Canad. Math. Bull. Vol. 42 (1), 1999 pp. 97-103

On Analytic Functions of Bergman BMO in the Ball

E. G. Kwon

Abstract. Let $B = B_n$ be the open unit ball of \mathbb{C}^n with volume measure ν , $U = B_1$ and \mathcal{B} be the Bloch space on U. $\mathcal{A}^{2,\alpha}(B)$, $1 \le \alpha < \infty$, is defined as the set of holomorphic $f: B \to \mathbb{C}$ for which

$$\int_B |f(z)|^2 \left(rac{1}{|z|}\lograc{1}{1-|z|}
ight)^{-lpha} rac{d
u(z)}{1-|z|} <\infty$$

if $0 < \alpha < \infty$ and $\mathcal{A}^{2,1}(B) = H^2(B)$, the Hardy space. Our objective of this note is to characterize, in terms of the Bergman distance, those holomorphic $f: B \to U$ for which the composition operator $C_f: \mathcal{B} \to \mathcal{A}^{2,\alpha}(B)$ defined by $C_f(g) = g \circ f, g \in \mathcal{B}$, is bounded. Our result has a corollary that characterize the set of analytic functions of bounded mean oscillation with respect to the Bergman metric.

1 Introduction

Let *B* be the open unit ball of \mathbb{C}^n and *S* be the boundary of *B*. Let ν and σ denote the normalized (Euclidean) volume and surface measures on *B* and *S* respectively. Let *U* and *T* stand for *B* and *S* respectively when n = 1. The Hermitian inner product and the associated Euclidean norm in \mathbb{C}^n are denoted by $\langle z, w \rangle = \sum_{j=1}^n z_j \bar{w}_j$ and $|z| = \sqrt{\langle z, z \rangle}$. The Möbius group, *i.e.*, the group of biholomorphic self maps of *B*, will be denoted by \mathcal{M} . Let $\varphi_z, z \in B$, denote the self map of *B* defined by

$$arphi_{z}(w) = rac{z - rac{\langle w, z
angle}{\langle z, z
angle} z - \sqrt{1 - |z|^2} ig(w - rac{\langle w, z
angle}{\langle z, z
angle} z ig)}{1 - \langle w, z
angle}, \quad w \in B,$$

if $z \neq 0$ and $\varphi_0(w) = -w$, $w \in B$. It is known [R] that \mathcal{M} consists of functions of the form $\mathcal{U}\varphi_z$, where \mathcal{U} denotes a unitary operator on B.

The space BMOA(*B*), analytic functions of bounded mean oscillation, consists of holomorphic *f* defined on *B* for which

$$\sup_{z\in B}\lim_{r\to 1}\int_{S}|f\circ\varphi_{z}(r\zeta)-f\circ\varphi_{z}(0)|^{2}\,d\sigma(\zeta)<\infty$$

(see [G] and [CRW]).

Received by the editors March 19, 1997.

This work was supported by KOSEF, Proj. No. 961-0102-010-1.

AMS subject classification: 32A37.

Keywords: Bergman distance, BMOA, Hardy space, Bloch function.

[©]Canadian Mathematical Society 1999.

The Bloch space is denoted by $\mathcal{B} = \mathcal{B}(U)$. It consists of holomorphic *f* defined on *U* for which

$$\|f\|_{\mathcal{B}} = \sup_{z \in U} (1 - |z|^2) |f'(z)| < \infty.$$

We define $\mathcal{A}^{2,\alpha}(B)$, $1 \leq \alpha < \infty$, as the set of holomorphic $f: B \to \mathbb{C}$ for which

$$\int_{B} |f(z)|^{2} \left(\frac{1}{|z|}\log\frac{1}{1-|z|}\right)^{-\alpha} \frac{d\nu(z)}{1-|z|} < \infty$$

if $0 < \alpha < \infty$ and $\mathcal{A}^{2,1}(B) = H^2(B)$, the Hardy space.

Our objective of this note is to characterize, in terms of the Bergman distance, those holomorphic $f: B \to U$ for which the composition operator $C_f: \mathcal{B} \to \mathcal{A}^{2,\alpha}(B)$ defined by $C_f(g) = g \circ f, g \in \mathcal{B}$, is bounded.

We denote by ρ the Bergman distance in *U*:

$$arrho({z},{w})=rac{1}{2}\lograc{|1-ar{z}w|+|w-z|}{|1-ar{z}w|-|w-z|},\quad {z},{w}\in U,$$

and we make use of the convention $\rho(z) = \rho(z, 0), z \in U$.

Using the Bergman distance, we define some new function classes.

The Bergman Hardy class on *B*, $\rho H^p(B)$, $0 , is defined to consist of holomorphic <math>f: B \to U$ for which

$$\lim_{r\to 1}\int_{S}\{\varrho(f(r\zeta))\}^{p}\,d\sigma(\zeta)<\infty.$$

The class ρ BMOA(*B*), analytic functions of bounded mean oscillation under the Bergman metric, consists of uniformly (with respect \mathcal{M}) $\rho H^1(B)$ functions, that is, it consists of holomorphic $f: B \to U$ for which

$$\sup_{z\in B}\lim_{r\to 1}\int_{S}\varrho(f\circ\varphi_{z}(r\zeta),f(z))\,d\sigma(\zeta)<\infty.$$

The class $\rho A^{1,\alpha}(B)$, $1 \leq \alpha < \infty$, consists of holomorphic $f: B \to U$ for which

$$\int_{B} \varrho\big(f(z)\big) \left(\frac{1}{|z|} \log \frac{1}{1-|z|}\right)^{-\alpha} \frac{d\nu(z)}{1-|z|} < \infty$$

if $0 < \alpha < \infty$ and $\rho \mathcal{A}^{1,1}(B) = \rho H^1(B)$.

The classes $\rho H^p(U)$ and ρ BMOA(*U*), when n = 1, were defined and studied by S. Yamashita (see [Y1] and [Y2]). The class $\rho A^{1,\alpha}(U)$ was studied in connection with $\rho H^p(U)$ (see [K2]). Analytic Functions of Bergman BMO

Our results in this note are as follows.

Theorem Let $f: B \to U$ be holomorphic and $1 \le \alpha < \infty$. Then the following are equivalent.

(1) $g \circ f \in \mathcal{A}^{2,\alpha}(B)$ for all $g \in \mathcal{B}$. (2) $f \in \varrho \mathcal{A}^{1,\alpha}(B)$.

Corollary Let $f: B \to U$ be holomorphic. Then

 $g \circ f \in BMOA(B)$ for all $g \in \mathcal{B} \iff f \in \rho BMOA(B)$.

Without proof and without using the terminology of ρ BMOA(*B*), the Corollary actually appeared in [RU, p. 22]. See [K1] for the same vein.

2 Lemmas

 ∇ , Δ and $\tilde{\Delta}$ denote respectively the complex gradient, Laplacian and \mathcal{M} -invariant Laplacian of *B* [R].

For notational convenience, we let $d\tau(z) = d\nu(z)/(1-|z|^2)^{n+1}$ and

$$d\mu_{\alpha}(z) = c(\alpha)(1-|z|)^{-1} \left(rac{1}{|z|}\lograc{1}{1-|z|}
ight)^{-lpha} d
u(z),$$

where $c(\alpha)$ is a constant determined to satisfy $\int_B d\mu_{\alpha}(z) = 1$.

Lemma 1 ([P, Lemma 2.5]) If $f \in C^2(B)$, 0 < r < 1 and $0 < \varepsilon < 1$, then

$$\frac{d}{dr}\int_{S}f(r\zeta) d\sigma(\zeta) = \frac{1}{2n}\frac{(1-r^2)^{n-1}}{r^{2n-1}}\int_{rB}(\tilde{\Delta}f) d\tau$$

and

(2.1)
$$f(0) = \int_{S} f(\varepsilon\zeta) \, d\sigma(\zeta) - \int_{\varepsilon B} \tilde{\Delta} f(z) G(|z|, \varepsilon) \, d\tau(z),$$

where

$$G(t,\varepsilon) = \frac{1}{2n} \int_t^{\varepsilon} \frac{(1-r^2)^{n-1}}{r^{2n-1}} dr.$$

Lemma 2 Let f be a positive function of $C^2(B)$ with $\Delta f \ge 0$ and $\tilde{\Delta} f \ge 0$. If the radial limit function of f, which is also denoted by f, is in $L^1(S, d\sigma)$, then

(2.2)
$$\int_B G(z) \tilde{\Delta} f(z) d\tau(z) = \int_S f(\zeta) d\sigma(\zeta) - f(0),$$

where

$$G(z) = \frac{1}{2n} \int_{|z|}^{1} \frac{(1-r^2)^{n-1}}{r^{2n-1}} dr.$$

E. G. Kwon

If $1 < \alpha < \infty$ and if $f \in L^1(B, d\mu_{\alpha})$, then

(2.3)
$$\int_B \mathfrak{G}(z)\tilde{\Delta}f(z) d\tau(z) = \int_B f(z) d\mu_\alpha(z) - f(0),$$

where

$$\mathfrak{G}(z) = c(\alpha) \int_{|z|}^{1} \int_{r}^{1} (1-\varepsilon)^{-1} \left(\frac{1}{\varepsilon} \log \frac{1}{1-\varepsilon}\right)^{-\alpha} (1-r)^{n-1} \left(\frac{\varepsilon}{r}\right)^{2n-1} d\varepsilon \, dr$$

Proof Apply (2.1) and let $\varepsilon \to 1$. Then the positivity of f and $\tilde{\Delta} f$ with the increasing property of $\int_{S} f(\varepsilon\zeta) d\sigma(\zeta)$ (because $\Delta f \geq 0$) and that of $G(|z|, \varepsilon)$ makes the monotone convergence theorem legitimate, whence follows (2.2).

To see (2.3), integrate both sides of (2.1) with respect to

$$2nc(\alpha)\varepsilon^{2n-1}(1-\varepsilon)^{-1}\left(\frac{1}{r}\log\frac{1}{1-r}\right)^{-\alpha}d\varepsilon$$

over (0, 1) then the result becomes

$$f(0) = \int_B f(z) \, d\mu_\alpha(z) - \int_B \mathfrak{G}(z) \tilde{\Delta} f(z) \, d\tau(z).$$

Lemma 3 Let $f: B \to U$ be holomorphic and let $\lambda(z) = -\log(1 - |z|^2)$, $z \in B$. Let $g \in \mathcal{B}$ and let $F = g \circ f$. Then

(2.4)
$$ilde{\Delta}|F|^2(z) \leq \|g\|_{\mathcal{B}}^2 \quad ilde{\Delta}(\lambda \circ f)(z), \quad z \in B.$$

Proof Since

$$\nabla (F \circ \varphi_z)(0) = g' \circ f(z) \nabla (f \circ \varphi_z)(0)$$

we have

(2.5)
$$|\nabla (F \circ \varphi_z)(\mathbf{0})| \leq \|g\|_{\mathcal{B}} \frac{|\nabla (f \circ \varphi_z)(\mathbf{0})|}{1 - |f(z)|^2}$$

It is easy to see that

$$\Delta(\lambda\circ f)=4rac{|
abla f|^2}{(1-|f|^2)^2},$$

so that

(2.6)
$$\tilde{\Delta}(\lambda \circ f)(z) = \Delta(\lambda \circ f \circ \varphi_z)(0) = 4 \frac{|\nabla(f \circ \varphi_z)(0)|^2}{(1 - |f(z)|^2)^2}.$$

Noting that

$$\tilde{\Delta}|F|^2(z) = 4|\nabla(F\circ\varphi_z)(0)|^2,$$

(2.4) now follows from (2.5) and (2.6).

Lemma 4 ([RU, Proposition 5.4]) *There exist Bloch functions* g_j , j = 1, 2, such that

$$\sum_{j=1}^2 |g_j'(z)| \geq rac{1}{1-|z|^2}$$

for all $z \in U$.

100

Analytic Functions of Bergman BMO

3 Proof of the results

Proof of Theorem Note first that

$$(3.1) \qquad \qquad \lambda \circ f \le 2\varrho(f) \le 2\log 2 + \lambda \circ f$$

for $f: B \to U$ holomorphic, so that

$$\int_{S} (\lambda \circ f)(\zeta) \, d\sigma(\zeta) < \infty \iff \int_{S} \varrho(f(\zeta)) \, d\sigma(\zeta) < \infty.$$

Suppose $f \in \rho \mathcal{A}^{1,\alpha}(B)$. Let $g \in \mathcal{B}$ and $F = g \circ f$. Then $|F|^2$ and $\lambda \circ f$ are plurisubharmonic (see [R, 7.2]), so that $\Delta |F|^2 \ge 0$, $\Delta(\lambda \circ f) \ge 0$, $\tilde{\Delta} |F|^2 \ge$ and $\tilde{\Delta}(\lambda \circ f) \ge 0$. Hence we have

(3.2)
$$\int_{B} |F(\zeta)|^2 d\mu_{\alpha}(z) - |F(0)|^2 \leq ||g||_{\mathcal{B}}^2 \left\{ \int_{B} (\lambda \circ f)(z) d\mu_{\alpha}(z) - (\lambda \circ f)(0) \right\}$$

if $1 < \alpha < \infty$. In fact,

(3.3)
$$\int_{B} \mathfrak{S}(z) \tilde{\Delta} |F|^{2}(z) d\tau(z)$$

is bounded, by (2.4), by

$$\|g\|_{\mathcal{B}}^2 \int_B \mathfrak{G}(z) \tilde{\Delta}(\lambda \circ f)(z) d\tau(z)$$

which is, by (2.3), equal to the right side of (3.2), whence (3.3) is finite and, by (2.3) again, equal to the left side of (3.2).

When $\alpha = 1$, the above process, using (2.2) instead of (2.3) and G(z) in place of $\mathcal{G}(z)$, gives

$$(3.4) \quad \int_{\mathcal{S}} |g \circ f(\zeta)|^2 \, d\sigma(\zeta) - |g \circ f(0)|^2 \leq \|g\|_{\mathcal{B}}^2 \bigg\{ \int_{\mathcal{S}} (\lambda \circ f)(\zeta) \, d\sigma(\zeta) - (\lambda \circ f)(0) \bigg\}.$$

By (3.2), (3.4) with (3.1), $g \circ f \in \mathcal{A}^{2,\alpha}(B)$.

Conversely, suppose that $g \circ f \in \mathcal{A}^{2,\alpha}(B)$ for all $g \in \mathcal{B}$. Then by Lemma 4, there are $g_j \in \mathcal{B}, j = 1, 2$, such that

$$\sum_{j=1}^2 |
abla (g_j \circ f \circ arphi_z)(\mathbf{0})| \geq rac{|
abla (f \circ arphi_z)(\mathbf{0})|}{1-|f(z)|^2},$$

so that

$$\sum_{j=1}^2 ilde{\Delta} |g \circ f|^2(z) \geq ilde{\Delta} (\lambda \circ f)(z), \quad z \in B,$$

whence we have, using Lemma 2 with the same argument that we just applied in proving (3.2) and (3.4),

$$(3.5) \quad \sum_{j=1}^{2} \left(\int_{B} |g_{j} \circ f(z)|^{2} d\mu_{\alpha}(z) - |g_{j} \circ f(0)|^{2} \right) \geq \int_{B} (\lambda \circ f)(z) d\mu_{\alpha}(z) - (\lambda \circ f)(0)$$

 $\text{if } 1 < \alpha < \infty \text{ or }$

$$(3.6) \qquad \sum_{j=1}^{2} \left(\int_{\mathcal{S}} |g_{j} \circ f(\zeta)|^{2} d\sigma(\zeta) - |g_{j} \circ f(0)|^{2} \right) \geq \int_{\mathcal{S}} (\lambda \circ f)(\zeta) d\sigma(\zeta) - (\lambda \circ f)(0)$$

if $\alpha = 1$. By (3.5), (3.6) with (3.1), $f \in \rho \mathcal{A}^{1,\alpha}(B)$ in any case.

Proof of the Corollary Let $f: B \to U$ be holomorphic. Since the function $\log |1 - \overline{f}(z) f \circ \varphi_z(w)|^2$, $w \in B$, is harmonic,

$$\int_{S} \log |1 - \bar{f}(z) f \circ \varphi_{z}(r\zeta)|^{2} d\sigma(\zeta) = \log (1 - |f(z)|^{2})^{2},$$

whence

$$(3.7)$$

$$\int_{S} \lambda \left(\frac{f(z) - f \circ \varphi_{z}(r\zeta)}{1 - \bar{f}(z) f \circ \varphi_{z}(r\zeta)} \right) d\sigma(\zeta) = \int_{S} \log \frac{1}{1 - \left| \frac{f(z) - f \circ \varphi_{z}(r\zeta)}{1 - \bar{f}(z) f \circ \varphi_{z}(r\zeta)} \right|^{2}} d\sigma(\zeta)$$

$$= \int_{S} \log \frac{|1 - \bar{f}(z) f \circ \varphi_{z}(r\zeta)|^{2}}{(1 - |f(z)|^{2})(1 - |f \circ \varphi_{z}(r\zeta)|^{2})} d\sigma(\zeta)$$

$$= \int_{S} \log \frac{1 - |f(z)|^{2}}{1 - |f \circ \varphi_{z}(r\zeta)|^{2}} d\sigma(\zeta)$$

$$= \int_{S} (\lambda \circ f \circ \varphi_{z})(r\zeta) d\sigma(\zeta) - (\lambda \circ f)(z), \quad 0 < r < 1.$$

By the monotone convergence theorem, the last quantity of (3.7) tends to the right side quantity of (3.6) with $f \circ \varphi_z$ in place of f as $r \to 1$.

On the other hand, the Möbius invariance of ρ (see [G]) says

(3.8)
$$\varrho(f \circ \varphi_z(r\zeta), f(z)) = \varrho\left(\frac{f(z) - f \circ \varphi_z(r\zeta)}{1 - \bar{f}(z) f \circ \varphi_z(r\zeta)}\right).$$

Now, by taking the supremum for all $z \in B$ on both sides of (3.4) and (3.6) after replacing *f* there by $f \circ \varphi_z$, the result follows by use of (3.1), (3.7) and (3.8).

Analytic Functions of Bergman BMO

References

- [CRW] R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables. Ann. of Math. 103(1976), 611-635.
- J. B. Garnett, Bounded analytic functions. Academic Press, New York, 1981.
- [G] [K1] E. G. Kwon, Composition of Blochs with bounded analytic functions. Proc. Amer. Math. Soc. 124(1996), 1473-1480.
- [K2] [P] Mean growth of the hyperbolic Hardy class functions. Math. Japon. **35**(1990), 451–460. M. Pavlović, Inequalities for the gradient of eigenfunctions of the invariant Laplacian. Indag. Math. (1) 2(1991), 89-98.
- [R] W. Rudin, *Function Theory in the unit ball of* \mathbb{C}^{n} . Springer-Verlag, New York, 1980.
- [RU] Wade Ramey and David Ullrich, Bounded mean oscillations of Bloch pullbacks. Math. Ann. 291(1991), 591-606.
- Shinji Yamashita, Hyperbolic Hardy class H¹. Math. Scand. 45(1979), 261–266. [Y1]
- [Y2] , Holomorphic functions of hyperbolically bounded mean oscillation. Boll. Un. Mat. Ital. B (6) **5**(1986), 983–1000.

Department of Mathematics Education Andong National University Andong 760-749 Korea