On Analytic Functions of Bergman BM O in the Ball

E. G. Kwon

Abstract. Let $B=B_{n}$ be the open unit ball of C^{n} with volume measure $\nu, U=B_{1}$ and \mathcal{B} be the Bloch space on $U . \mathcal{A}^{2, \alpha}(\mathrm{~B}), 1 \leq \alpha<\infty$, is defined as the set of holomorphic $\mathrm{f}: \mathrm{B} \rightarrow \mathrm{C}$ for which

$$
\int_{B}|f(z)|^{2}\left(\frac{1}{|z|} \log \frac{1}{1-|z|}\right)^{-\alpha} \frac{d \nu(z)}{1-|z|}<\infty
$$

if $0<\alpha<\infty$ and $\mathcal{A}^{2,1}(\mathrm{~B})=\mathrm{H}^{2}(\mathrm{~B})$, the H ardy space. Our objective of this note is to characterize, in terms of the Bergman distance, those holomorphic $\mathrm{f}: \mathrm{B} \rightarrow \mathrm{U}$ for which the composition operator $\mathrm{C}_{\mathrm{f}}: \mathcal{B} \rightarrow \mathcal{A}^{2, \alpha}(\mathrm{~B})$ defined by $C_{f}(g)=g \circ f, g \in \mathcal{B}$, is bounded. Our result has a corollary that characterize the set of analytic functions of bounded mean oscillation with respect to the Bergman metric.

1 Introduction

Let B be the open unit ball of C^{n} and S be the boundary of B . Let ν and σ denote the normalized (Euclidean) volume and surface measures on B and S respectively. Let U and T stand for B and S respectively when $\mathrm{n}=1$. The H ermitian inner product and the associated Euclidean norm in C^{n} are denoted by $\langle\mathrm{z}, \mathrm{w}\rangle=\sum_{j=1}^{n} z_{j} \bar{w}_{j}$ and $|z|=\sqrt{\langle\mathrm{z}, \mathrm{z}\rangle}$. The M öbius group, i.e., the group of biholomorphic self maps of B, will be denoted by \mathcal{M}. Let $\varphi_{z}, z \in B$, denote the self map of B defined by

$$
\varphi_{z}(w)=\frac{z-\frac{\langle w, z\rangle}{\langle z, z\rangle} z-\sqrt{1-|z|^{2}}\left(w-\frac{\langle w, z\rangle}{\langle z, z\rangle} z\right)}{1-\langle w, z\rangle}, \quad w \in B,
$$

if $z \neq 0$ and $\varphi_{0}(w)=-w, w \in B$. It is known $[R]$ that \mathcal{M} consists of functions of the form $\mathcal{U}_{\varphi_{2}}$, where \mathcal{U} denotes a unitary operator on B .

The space $\mathrm{BMOA}(\mathrm{B})$, analytic functions of bounded mean oscillation, consists of holomorphic f defined on B for which

$$
\sup _{z \in B} \lim _{r \rightarrow 1} \int_{S}\left|f \circ \varphi_{Z}(r \zeta)-f \circ \varphi_{Z}(0)\right|^{2} d \sigma(\zeta)<\infty
$$

(see [G] and [CRW]).

[^0]The Bloch space is denoted by $\mathcal{B}=\mathcal{B}(U)$. It consists of holomorphic f defined on U for which

$$
\|f\|_{\mathcal{B}}=\sup _{z \in U}\left(1-|z|^{2}| | f^{\prime}(z) \mid<\infty .\right.
$$

We define $\mathcal{A}^{2, \alpha}(\mathrm{~B}), 1 \leq \alpha<\infty$, as the set of holomorphic $\mathrm{f}: \mathrm{B} \rightarrow \mathrm{C}$ for which

$$
\int_{B}|f(z)|^{2}\left(\frac{1}{|z|} \log \frac{1}{1-|z|}\right)^{-\alpha} \frac{d \nu(z)}{1-|z|}<\infty
$$

if $0<\alpha<\infty$ and $\mathcal{A}^{2,1}(\mathrm{~B})=\mathrm{H}^{2}(\mathrm{~B})$, the H ardy space.
Our objective of this note is to characterize, in terms of the Bergman distance, those holomorphic $\mathrm{f}: \mathrm{B} \rightarrow \mathrm{U}$ for which the composition operator $\mathrm{C}_{\mathrm{f}}: \mathcal{B} \rightarrow \mathcal{A}^{2, \alpha}(\mathrm{~B})$ defined by $C_{f}(g)=g \circ f, g \in \mathcal{B}$, is bounded.

We denote by ϱ the Bergman distance in U :

$$
\varrho(z, w)=\frac{1}{2} \log \frac{|1-\bar{z} w|+|w-z|}{|1-\bar{z} w|-|w-z|}, \quad z, w \in U,
$$

and we make use of the convention $\varrho(z)=\varrho(z, 0), z \in U$.
Using the Bergman distance, we define some new function classes.
The Bergman Hardy class on $\mathrm{B}, \varrho^{\mathrm{P}}(\mathrm{B}), 0<\mathrm{p}<\infty$, is defined to consist of holomorphic $f: B \rightarrow U$ for which

$$
\lim _{r \rightarrow 1} \int_{S}\{\varrho(f(r \zeta))\}^{p} d \sigma(\zeta)<\infty .
$$

The class ϱ BMOA(B), analytic functions of bounded mean oscillation under the Bergman metric, consists of uniformly (with respect \mathcal{M}) $\varrho H^{1}(B)$ functions, that is, it consists of holomorphic $f: B \rightarrow U$ for which

$$
\sup _{z \in \mathrm{~B}} \lim _{r \rightarrow 1} \int_{\mathrm{S}} \varrho\left(\mathrm{f} \circ \varphi_{\mathrm{z}}(\mathrm{r} \zeta), \mathrm{f}(\mathrm{z})\right) \mathrm{d} \sigma(\zeta)<\infty .
$$

The class $\varrho \mathcal{A}^{1, \alpha}(\mathrm{~B}), 1 \leq \alpha<\infty$, consists of holomorphic $\mathrm{f}: \mathrm{B} \rightarrow \mathrm{U}$ for which

$$
\int_{B} \varrho(f(z))\left(\frac{1}{|z|} \log \frac{1}{1-|z|}\right)^{-\alpha} \frac{d \nu(z)}{1-|z|}<\infty
$$

if $0<\alpha<\infty$ and $\rho \mathcal{A}^{1,1}(\mathrm{~B})=\varrho \mathrm{H}^{1}(\mathrm{~B})$.
The classes $\varrho \mathrm{H}^{\mathrm{P}}(\mathrm{U})$ and $\varrho \mathrm{BMOA}(\mathrm{U})$, when $\mathrm{n}=1$, were defined and studied by S. Yamashita (see [Y1] and [Y2]). The class $\varrho \mathcal{A}^{1, \alpha}(\mathrm{U})$ was studied in connection with $\varrho \mathrm{H}^{\mathrm{P}}(\mathrm{U})$ (see [K2]).

Our results in this note are as follows.
Theorem Let $\mathrm{f}: \mathrm{B} \rightarrow \mathrm{U}$ be holomorphic and $1 \leq \alpha<\infty$. Then the following are equivalent.
(1) $g \circ f \in \mathcal{A}^{2, \alpha}(B)$ for all $g \in \mathcal{B}$.
(2) $f \in \varrho \mathcal{A}^{1, \alpha}(B)$.

Corollary Let $\mathrm{f}: \mathrm{B} \rightarrow \mathrm{U}$ beholomorphic. Then

$$
g \circ f \in B M O A(B) \quad \text { for all } g \in \mathcal{B} \Longleftrightarrow f \in \varrho B M O A(B)
$$

Without proof and without using the terminology of $\varrho \mathrm{BMOA}(\mathrm{B})$, the Corollary actually appeared in [RU, p. 22]. See [K1] for the same vein.

2 Lemmas

∇, Δ and $\tilde{\Delta}$ denote respectively the complex gradient, Laplacian and \mathcal{M}-invariant Laplacian of $B[R]$.

For notational convenience, we let $\mathrm{d} \tau(\mathrm{z})=\mathrm{d} \nu(\mathrm{z}) /\left(1-|\mathrm{z}|^{2}\right)^{\mathrm{n}+1}$ and

$$
\mathrm{d} \mu_{\alpha}(\mathrm{z})=\mathrm{c}(\alpha)(1-|\mathrm{z}|)^{-1}\left(\frac{1}{|\mathrm{z}|} \log \frac{1}{1-|z|}\right)^{-\alpha} \mathrm{d} \nu(\mathrm{z})
$$

where $\mathrm{C}(\alpha)$ is a constant determined to satisfy $\int_{\mathrm{B}} \mathrm{d} \mu_{\alpha}(z)=1$.
Lemma 1 ([P, Lemma 2.5]) If $f \in C^{2}(B), 0<r<1$ and $0<\varepsilon<1$, then

$$
\frac{d}{d r} \int_{S} f(r \zeta) d \sigma(\zeta)=\frac{1}{2 n} \frac{\left(1-r^{2}\right)^{n-1}}{r^{2 n-1}} \int_{r B}(\tilde{\Delta} f) d \tau
$$

and

$$
\begin{equation*}
\mathrm{f}(0)=\int_{\mathrm{S}} \mathrm{f}(\varepsilon \zeta) \mathrm{d} \sigma(\zeta)-\int_{\varepsilon B} \tilde{\Delta} \mathrm{f}(\mathrm{z}) \mathrm{G}(|\mathrm{z}|, \varepsilon) \mathrm{d} \tau(\mathrm{z}) \tag{2.1}
\end{equation*}
$$

where

$$
\mathrm{G}(\mathrm{t}, \varepsilon)=\frac{1}{2 \mathrm{n}} \int_{\mathrm{t}}^{\varepsilon} \frac{\left(1-\mathrm{r}^{2}\right)^{\mathrm{n}-1}}{\mathrm{r}^{2 \mathrm{n}-1}} \mathrm{dr}
$$

Lemma 2 Let f bea positive function of $\mathrm{C}^{2}(\mathrm{~B})$ with $\Delta \mathrm{f} \geq 0$ and $\tilde{\Delta} \mathrm{f} \geq 0$. If the radial limit function of f, which is also denoted by f, is in $L^{1}(S, d \sigma)$, then

$$
\begin{equation*}
\int_{\mathrm{B}} \mathrm{G}(\mathrm{z}) \tilde{\Delta} \mathrm{f}(\mathrm{z}) \mathrm{d} \tau(\mathrm{z})=\int_{\mathrm{S}} \mathrm{f}(\zeta) \mathrm{d} \sigma(\zeta)-\mathrm{f}(0) \tag{2.2}
\end{equation*}
$$

where

$$
G(z)=\frac{1}{2 n} \int_{|z|}^{1} \frac{\left(1-r^{2}\right)^{n-1}}{r^{2 n-1}} d r .
$$

If $1<\alpha<\infty$ and if $\mathrm{f} \in \mathrm{L}^{1}\left(\mathrm{~B}, \mathrm{~d} \mu_{\alpha}\right)$, then

$$
\begin{equation*}
\int_{\mathrm{B}} \mathcal{G}(\mathrm{z}) \tilde{\Delta} \mathrm{f}(\mathrm{z}) \mathrm{d} \tau(\mathrm{z})=\int_{\mathrm{B}} \mathrm{f}(\mathrm{z}) \mathrm{d} \mu_{\alpha}(\mathrm{z})-\mathrm{f}(0) \tag{2.3}
\end{equation*}
$$

where

$$
\mathcal{G}(z)=c(\alpha) \int_{|z|}^{1} \int_{r}^{1}(1-\varepsilon)^{-1}\left(\frac{1}{\varepsilon} \log \frac{1}{1-\varepsilon}\right)^{-\alpha}(1-r)^{n-1}\left(\frac{\varepsilon}{r}\right)^{2 n-1} d \varepsilon d r .
$$

Proof Apply (2.1) and let $\varepsilon \rightarrow 1$. Then the positivity of f and $\tilde{\Delta} \mathrm{f}$ with the increasing property of $\int_{\mathrm{S}} \mathrm{f}(\varepsilon \zeta) \mathrm{d} \sigma(\zeta)$ (because $\Delta \mathrm{f} \geq 0$) and that of $\mathrm{G}(|\mathrm{z}|, \varepsilon)$ makes the monotone convergence theorem legitimate, whence follows (2.2).

To see (2.3), integrate both sides of (2.1) with respect to

$$
2 n c(\alpha) \varepsilon^{2 n-1}(1-\varepsilon)^{-1}\left(\frac{1}{r} \log \frac{1}{1-r}\right)^{-\alpha} d \varepsilon
$$

over $(0,1)$ then the result becomes

$$
f(0)=\int_{B} f(z) d \mu_{\alpha}(z)-\int_{B} \mathcal{G}(z) \tilde{\Delta} f(z) d \tau(z) .
$$

Lemma 3 Let $f: B \rightarrow U$ beholomorphic and let $\lambda(z)=-\log \left(1-|z|^{2}\right), z \in B$. Let $g \in \mathcal{B}$ and let $F=g \circ f$. Then

$$
\begin{equation*}
\tilde{\Delta}|F|^{2}(z) \leq\|g\|_{\mathcal{B}}^{2} \quad \tilde{\Delta}(\lambda \circ f)(z), \quad z \in B . \tag{2.4}
\end{equation*}
$$

Proof Since

$$
\nabla\left(F \circ \varphi_{z}\right)(0)=g^{\prime} \circ f(z) \nabla\left(f \circ \varphi_{z}\right)(0),
$$

we have

$$
\begin{equation*}
\left|\nabla\left(\mathrm{F} \circ \varphi_{z}\right)(0)\right| \leq\|g\|_{\mathcal{B}} \frac{\left|\nabla\left(\mathrm{f} \circ \varphi_{z}\right)(0)\right|}{1-|\mathrm{f}(\mathrm{z})|^{2}} . \tag{2.5}
\end{equation*}
$$

It is easy to see that

$$
\Delta(\lambda \circ f)=4 \frac{|\nabla f|^{2}}{\left(1-|f|^{2}\right)^{2}},
$$

so that

$$
\begin{equation*}
\tilde{\Delta}(\lambda \circ f)(z)=\Delta\left(\lambda \circ f \circ \varphi_{z}\right)(0)=4 \frac{\left|\nabla\left(f \circ \varphi_{z}\right)(0)\right|^{2}}{\left(1-|f(z)|^{2}\right)^{2}} . \tag{2.6}
\end{equation*}
$$

Noting that

$$
\tilde{\Delta}|F|^{2}(z)=4\left|\nabla\left(F \circ \varphi_{z}\right)(0)\right|^{2},
$$

(2.4) now follows from (2.5) and (2.6).

Lemma 4 ([RU, Proposition 5.4]) There exist Bloch functions $\mathrm{g}_{\mathrm{j}}, \mathrm{j}=1,2$, such that

$$
\sum_{j=1}^{2}\left|g_{j}^{\prime}(z)\right| \geq \frac{1}{1-|z|^{2}}
$$

for all $\mathrm{z} \in \mathrm{U}$.

3 Proof of the results

Proof of Theorem Note first that

$$
\begin{equation*}
\lambda \circ f \leq 2 \varrho(f) \leq 2 \log 2+\lambda \circ f \tag{3.1}
\end{equation*}
$$

for $\mathrm{f}: \mathrm{B} \rightarrow \mathrm{U}$ holomorphic, so that

$$
\int_{\mathrm{S}}(\lambda \circ \mathrm{f})(\zeta) \mathrm{d} \sigma(\zeta)<\infty \Longleftrightarrow \int_{\mathrm{S}} \varrho(\mathrm{f}(\zeta)) \mathrm{d} \sigma(\zeta)<\infty .
$$

Suppose $f \in \varrho \mathcal{A}^{1, \alpha}(B)$. Let $g \in \mathcal{B}$ and $F=g \circ f$. Then $|F|^{2}$ and $\lambda_{\sim} \circ f$ are plurisubharmonic (see $[R, 7.2]$), so that $\Delta|F|^{2} \geq 0, \Delta(\lambda \circ f) \geq 0, \tilde{\Delta}|F|^{2} \geq$ and $\tilde{\Delta}(\lambda \circ f) \geq 0$. Hence we have

$$
\begin{equation*}
\int_{B}|F(\zeta)|^{2} d \mu_{\alpha}(z)-|F(0)|^{2} \leq\|g\|_{\mathcal{B}}^{2}\left\{\int_{B}(\lambda \circ f)(z) d \mu_{\alpha}(z)-(\lambda \circ f)(0)\right\} \tag{3.2}
\end{equation*}
$$

if $1<\alpha<\infty$. In fact,

$$
\begin{equation*}
\int_{B} \mathcal{G}(z) \tilde{\Delta}|F|^{2}(z) \mathrm{d} \tau(z) \tag{3.3}
\end{equation*}
$$

is bounded, by (2.4), by

$$
\|g\|_{\mathcal{B}}^{2} \int_{B} \mathcal{G}(z) \tilde{\Delta}(\lambda \circ f)(z) d \tau(z),
$$

which is, by (2.3), equal to the right side of (3.2), whence (3.3) is finite and, by (2.3) again, equal to the left side of (3.2).

When $\alpha=1$, the above process, using (2.2) instead of (2.3) and $\mathrm{G}(\mathrm{z})$ in place of $\mathcal{G}(\mathrm{z})$, gives

$$
\begin{equation*}
\int_{S}|g \circ f(\zeta)|^{2} d \sigma(\zeta)-|g \circ f(0)|^{2} \leq\|g\|_{\mathbb{B}}^{2}\left\{\int_{S}(\lambda \circ f)(\zeta) d \sigma(\zeta)-(\lambda \circ f)(0)\right\} . \tag{3.4}
\end{equation*}
$$

By (3.2), (3.4) with (3.1), $g \circ f \in \mathcal{A}^{2, \alpha}(B)$.
Conversely, suppose that $\mathrm{g} \circ \mathrm{f} \in \mathcal{A}^{2, \alpha}(\mathrm{~B})$ for all $\mathrm{g} \in \mathcal{B}$. Then by Lemma 4, there are $g_{j} \in \mathcal{B}, j=1,2$, such that

$$
\sum_{j=1}^{2}\left|\nabla\left(g_{j} \circ f \circ \varphi_{z}\right)(0)\right| \geq \frac{\left|\nabla\left(f \circ \varphi_{z}\right)(0)\right|}{1-|f(z)|^{2}}
$$

so that

$$
\sum_{j=1}^{2} \tilde{\Delta}|g \circ f|^{2}(z) \geq \tilde{\Delta}(\lambda \circ f)(z), \quad z \in B
$$

whence we have, using Lemma 2 with the same argument that we just applied in proving (3.2) and (3.4),

$$
\begin{equation*}
\sum_{j=1}^{2}\left(\int_{B}\left|g_{j} \circ f(z)\right|^{2} d \mu_{\alpha}(z)-\left|g_{j} \circ f(0)\right|^{2}\right) \geq \int_{B}(\lambda \circ f)(z) d \mu_{\alpha}(z)-(\lambda \circ f)(0) \tag{3.5}
\end{equation*}
$$

if $1<\alpha<\infty$ or

$$
\begin{equation*}
\sum_{j=1}^{2}\left(\int_{S}\left|g_{j} \circ f(\zeta)\right|^{2} d \sigma(\zeta)-\left|g_{j} \circ f(0)\right|^{2}\right) \geq \int_{S}(\lambda \circ f)(\zeta) d \sigma(\zeta)-(\lambda \circ f)(0) \tag{3.6}
\end{equation*}
$$

if $\alpha=1$. By (3.5), (3.6) with (3.1), $\mathrm{f} \in \varrho \mathcal{A}^{1, \alpha}(\mathrm{~B})$ in any case.

Proof of the Corollary Let $f: B \rightarrow U$ be holomorphic. Since the function $\log \left|1-\bar{f}(z) f \circ \varphi_{z}(w)\right|^{2}, w \in B$, is harmonic,

$$
\int_{S} \log \left|1-\bar{f}^{-}(z) f \circ \varphi_{z}(r \zeta)\right|^{2} d \sigma(\zeta)=\log \left(1-|f(z)|^{2}\right)^{2}
$$

whence

$$
\begin{align*}
\int_{S} \lambda\left(\frac{f(z)-f \circ \varphi_{z}(r \zeta)}{1-f(z) f \circ \varphi_{z}(r \zeta)}\right) d \sigma(\zeta) & =\int_{S} \log \frac{1}{1-\left|\frac{f(z)-f \circ \varphi_{z}(r \zeta)}{1-f(z) f \circ \varphi_{z}(r \zeta)}\right|^{2}} d \sigma(\zeta) \tag{3.7}\\
& =\int_{S} \log \frac{\left|1-f(z) f \circ \varphi_{z}(r \zeta)\right|^{2}}{\left(1-|f(z)|^{2}\right)\left(1-\left|f \circ \varphi_{z}(r \zeta)\right|^{2}\right)} d \sigma(\zeta) \\
& =\int_{S} \log \frac{1-|f(z)|^{2}}{1-\left|f \circ \varphi_{z}(r \zeta)\right|^{2}} d \sigma(\zeta) \\
& =\int_{S}\left(\lambda \circ f \circ \varphi_{z}\right)(r \zeta) d \sigma(\zeta)-(\lambda \circ f)(z), \quad 0<r<1
\end{align*}
$$

By the monotone convergence theorem, the last quantity of (3.7) tends to the right side quantity of (3.6) with $f \circ \varphi_{\mathrm{z}}$ in place of f as $\mathrm{r} \rightarrow 1$.

On the other hand, the M öbius invariance of ϱ (see [G]) says

$$
\begin{equation*}
\varrho\left(\mathrm{f} \circ \varphi_{\mathrm{z}}(\mathrm{r} \zeta), \mathrm{f}(\mathrm{z})\right)=\varrho\left(\frac{\mathrm{f}(\mathrm{z})-\mathrm{f} \circ \varphi_{\mathrm{z}}(\mathrm{r} \zeta)}{1-\mathrm{f}(\mathrm{z}) \mathrm{f} \circ \varphi_{\mathrm{z}}(\mathrm{r} \zeta)}\right) \tag{3.8}
\end{equation*}
$$

Now, by taking the supremum for all $z \in B$ on both sides of (3.4) and (3.6) after replacing f there by $f \circ \varphi_{z}$, the result follows by use of (3.1), (3.7) and (3.8).

References

[CRW] R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for H ardy spaces in several variables. Ann. of M ath. 103(1976), 611-635.
[G] J. B. Garnett, Bounded analytic functions. Academic Press, New York, 1981.
[K1] E. G. Kwon, Composition of Blochs with bounded analytic functions. Proc. Amer. Math. Soc. 124(1996), 1473-1480.
[K2] M._Mean growth of the hyperbolic H ardy class functions. M ath. Japon. 35(1990), 451-460.
[P] M. Pavlović, Inequalities for the gradient of eigenfunctions of the invariant Laplacian. Indag. Math. (1) 2(1991), 89-98.
[R] W. Rudin, Function Theory in the unit ball of C^{n}. Springer-Verlag, New York, 1980.
[RU] Wade Ramey and David Ullrich, Bounded mean oscillations of Bloch pullbacks. Math. Ann. 291(1991), 591-606.
[Y1] Shinji Yamashita, Hyperbolic H ardy class H ${ }^{1}$. M ath. Scand. 45(1979), 261-266. $\overline{5(1986)}, 983-1000$.

Department of M athematics Education
Andong National University
Andong 760-749
Korea

[^0]: Received by the editors M arch 19, 1997.
 This work was supported by KOSEF, Proj. No. 961-0102-010-1.
 AM S subject classification: 32A37.
 Keywords: Bergman distance, BM OA, H ardy space, Bloch function.
 (C)Canadian M athematical Society 1999.

