The approximation problem for compact operators

S. R. Caradus

The following sufficient condition is obtained for the uniform approximability of compact operators on a reflexive Banach space by operators of finite rank: if \(S \) is the unit ball of \(X \) and \(\phi : X^* \to C(S) \) is the imbedding \(\phi(x^*)x = x^*(x) \) then we require \(\phi(x^*) \) to be complemented in \(C(S) \).

Let \(X \) denote a Banach space, \(B(X) \) the space of continuous endomorphisms of \(X \), \(C \) the set of compact operators in \(B(X) \) and \(F \) the set of finite dimensional operators in \(B(X) \). By the approximation problem, we shall mean: is \(C \) equal to the uniform closure of \(F \)? Only sufficient conditions on \(X \) are known for an affirmative solution to this problem. Most important among these is the condition d'approximation due to Grothendieck ([2] p. 165): every operator in \(B(X) \) can be uniformly approximated on compact subsets by operators in \(F \). It is, of course, not known whether this condition holds for all \(X \). However the conjecture that it is true for all \(X \) is known ([2] pp. 170-175) to be equivalent to a large number of other conjectures, some apparently more tractable.

At least we know that the approximation problem has an affirmative solution for a large number of the common Banach spaces. This can be deduced from the following ideas.

(1) A Banach space \(Y \) is called a \(P_\lambda \) space, if, given any Banach space \(\tilde{Y} \supset Y \), there exists a projection of norm not exceeding \(\lambda \) from \(\tilde{Y} \) to \(Y \).

(2) In [3], Lindenstrauss introduced the concept of an \(N_\lambda \) space: a Banach space \(Y \) is an \(N_\lambda \) space if there exists a set \(\{Y_1\} \) of finite
dimensional subspaces of Y, directed by inclusion, such that UY_τ is dense in Y and such that each Y_τ is a P_λ space.

(3) The concept of the λ projection approximation property (λ-P.A.P.) was also introduced in [3]: a Banach space Y has the λ-P.A.P. if there exists a set $\{Y_\tau\}$ of finite dimensional subspaces of Y, directed by inclusion, such that UY_τ is dense in Y and such that, for each τ, there exists a projection of Y onto Y_τ with norm not exceeding λ.

It is evident that every N_λ space has the λ-P.A.P. Moreover, it is not difficult to deduce that the λ-P.A.P. implies the condition d'approximation. For suppose K is compact and $\varepsilon > 0$. Then we can find $x_1, x_2, \ldots, x_n \in K$ such that for every $x \in K$ there exists x_τ with $\|x-x_\tau\| < \varepsilon$. Then we can choose $y_1, y_2, \ldots, y_n \in UY_\tau$ such that $\|y_\tau-x_\tau\| < \varepsilon$. Thus there exists τ_0 such that $y_1, y_2, \ldots, y_n \in Y_{\tau_0}$ and a projection P_0 of Y onto Y_{τ_0} such that $\|P_0\| \leq \lambda$. If, given $x \in K$, $\|x-x_\tau\| < \varepsilon$ then we can write

$$\|Tx-TP_0 x\| \leq \|Tx-Tx_\tau\| + \|Tx_\tau-Ty_\tau\| + \|TP_0 y_\tau-TP_0 x_\tau\| + \|TP_0 x_\tau-TP_0 x\|$$

(i)

$$\leq 2\|T\|(\lambda+\lambda)\varepsilon.$$

Hence the result follows.

Now the separable Banach spaces with a basis, the $L_p(\mu)$ spaces ($1 \leq p \leq \infty$, μ arbitrary) and $C(\Omega)$ (Ω any topological space) are known to be spaces with the λ-P.A.P. for some λ (see [3] pp. 25, 29). Hence for these spaces the approximation problem has an affirmative solution.

In that which follows, another sufficient condition is obtained for the case where X is reflexive. For any reflexive Banach space X, let S denote the unit ball with the weak topology and let $\phi : X^* \to C(S)$ denote the isometric imbedding $\phi(x^*)x = x^*(x)$.

THEOREM. If $\phi(X^*)$ has a closed complement in $C(S)$, then the approximation problem in X has an affirmative solution.
Proof. Let P_0 denote a projection $C(S) + \phi(X^*)$. By a result of Lindenstrauss ([3] p. 29), we know that $C(S)$ is a N_1 space for each $\lambda > 1$. Moreover ([3] p. 22), every finite dimensional subspace of a N_1 space is contained in a finite dimensional P_1 space for any $\lambda' > \lambda$. We shall fix λ and λ', $\lambda' > \lambda > 1$.

Now suppose T is a compact operator in $B(X)$. Then by a theorem of Lacey ([1] p. 85), given $\varepsilon > 0$, there exists a closed subspace N_ε of X with finite codimension such that \[\|T|N_\varepsilon\| < \varepsilon. \] Let N_ε^\perp denote the functionals in X^* which vanish on N_ε. Then N_ε^\perp is a finite dimensional subspace of X^* and $\phi(N_\varepsilon^\perp)$ is finite dimensional in $C(S)$. By the remark about N_1 spaces, there exists a finite dimensional subspace X_ε in $C(S)$ with $X_\varepsilon \supset \phi(N_\varepsilon^\perp)$ and a projection $P_\varepsilon : C(S) + X_\varepsilon$ with $\|P_\varepsilon\| < \lambda'$. Consider the product $P_0 P_\varepsilon$. Evidently this is a finite dimensional operator whose range R satisfies $\phi(N_\varepsilon^\perp) \subseteq R \subseteq \phi(X^*)$. Hence we can define $\tilde{P}_\varepsilon = \phi^{-1} P_0 P_\varepsilon \phi$ which will be a finite dimensional operator in X^*.

Now $\phi(N_\varepsilon^\perp) \subseteq X_\varepsilon$ so that

\[N_\varepsilon^\perp \subseteq \phi^{-1}(X_\varepsilon) = \phi^{-1} R(P_\varepsilon) = \left\{ x^* \in X^* : \phi x^* \in R(P_\varepsilon) \right\} \]
\[= \left\{ x^* \in X^* : P_\varepsilon \phi x^* = \phi x^* \right\} \]
\[\subseteq \left\{ x^* \in X^* : P_0 P_\varepsilon \phi x^* = \phi x^* \right\} \]
\[= \left\{ x^* \in X^* : \tilde{P}_\varepsilon x^* = x^* \right\} \]
\[= N(I-\tilde{P}_\varepsilon) \]
\[= R(I-\tilde{P}_\varepsilon) \]

where we are identifying \tilde{P}_ε with the corresponding operator in $B(X)$.

Hence $N_\varepsilon \supseteq R(I-\tilde{P}_\varepsilon)$.

We can now write
Since λ' and $\|P_0\|$ are fixed and ε arbitrary, and since \tilde{P}_ε^* has finite dimensional range, the proof is complete.

REMARK. Examination of the above proof reveals that the hypotheses can be weakened considerably. Suppose we define the following property (P): a Banach space X will be said to have property (P) if there exists $M > 0$ such that, given any finite dimensional subspace F of X, there exists a finite dimensional projection P in $\mathcal{B}(X)$ such that $\|P\| \leq M$ and $R(P) \supseteq F$. An examination of the proof of Lemma 3.1 of [3] shows that any space with the λ-P.A.P. also has property (P); moreover, using simple calculations similar to (i), we can deduce that property (P) implies the condition d'approximation of Grothendieck. Hence we can state

COROLLARY. Let X be a reflexive Banach space such that there exists a Banach space Y with property (P) and a linear homeomorphism $\phi : X^* \rightarrow Y$ with $\phi(X^*)$ complemented. Then the approximation problem for X has an affirmative solution.

References

Department of Mathematics, IAS, Australian National University, Canberra, ACT, and Queen's University at Kingston, Ontario, Canada.