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On Analytic Functions of Bergman BMO in
the Ball

E. G. Kwon

Abstract. Let B = By be the open unit ball of C" with volume measure v, U = B and B be the Bloch space
onU. A%%(B), 1 < o < oo, is defined as the set of holomorphic f: B — C for which

, (1 1\ du(2)
A (ngl—m) Lo =

if0 < a < oo and A%1(B) = H(B), the Hardy space. Our objective of this note is to characterize, in terms of
the Bergman distance, those holomorphic f: B — U for which the composition operatorCs : B — .A%%(B)
defined by C¢(g) = g o f, g € B, is bounded. Our result has a corollary that characterize the set of analytic
functions of bounded mean oscillation with respect to the Bergman metric.

1 Introduction

Let B be the open unit ball of C" and S be the boundary of B. Let v and o denote the
normalized (Euclidean) volume and surface measures on B and S respectively. LetU and T
stand for B and S respectively when n = 1. The Hermitian inner product and the associated
Euclidean norm in C" are denoted by (z,w) = Z?:lzjvvj and |z| = /(z,z). The Mdbius
group, i.e., the group of biholomorphic self maps of B, will be denoted by M. Let ;,z € B,
denote the self map of B defined by

- <<‘;VZZ>>Z —/1—[z]2(w— <<‘;VZZ>>Z)

1—(w,z) ’

p (W) = w € B,

if z # 0and go(w) = —w, w € B. It is known [R] that M consists of functions of the form
Ue,, where U denotes a unitary operator on B.

The space BMOA(B), analytic functions of bounded mean oscillation, consists of holo-
morphic f defined on B for which

suplim/|f 0 py(r¢) — f 0, (0)?do(¢) < o0
—1 S

zeB '

(see [G] and [CRW]).
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The Bloch space is denoted by B = B(U). It consists of holomorphic f defined on U
for which

]l = sup(L — [z[*)[f'(2)| < oo.
zeU

We define A%*(B), 1 < a < oo, as the set of holomorphic f: B — C for which

1 1\ dv@)
/B'f(z)'2<|7'°91—z|> T | <

if0 < a < oo and A%1(B) = H?(B), the Hardy space.

Our objective of this note is to characterize, in terms of the Bergman distance, those
holomorphic f: B — U for which the composition operator C: B — A%*“(B) defined by
C¢(g) =go f,g € B, is bounded.

We denote by o the Bergman distance inU:

[1—zw| + |w — Z]
1

= z,wel
—w|—|w—z|" 7 ’

1
o(z,w) = - log |

and we make use of the convention o(z) = 0(z,0),z € U.

Using the Bergman distance, we define some new function classes.

The Bergman Hardy class on B, ogHP(B), 0 < p < oo, is defined to consist of holomor-
phic f: B — U for which

i [{o(1(:6))}" do(0) < .

The class o BMOA(B), analytic functions of bounded mean oscillation under the
Bergman metric, consists of uniformly (with respect M) oH(B) functions, that is, it con-
sists of holomorphic f: B — U for which

suplim [ o(f 0 ¢:(10). 1@)) do(0) < o

zeB

The class p.AY*(B), 1 < a < o0, consists of holomorphic f: B — U for which

1 1\ dv()
[eti@n(grooty) 7 <o

if0 < a < oo and pA(B) = oH'(B).

The classes pHP(U) and o BMOA(U), when n = 1, were defined and studied by S. Ya-
mashita (see [Y1] and [Y2]). The class p.A%*(U) was studied in connection with oHP(U)
(see [K2]).
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Our results in this note are as follows.

Theorem Let f: B — U be holomorphic and 1 < a < oco. Then the following are equiva-
lent.

(1) gof e A>*(B)forallg € B.
(2) f e pAY*(B).

Corollary Let f: B — U be holomorphic. Then
gof € BMOA(B) forallg e B «<— f € 9oBMOA(B).

Without proof and without using the terminology of o BMOA(B), the Corollary actually
appeared in [RU, p. 22]. See [K1] for the same vein.

2 Lemmas

V, A and A denote respectively the complex gradient, Laplacian and M-invariant Lapla-
cian of B [R].
For notational convenience, we let d(z) = dv(z)/(1 — |z|?)™* and

dho(®) = o)t ~ 2D 10g 1= ) vt

where ¢(a) is a constant determined to satisfy [, duq(z) = 1.
Lemmal ([P,Lemma25]) Iff €C?B),0<r<1land0 < e < 1,then

d r2)n 1
a/Sf(rg)ola(g): S /(Af)dT
and
. f0)= [ f(e)do(¢) — | Af dr
2.1) ©) /S (c0)do(©) /58A (2)6(2,£) dr(2).
where

2yn—1
6t =5 [ Sar—d

Lemma?2 Let f be a positive function of C2(B) with Af > 0 and Af > 0. If the radial limit
function of f, which is also denoted by f, isin L*(S, do), then

22) /B C@Af () dr() = /S £(¢)do(Q) — 1(0),

where . 1
_ r2yn—
G(2) - 1 (1-r9)

— ———dr
2n |Z| r2n—l
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If1 < a < ooandif f € L1(B,du,), then

(23) /BS(Z)Af(Z)dT(Z) = /B f(2) dpa(2) — £(0),

where

5@) = c(a) /Zl /rl(l —e) (% log i) - r)"*l(f)zn_1 de dr.

Proof Apply (2.1) and let ¢ — 1. Then the positivity of f and Af with the increasing
property of fs f(e¢) do(¢) (because Af > 0) and that of G(|z|, ) makes the monotone
convergence theorem legitimate, whence follows (2.2).

To see (2.3), integrate both sides of (2.1) with respect to

2nc(a)e2 (1 — g)—l(% log ﬁ) e

over (0, 1) then the result becomes

f(0) = /B f(2) dua(2) - /B S@Af(@2) dr(2).

Lemma3 Let f: B — U be holomorphic and let A\(z) = — log(1 — [z|?),z € B. Letg € B
andletF =go f. Then

(2.4) AFP@) < ok Ao @), zeB.
Proof Since
V(F 0 ¢;)(0) =g o F(2)V(f 0 ¢,)(0),
we have
|V(f 0 9)(0)|
(2.5) [V(F o)) < ||9H‘}3w-
It is easy to see that
_, VI
A()\ o f) = 4m,

so that

X [V(f 0 p,)(0))
(2.6) Ao £)@2) = Ao foyp)0) =4—— "2,

(1-1f@P)°

Noting that

AIFP(@) = 4V (F o 2)O),
(2.4) now follows from (2.5) and (2.6). ]
Lemma 4 ([RU, Proposition 5.4]) There exist Bloch functions g;, j = 1, 2, such that

2 1

/

. >
E |g](z)| =1- |Z‘2
=1

forallz € U.
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3 Proof of the results
Proof of Theorem Note first that
3.1 Ao f <20(f) <2log2+ Ao f

for f: B — U holomorphic, so that

/S (Mo H(Qdo(Q) < 00 = /S o(F(0)) do(0) < 0.

Suppose f € pA*(B). Letg € BandF =go f. Then |F|? and Ao f are plurisubhar-
monic (see [R, 7.2]), so that A|F|Z2 > 0, A(Ao f) > 0, A|F|? > and A(\ o f) > 0. Hence
we have

62 [IFORG® - FOP < 3 { [0e D@ @ - 0o NO |
B B

if 1 < a < oo. Infact,
(33) JECINGHOLHO

B
is bounded, by (2.4), by

lolfs [ S@AG e NE@ ).

B
which is, by (2.3), equal to the right side of (3.2), whence (3.3) is finite and, by (2.3) again,
equal to the left side of (3.2).

When o = 1, the above process, using (2.2) instead of (2.3) and G(z) in place of §(z),
gives

(3.4) /S\g o HORdo(0) — [go fO) < ||g|%3{/s(xo (O do(Q) — (Ao f)(O)}.

By (3.2), (3.4) with (3.1),go f € sza(B)_
Conversely, suppose that g o f € A%2(B) for all g € B. Then by Lemma 4, there are
0j € B, j = 1,2, such that

[V(f 0 )(0)]

2
Z [V(gj o f o)) > I[P

j=1

so that ,
> Algo f2@) > Ao f)(2), z€B,
j=1
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whence we have, using Lemma 2 with the same argument that we just applied in proving
(3.2) and (3.4),

2
(35) JZ;( L1012 1@ dnate) ~ oy f(0)|2) > [(e D@ i@~ (10 DO
ifl<a<ooor

2
(3.6) ;( /S 9 0 F(QPdo(¢) — lgj o f(0)|2> > /S (Ao 1)) do(() — (Ao £)(0)

if a = 1. By (3.5), (3.6) with (3.1), f € pA*(B) in any case. [ ]

Proof of the Corollary Let f: B — U be holomorphic. Since the function
log |1 — f(z)f o w,(W)|?, w € B, is harmonic,

/slog 11— f@F 0 @a(rOP do(C) = log(1 - |F @))%,

whence

(€N
£(2) — f 0 (10 ) !
by do = I
/s (1—f(z)fos0z(f0 © /sogl—|%| 7

y— (@1 0 ¢ulrQ)
(- |f(z>| )= 1fo@:(rOP)

4o Q)
@)
/'gl—lf o QP 27
_ /s (Vo fog)(rQ)do(Q) — (ho @), 0<r<L.

By the monotone convergence theorem, the last quantity of (3.7) tends to the right side
quantity of (3.6) with f o ¢, in place of f asr — 1.
On the other hand, the Mobius invariance of o (see [G]) says

(38) ol o 0:0). 1) = o B0 ).

1-1@)f o ¢u(rQ)

Now, by taking the supremum for all z € B on both sides of (3.4) and (3.6) after replac-
ing f there by f o ¢, the result follows by use of (3.1), (3.7) and (3.8). ]

https://doi.org/10.4153/CMB-1999-011-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1999-011-3

Analytic Functions of Bergman BMO 103

References

[CRW] R.Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables. Ann.
of Math. 103(1976), 611-635.

[G] J. B. Garnett, Bounded analytic functions. Academic Press, New York, 1981.

[K1] E. G. Kwon, Composition of Blochs with bounded analytic functions. Proc. Amer. Math. Soc. 124(1996),
1473-1480.

[K2] , Mean growth of the hyperbolic Hardy class functions. Math. Japon. 35(1990), 451-460.

[P] M. Pavlovi¢, Inequalities for the gradient of eigenfunctions of the invariant Laplacian. Indag. Math. (1)
2(1991), 89-98.

[R] W. Rudin, Function Theory in the unit ball of C". Springer-Verlag, New York, 1980.

[RU] Wade Ramey and David Ullrich, Bounded mean oscillations of Bloch pullbacks. Math. Ann. 291(1991),
591-606.

[Y1] Shinji Yamashita, Hyperbolic Hardy class H!. Math. Scand. 45(1979), 261-266.
[Y2] , Holomorphic functions of hyperbolically bounded mean oscillation. Boll. Un. Mat. Ital. B (6)
5(1986), 983-1000.

Department of Mathematics Education
Andong National University

Andong 760-749

Korea

https://doi.org/10.4153/CMB-1999-011-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1999-011-3

