu=0$, in which case $p=2$. In this article we shall characterize $\mathscr{Y}_{\nu}\left(\mathcal{L}_{\mu, p}\right)$ when $\mu=\frac{1}{2}-\nu$. A similar program was carried out for the \mathcal{H}_{ν} or Struve transformation on $\mathcal{L}_{-\left(\nu+\frac{1}{2}\right), p}$ in [4, Section 3] and for the extended Hankel transformation $H_{\nu}, \nu<-1$ when $\mu=\frac{3}{2}-\nu-2 l$ in [3, Section 6].

In Section 2 we prove a preliminary lemma, and in section three we give the characterization of $\mathscr{Y}_{\nu}\left(\mathcal{L}_{\mu, p}\right)$ when $\mu=\frac{1}{2}-\nu$.

Our notation will be that of [6], and we shall use the operator M_{α} whose definition and properties are given in [6, Section 1] and the Mellin transformation \mathcal{M} whose properties are also given there. Also, we shall use the operators P_{-}, Q_{+}and Q_{-}which are defined in [2, Sections 2 and 3] and whose properties are given there. One further notation that we use is $5^{+\infty}$ which is explained in [7, Section 1.7].
2. A preliminary lemma. In [6, Theorem 4.2] it was shown that on $\mathcal{L}_{\mu, p}$, where $1<p<\infty, \gamma(p) \leq \mu<\frac{3}{2}-|\nu|$,

$$
\mathscr{S}_{\nu}=-M_{\frac{1}{2}-\nu} H_{-} M_{\nu-\frac{1}{2}} H_{\nu}
$$

where H_{-}is the odd Hilbert transformation, for whose theory see [6, Section 3]. However, for our work here we shall need another representation of \mathscr{C}_{ν}, given by the following lemma.

Lemma 1. On $\mathcal{L}_{\frac{1}{2}-\nu, p}$, where $1<p<\infty, \gamma(p) \leq \frac{1}{2}-\nu<\frac{3}{2}-|\nu|, \nu \neq 0$,

$$
\begin{equation*}
\mathscr{Y}_{\nu}=-M_{\frac{1}{2}-\nu} P_{-} M_{\nu-\frac{1}{2}} H_{\nu} M_{\nu-\frac{1}{2}} Q_{+} M_{\frac{1}{2}-\nu} . \tag{4}
\end{equation*}
$$

Proof. From [6, Theorem 4.1], $\mathscr{Y}_{\nu} \in\left[\mathcal{L}_{\frac{1}{2}-\nu, p}, \mathcal{L}_{\frac{1}{2}+\nu, p}\right.$]. From the properties of the operators $M_{\alpha}, Q_{+}, H_{\nu}$, and P_{-}in the references cited in the Introduction, $M_{\frac{1}{2}-\nu}$ maps $\mathcal{L}_{\frac{1}{2}-\nu, p}$ boundedly onto $\mathcal{L}_{0, p}$, which is mapped boundedly into into itself by Q_{+}, and $M_{\nu-\frac{1}{2}}^{2}$ maps this boundedly onto $\mathcal{L}_{\frac{1}{2}-\nu, p} ; H_{\nu}$ now maps this boundedly onto $\mathcal{L}_{\frac{1}{2}+\nu, p}$ which is mapped boundedly onto $\mathcal{L}_{1, p}$ by $M_{\nu-\frac{1}{2}}$, and this last space is mapped boundedly into itself by P_{-}; finally $M_{\frac{1}{2}-\nu}$ maps $\mathcal{L}_{1, p}$ onto $\mathcal{L}_{\frac{1}{2}+\nu, p}$ boundedly. Thus both sides of (4) are in $\left[\mathcal{L}_{\frac{1}{2}-\nu, p}, \mathcal{L}_{\frac{1}{2}+\nu, p}\right]$, and thus since obviously \mathbf{C}_{0} is dense in $\mathcal{L}_{\mu, p}$, and since $\frac{1}{2}=\gamma(2) \leq \gamma(p) \leq \frac{1^{2}}{2}-\nu$, it suffices to prove (4) for $p=2$. For this we use the Mellin transformation \mathcal{M}, using [6, (1.10),(2.3) and (4.4)] and [2, Theorems 2.2 and 3.1]. Thus, if $f \in \mathcal{L}_{\frac{1}{2}-\nu, 2}$ and $\operatorname{Re} s=\frac{1}{2}-\nu$,

$$
\begin{aligned}
\left(\mathscr{M} M_{\frac{1}{2}-\nu} P_{-}\right. & \left.M_{\nu-\frac{1}{2}} H_{\nu} M_{\nu-\frac{1}{2}} Q_{+} M_{\frac{1}{2}-\nu} f\right)(s) \\
& =\left(\mathcal{M} P_{-} M_{\nu-\frac{1}{2}} H_{\nu} M_{\nu-\frac{1}{2}} Q_{+} M_{\frac{1}{2}-\nu} f\right)\left(s+\frac{1}{2}-\nu\right) \\
& =\frac{s-\frac{1}{2}-\nu}{s+\frac{1}{2}-\nu}\left(\mathcal{M} M_{\nu-\frac{1}{2}} H_{\nu} M_{\nu-\frac{1}{2}} Q_{+} M_{\frac{1}{2}-\omega} f\right)\left(s+\frac{1}{2}-\nu\right) \\
& =\frac{s-\frac{1}{2}-\nu}{s+\frac{1}{2}-\nu}\left(\mathcal{M} H_{\nu} M_{\nu-\frac{1}{2}} Q_{+} M_{\frac{1}{2}-\nu} f\right)(s)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{s-\frac{1}{2}-\nu}{s+\frac{1}{2}-\nu} m_{\nu}(s)\left(\mathcal{M} M_{\nu-\frac{1}{2}} Q_{+} M_{\frac{1}{2}-\nu} f\right)(1-s) \\
& =\frac{s-\frac{1}{2}-\nu}{s+\frac{1}{2}-\nu} m_{\nu}(s)\left(\mathcal{M} Q_{+} M_{\frac{1}{2}-\nu} f\right)\left(\frac{1}{2}+\nu-s\right) \\
& =\frac{s-\frac{1}{2}-\nu}{s+\frac{1}{2}-\nu} m_{\nu}(s) \frac{-\frac{1}{2}+\nu-s}{\frac{1}{2}+\nu-s} \tan \frac{\pi\left(\frac{1}{2}+\nu-s\right)}{2}\left(\mathscr{M} M_{\frac{1}{2}-\nu} f\right)\left(\frac{1}{2}+\nu-s\right) \\
& =m_{\nu}(s) \cot \frac{\pi\left(s+\frac{1}{2}-\nu\right)}{2}(\mathcal{M} f)(1-s)=-\left(\mathcal{M} \mathcal{Y}_{\nu} f\right)(s),
\end{aligned}
$$

where $m_{\nu}(s)$ is the multiplier associated with the Hankel transformation of order ν, that is

$$
m_{\nu}(s)=2^{s-\frac{1}{2} \frac{\Gamma\left(\frac{1}{2}\left(\nu+s+\frac{1}{2}\right)\right)}{\Gamma\left(\frac{1}{2}\left(\nu-s+\frac{3}{2}\right)\right)}, ., ~}
$$

and the result follows.
3. Characterization of the range. The following theorem gives the characterization of $\mathscr{Y}_{\nu}\left(\mathcal{L}_{\frac{1}{2}-\nu, p}\right)$.

Theorem 2. A function $g \in \mathscr{Y}_{\nu}\left(\mathcal{L}_{\frac{1}{2}-\nu, p}\right)$, where $1<p<\infty, \gamma(p) \leq \frac{1}{2}-\nu<\frac{3}{2}-|\nu|$ if and only if:
(a) $g \in H_{\nu}\left(\mathcal{L}_{\frac{1}{2}-\nu, p}\right)$;
(b) $\int_{1}^{\rightarrow \infty} t^{\nu-\frac{1}{2}} g(t) d t$ converges;
(c) $\phi \in H_{\nu}\left(\mathcal{L}_{\frac{1}{2}-\nu, p}\right)$, where

$$
\phi(x)=x^{-\frac{1}{2}-\nu} \int_{x}^{-\infty} t^{\nu-\frac{1}{2}} g(t) d t, x>0 .
$$

Proof. Without loss of generality, we may suppose $\nu \neq 0$; for the case $\nu=0$ was dealt with in [1, Theorem 5.2], and the conditons given there are the same as those of this theorem if one notes that when $\nu=0, p=2$, that $\mathcal{L}_{\frac{1}{2}, 2}=L_{2}(0, \infty)$, and that $H_{0}\left(L_{2}(0, \infty)\right)=L_{2}(0, \infty)$.

Suppose then that $\nu \neq 0$ and that $g \in \mathscr{Y}_{\nu}\left(\mathcal{L}_{\frac{1}{2}-\nu, p}\right)$, say $g=\mathscr{Y}_{\nu} f$ where $f \in \mathcal{L}_{\frac{1}{2}-\nu, p}$. Then (a) follows from [6, Theorem 4.1] and (b) follows from [1, Theorem 5.1]. From Lemma 1, $g=-M_{\frac{1}{2}-\nu} P_{-} M_{\nu-\frac{1}{2}} H_{\nu} M_{\nu-\frac{1}{2}} Q_{+} M_{\frac{1}{2}-\nu} f=M_{\frac{1}{2}-\nu} P_{-} M_{\nu-\frac{1}{2}} H_{\nu} \psi$, where $\psi=$ $-M_{\nu-\frac{1}{2}} Q_{+} M_{\frac{1}{2}-\nu} f$. Hence, since, as was shown in the proof of Lemma $1, M_{\nu-\frac{1}{2}} Q_{+} M_{\frac{1}{2}-\nu} \in$ $\left[\mathcal{L}_{\frac{1}{2}-\nu, p}\right], \psi \in \mathcal{L}_{\frac{1}{2}-\nu, p}$. But then $M_{\frac{1}{2}-\nu}\left(P_{-}\right)^{-1} M_{\nu-\frac{1}{2}} g=H_{\nu} \psi$. Since $g \in H_{\nu}\left(\mathcal{L}_{\frac{1}{2}-\nu, p}\right), g \in$ $\mathcal{L}_{\frac{1}{2}+\nu, p}^{2}$ and thus $M_{\nu-\frac{1}{2}} g \in \mathcal{L}_{0, p}$. Hence, from [2, Theorem 2.4],

$$
\begin{aligned}
\left(M_{\frac{1}{2}-\nu}\left(P_{-}\right)^{-1} M_{\nu-\frac{1}{2}} g\right)(x) & =x^{\frac{1}{2}-\nu}\left(x^{-1} \int_{x}^{\infty} t^{\nu-\frac{1}{2}} g(t) d t+x^{\nu-\frac{1}{2}} g(x)\right) \\
& =\phi(x)+g(x) .
\end{aligned}
$$

Hence $\phi=H_{\nu} \psi-g$, and since $g \in H_{\nu}\left(\mathcal{L}_{\frac{1}{2}-\nu, p}\right), \phi \in H_{\nu}\left(\mathcal{L}_{\frac{1}{2}-\nu, p}\right)$.

Conversely, suppose g satisfies (a), (b) and (c). Then ψ_{1} exists so that $g=H_{\nu} \psi_{1}$. But from [2, Theorem 3.1], since on $\mathcal{L}_{0, p}, Q_{+} Q_{-}=Q_{-} Q_{+}=I, Q_{+}$maps $\mathcal{L}_{0, p}$ one-toone onto itself, and hence $f_{1} \in \mathcal{L}_{\frac{1}{2}-\nu, p}$ exists so that $\psi_{1}=M_{\nu-\frac{1}{2}} Q_{+} M_{\frac{1}{2}-\nu} f_{1}$, and thus $g=H_{\nu} M_{\nu-\frac{1}{2}} Q_{+} M_{\frac{1}{2}-\nu} f_{1}$. Similarly $f_{2} \in \mathcal{L}_{\frac{1}{2}-\nu, p}$ exists so that $\phi=H_{\nu} M_{\nu-\frac{1}{2}} Q_{+} M_{\frac{1}{2}-\nu} f_{2}$. From Lemma 1,

$$
Y_{\nu} f_{1}=-M_{\frac{1}{2}-\nu} P_{-} M_{\nu-\frac{1}{2}} H_{\nu} M_{\nu-\frac{1}{2}} Q_{+} M_{\frac{1}{2}-\omega} f_{1}=-M_{\frac{1}{2}-\nu} P_{-} M_{\nu-\frac{1}{2}} g,
$$

or, using the definition of P_{-}in [2, Section 2]

$$
\left(\mathscr{y}_{\nu} f_{1}\right)(x)=-x^{\frac{1}{2}-\nu}\left(x^{\nu-\frac{1}{2}} g(x)-\int_{x}^{\infty} t^{\nu-\frac{3}{2}} g(t) d t\right)=-g(x)+x^{\frac{1}{2}-\nu} \int_{x}^{\infty} t^{\nu-\frac{3}{2}} g(t) d t .
$$

Similarly

$$
\begin{aligned}
\left(\mathscr{\nu}_{\nu} f_{2}\right)(x) & =-\phi(x)+x^{\frac{1}{2}-\nu} \int_{x}^{\infty} t^{\nu-\frac{3}{2}} \phi(t) d t \\
& =-x^{-\frac{1}{2}-\nu} \int_{x}^{\infty} t^{\nu-\frac{1}{2}} g(t) d t+x^{\frac{1}{2}-\nu} \int_{x}^{\infty} t^{-2} d t \int_{t}^{\infty} u^{\nu-\frac{1}{2}} g(u) d u .
\end{aligned}
$$

Thus, integrating by parts,

$$
\begin{aligned}
\left(Y_{\nu} f_{2}\right)(x)= & -x^{-\frac{1}{2}-\nu} \int_{x}^{\rightarrow \infty} t^{\nu-\frac{1}{2}} g(t) d t \\
& +x^{\frac{1}{2}-\nu}\left(-\left.t^{-1} \int_{t}^{\infty} u^{\nu-\frac{1}{2}} g(u) d u\right|_{x} ^{\infty}-\int_{x}^{\infty} t^{\nu-\frac{3}{2}} g(t) d t\right) \\
=- & x^{\frac{1}{2}-\nu} \int_{x}^{\infty} t^{\nu-\frac{3}{2}} g(t) d t=-g(x)-\left(y_{\nu} f_{1}\right)(x),
\end{aligned}
$$

and thus,

$$
g(x)=-\left(Y_{\nu} f_{1}\right)(x)-\left(\mathscr{Y}_{\nu} f_{2}\right)(x)=\left(\mathscr{Y}_{\nu} f\right)(x)
$$

where $f=-f_{1}-f_{2}$. Clearly $f \in \mathcal{L}_{\frac{1}{2}-\nu, p}$, and thus $g \in \mathscr{Y}_{\nu}\left(\mathcal{L}_{\frac{1}{2}-\nu, p}\right)$, and the theorem is proved.

References

1. P. Heywood and P. G. Rooney, On the Hankel and some related transformations, Canad. J. Math. 50(1988), 989-1009.
2. ._On the inversion of the even and odd Hilbert transformations, Proc. Roy. Soc. Edinburgh Sect. A 109(1988), 201-211.
3. On the inversion of the extended Hankel transformation, J. Math. Anal. App. 160(1991), 284-302.
4. ___ On the Struve transformation, SIAM J. Math. Anal. 25(1994), 450-461.
5. P. G. Rooney, On the range of the Hankel transformation, Bull. London Math. Soc. 11(1979), 45-48.
6. \qquad On the \mathscr{Y}_{ν} and \mathcal{H}_{ν} transformations, Canad. J. Math. 32(1980), 1021-1044.
7. E. C. Titchmarsh, The theory of Fourier integrals, Oxford University Press, Oxford, 1937.

Department of Mathematics

University of Toronto
Toronto, Ontario
M5S IA1

[^0]: This research was supported by the Natural Sciences and Engineering Research Council of Canada. Received by the editors March 5, 1992.
 AMS subject classification: 44A15.
 (C) Canadian Mathematical Society, 1994.

