
The Knowledge Engineering Review (2023), 38, e3, pp. 1–26
doi:10.1017/S0269888923000012

RESEARCH ARTICLE

Adversarial agent-learning for cybersecurity:
a comparison of algorithms
Alexander Shashkov1 , Erik Hemberg2 , Miguel Tulla2 and Una-May O’Reilly2

1Williams College, Williamstown, MA 01267, USA; e-mail: aes7@williams.edu;
2MIT CSAIL, Cambridge, MA 02139, USA; e-mails: hembergerik@csail.mit.edu, mtulla@mit.edu, unamay@csail.mit.edu

Received: 19 December 2022; Revised: 7 January 2023; Accepted: 7 January 2023

Abstract
We investigate artificial intelligence and machine learning methods for optimizing the adversarial behavior of agents
in cybersecurity simulations. Our cybersecurity simulations integrate the modeling of agents launching Advanced
Persistent Threats (APTs) with the modeling of agents using detection and mitigation mechanisms against APTs.
This simulates the phenomenon of how attacks and defenses coevolve. The simulations and machine learning are
used to search for optimal agent behaviors. The central question is: under what circumstances, is one training method
more advantageous than another? We adapt and compare a variety of deep reinforcement learning (DRL), evolu-
tionary strategies (ES) and Monte Carlo Tree Search methods within Connect 4, a baseline game environment, and
on both a simulation supporting a simple APT threat model, SNAPT, as well as CyberBattleSim, an open-source
cybersecurity simulation. Our results show that when attackers are trained by DRL and ES algorithms, as well as
when they are trained with both algorithms being used in alternation, they are able to effectively choose complex
exploits that thwart a defense. The algorithm that combines DRL and ES achieves the best comparative performance
when attackers and defenders are simultaneously trained, rather than when each is trained against its non-learning
counterpart.

1. Introduction
Advanced persistent threat (APT) actors present a serious challenge for cybersecurity. They exhibit
stealth and adaptivity while advancing through the tactics of a kill-chain and deploying adversarial
techniques and exploits (Huang & Zhu, 2020). AI approaches to understanding potential APT strategy
spaces, and cyber-actor behavior in general, have employed modeling and simulation (ModSim) (Zhu
& Rass, 2018; Walter et al., 2021; Engström & Lagerström, 2022). In ModSim cybersecurity platforms,
for example CyberBattleSim (Team, 2021), agents that simulate attackers and/or defenders are executed
in a model of a network environment or they are competed with an adversary. The agent strategies or
behavior are optimized with machine learning in order to analyze and anticipate how an agent responds
to different adversarial scenarios. For example ModSim platforms that execute Evolutionary Algorithms
(EAs) operate with two adversarial populations of agents, that compete in pairs (Harris & Tauritz, 2021).
One challenge is determining which machine learning training method is most effective.

In this paper we investigate the impact of different machine learning (ML) algorithms, with and
without planning approaches, on agent behavioral competence in three ModSim platforms. The ModSim
platforms have two-player competitive environments where adversarial agents’ are players and their
moves are guided by a policy, see Section 3. Connect 41, a 2-player board game, is a simple ModSim
platform. We introduce a platform named SNAPT which is cybersecurity oriented and more complicated

1https://en.wikipedia.org/wiki/Connect_Four.

Cite this article: A. Shashkov, E. Hemberg, M. Tulla and U. O’Reilly. Adversarial agent-learning for cybersecurity:
a comparison of algorithms. The Knowledge Engineering Review 38(e3): 1–26. https://doi.org/10.1017/S0269888923000012

C© The Author(s), 2023. Published by Cambridge University Press

https://doi.org/10.1017/S0269888923000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000012
https://orcid.org/0000-0001-6651-7705
https://orcid.org/0000-0002-2153-3506
https://en.wikipedia.org/wiki/Connect_Four
https://doi.org/10.1017/S0269888923000012
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0269888923000012&domain=pdf
https://doi.org/10.1017/S0269888923000012


2 Alexander Shashkov et al.

than Connect 4 both because it incorporates cyber threat concepts, and also because its two players take
different roles (with different actions); that of Attacker or Defender. We also enhance CyberBattleSim
(Team, 2021), a more complex simulation, by adding a Defender that competes with the pre-existing
Attacker.

We compare the algorithms by competing agents trained using different algorithms against one
another. The measures of comparison vary by ModSim platform: with Connect 4 agents are evaluated
when they play first and when they play second. In SNAPT and CyberBattleSim all defenders trained
using different algorithms compete against all attackers trained using different algorithms. In SNAPT, the
comparison measure is competitions, that is ‘games’ won. In CyberBattleSim, the appropriate measure
is an agent’s average reward over all competitions.

All algorithms are described in more detail in Section 4. One algorithm is an example of Deep
Reinforcement Learning (DRL) where an agent’s policy is optimized temporally, for example for (max-
imum) expected value in the long term (Arulkumaran et al., 2017; Macua et al., 2021). We use the
Actor-Critic approach, employing two functions: the policy function, and independently, the value func-
tion. The former returns a probability distribution over actions that the agent can take based on the given
state. The value function determines the expected return for an agent starting at a given state and act-
ing according to a particular policy forever after. These functions are implemented as Neural Networks
(NNs) with predefined NN architectures. We use the Advantage Actor-Critic (A2C) algorithm to update
NN parameters during training.

We also evaluate Evolutionary Algorithms. This is a class of search-based optimization algorithms
inspired by biological evolution. Some EAs, for example Evolutionary Strategy (ES) algorithms, have
been shown to achieve levels of success similar to those of Deep Reinforcement Learning (DRL)
(Salimans et al., 2017). For a fair comparison, both the EAs and DRL train agent policies represented
with the same NN architectures. In an ES each NN’s weight parameters are represented as a multi-variate
Gaussian distribution and updated by a gradient-free decision heuristic during training. Our compari-
son includes two ES algorithms where the current solution is compared to one sample. If the sample
is accepted, it is used to update the distribution. The (1+1)-ES’s update formula uses average reward
and contrasts with Fitness-Based ES (FB-ES)’s, which uses smoothed average reward as update for-
mula. We also include the Cross-Entropy Method (CEM), which works with sample sizes greater than
one. Because the number of competitions in CEM scale quadratically with sample size, we compare
CEM to a variant where the number of competitions are conducted with round-robin play to reduce
training time.

In addition, we craft two combinations of DRL and ES (Pourchot & Sigaud, 2018; Lee et al., 2020)
because DRL has been observed to be unstable in some cases (Mnih et al., 2015), and ES tends to suffer
from poor sample efficiency (Sigaud & Stulp, 2019). One combination trains alternating iterations of
A2C and CEM. The other combination alternates A2C and FB-ES.

In the cyber domain, tree-based planning algorithms are used to automate adversaries, for example in
the CALDERA framework (The MITRE Corporation, 2020). This motivates our consideration of policy
learning in the context of planning. In the planning context a policy that directs tree search is trained and,
after learning the policy, it is used directly or with look ahead supported by in-competition tree search.
We evaluate AlphaZero, an algorithm that trains its policy with DRL using tree search. AlphaZero has
been successful in complex board games. It relies upon Monte Carlo Tree Search (MCTS), a probabilistic
and heuristic driven search algorithm (Silver et al., 2018). One of our algorithms uses the Actor-Critic
method (gradient-based learning) to train the policy as in the, original AlphaZero, while another trains
it with CEM, that is gradient-free learning.

Because of the combinations of algorithms and platforms, we are able to perform a variety of com-
parisons, see Sections 5 and 6. On Connect 4 and SNAPT, all policies are represented by NNs. We
consider tree search and two algorithms that train a policy using it—AlphaZero with gradient train-
ing and AlphaZero with gradient-free training. We compare these with algorithms that train policies
directly, that is without tree search. We also compete all the trained policies while allowing all of them,
in competitions, to look ahead with tree search. Because of our interest in cybersecurity, we further

https://doi.org/10.1017/S0269888923000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000012


The Knowledge Engineering Review 3

analyze SNAPT agents to better understand the complexity of the trained policies. On CyberBattleSim,
we compare all algorithms. All policies are represented by a NN and we use a more complex NN for the
Attacker (than in SNAPT or Connect 4). We further investigate two aspects of the comparison. We first
inquire whether changing CEM to use round-robin competition play impacts the effectiveness of CEM.
As well, we compare design options for the Attacker’s NN architecture.

The contributions of this paper are:

• We introduce a simple network APT environment, SNAPT, for evaluating agent-based cyber-
security attackers versus defenders.

• We enhance CyberBattleSim by introducing Defender agents.
• We introduce a specialized NN architecture for Attacker play in CyberBattleSim.
• We perform a number of quantitative comparisons and observe:

– In Connect 4 when none of the players look ahead with MCTS during competitions with
each other, the player trained with (1+1)-ES wins the most competitions on average as the
first player and loses the fewest as the second player. When players can look ahead with
MCTS, the two algorithms that train with tree search are superior to those that do not.

– In SNAPT, we get a different result. The players trained with AZ-ES using tree search
win more competitions as Attackers. However, Attackers do not win uniformly against all
Defenders or vice versa. This suggest the existence of different strategies arising from the
trained policies and asymmetry of the Attacker and Defender action spaces. Our analysis
into this reveals that Attackers trained by DRL and ES, or combinations of them, are able to
choose advantageous and complex exploits. We also observe that an algorithm combining
DRL and ES trains the best Attacker and Defender.

– In CyberBattleSim, we find that A2C is the best algorithm to train Attackers. For Defenders,
the best is a hybrid gradient trained algorithm—A2C combined with FB-ES, which is
gradient-free. When we explore CEM using round-robin play, we find that round-robin play
performs better. We also find evidence that the complex NN architecture we introduced is
better than a simple one, while we find no difference by the end of training between the two
variants of the complex architectures.

We proceed as follows: Section 2 covers related work including Cybersecurity simulations
and games, AI Planning, Deep Reinforcement Learning, Evolutionary Strategies, and Coevolution.
Section 3 describes Connect 4, SNAPT, and CyberBattlesim. Section 4 describes our methodology.
We give details on our training and evaluation setup in Section 5. In Section 6 we present our results.
Finally, we discuss our results and future work in Section 7.

2. Related work
We provide an overview of related work in cybersecurity simulations and games (Section 2.1) and
algorithms for training (Section 2.2) connected to cybersecurity games.

2.1 Cybersecurity simulations and games
Many approaches have been taken to simulating APT threats, which often take the form of a two-player
game. In Zhu and Rass (2018), a multi-stage game is proposed with different action and rewards in
each phase. In Luh et al. (2019), a physical game is used with two stages. Many similarities exist in
these games, namely they tend to involve two players (an attacker and a defender) alternating moves,
discrete action spaces, and asymmetric information between attacker and defender. Other cybersecurity
simulation and game approaches include (Rush et al., 2015; Liu et al., 2018; Yang et al., 2018; Baillie
et al., 2020; Molina-Markham et al., 2021; Reinstadler, 2021).

https://doi.org/10.1017/S0269888923000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000012


4 Alexander Shashkov et al.

CyberBattleSim contains many of these elements, and is also implemented using OpenAI Gym,
making it well-suited for reinforcement learning (Brockman et al., 2016). It also contains additional
complexity compared to these environments (Team, 2021) and is one of the few that has been publicly
released. Deceptive elements, including honeypots and decoys, were incorporated into CyberBattleSim
in Walter et al. (2021).

Some of these authors have implemented various policy search algorithms in order to train automated
attackers and defenders in these environments, such as AI planning or deep reinforcement learning. We
describe these methods below.

2.2 Algorithms for training
We describe AI Planning using Monte Carlo Tree Search (MCTS), Deep Reinforcement Learning (DRL)
work related to cybersecurity games, and Evolutionary Strategies (ES).

AI Planning Planning is a long established field of AI research focused on training agents to make
optimal decisions (Jiménez et al., 2012). Planning has been successfully applied in reinforcement learn-
ing domains (Partalas et al., 2012). Recently, AlphaZero (Silver et al., 2018) combined planning with
deep learning, and was able to successfully master several complex board games. In combination with
evolutionary algorithms, planning is used to solve RL environments in Olesen et al. (2021). Planning has
seen some use in cybersecurity. In the domain of automated penetration testing, planning has been used
for attack graph discovery (Applebaum et al., 2016; Backes et al., 2017; Falco et al., 2018; Reinstadler,
2021). However, planning has not been used extensively to train agents within cybersecurity platforms.

Deep Reinforcement Learning (DRL) Deep reinforcement learning (DRL) is a subfield of RL focus-
ing on using deep neural networks to represent a policy and gradient-based ML methods to train the
network parameters. Interest in DRL has exploded in recent years due to breakthrough papers such as
Mnih et al. (2015) and Lillicrap et al. (2016). For a survey of DRL methods, see Arulkumaran et al.
(2017). DRL has also been applied in cybersecurity domains, for a survey see Nguyen and Reddi (2021).
However, most of these environments involve a small number of actions for the attackers, and only some
involve coevolving attackers and defenders together. In the initial release of CyberBattleSim (Team,
2021), automated attackers were trained using Q-learning methods without any defenders. Additionally,
the action space was simplified to reduce complexity. We develop a neural network architecture that
allows attackers to select complex actions within the CyberBattleSim environment and train attackers
and defenders together. Our approach is similar to the action selection process in AlphaStar (Vinyals
et al., 2019), which was designed to select complex actions in the video game StarCraft.

Evolutionary Strategies Evolutionary strategies (ES) are a subset of evolutionary algorithms, a broad
class of population-based optimization algorithms modeled on genetic evolution (Goldberg, 1989). ES
are commonly used with a population (sample) size of one, although the Cross-Entropy method uses
a sample size greater than one. For simulations where a solution has to be competed to determine its
fitness, all solutions in a sample can be competed with all adversaries, resulting in a quadratic number
of competitions. To reduce the number of competitions to polynomial complexity, small sample subsets
can be formed and competition can be restricted to a subset. We call this round-robin play. Evolutionary
strategies (ES) have seen heightened interest in RL environments due to the success of authors such
as Salimans et al. (2017), where ES are applied to MuJoCo and Atari RL environments and shown to
outperform some deep learning algorithms. Some authors have also combined ES with DRL methods; in
Lee et al. (2020), an asynchronous framework is proposed and shown to outperform pure DRL methods
in MuJoCo. DRL is also combined with population-based and exploration methods from evolutionary
computation in Prince et al. (2021). However, to our best knowledge there are few precedents that apply
ES to cybersecurity simulations.

Coevolution, broadly speaking, refers to environments where agents are trained with different (possi-
bly competing) objective functions. Evolutionary algorithms have long been applied to coevolutionary

https://doi.org/10.1017/S0269888923000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000012


The Knowledge Engineering Review 5

environments, see Potter and Jong (2000) for instance. They have also been used in predator-prey envi-
ronments with two opposing agents (Simione & Nolfi, 2017; Harris & Tauritz, 2021). ES have also been
applied to coevolution in two-player board games; for example in Schaul & Schmidhuber (2008), where
they were able to learn some complex strategies. Planning with tree search (Liu et al., 2016) and deep
reinforcement learning (Klijn & Eiben, 2021) have also been utilized in coevolutionary RL environ-
ments. Finally, competitive fitness functions for one population were investigated in Panait and Luke
(2002), where a one-population fitness function is optimized using a round-robin method.

3. Environments
We describe the environments on the platforms we use: the Connect 4 board game (Section 3.1),
the Simple Network APT (SNAPT) cybersecurity environment (Section 3.2), and the CyberBattleSim
cybersecurity environment (Section 3.3).

3.1 Connect 4
Connect 4 is a simple two-player zero-sum game which has previously been used for reinforcement
learning investigations (Allis, 1988). Connect 4 is played on an upright board with six rows and seven
columns. Players alternate dropping tokens into a column until one of them wins by having a line of four
tokens vertically, horizontally or diagonally. If all seven columns are filled without a winner, then the
game ends in a tie. While the game is simple enough to have been solved, perfect play requires complex
strategies (Bräm et al., 2020). Note, players in Connect 4 are neither attacker or defender, instead players
are evaluated based on who plays first and second.

3.2 Simple Network APT (SNAPT)
PenQuest (Luh et al., 2019) provides an APT threat model designed to simulate attacker/defender
behavior in an abstract network with imperfect information and is implemented as a board game. We
design a simpler APT threat model inspired by PenQuest to evaluate our algorithms. It is called Simple
Network Advanced Persistent Threat (SNAPT). SNAPT is implemented as a game between ‘attacker’
and ‘defender’, who alternate taking actions. The attacker starts and the game ends after a certain num-
ber of moves by each player. Note, the attacker’s actions mimic two cyberattack campaign tactics listed
in the MITRE ATT&CK Matrix (Corporation, n.d.a). The change in the device’s security state through
exploits mimics the tactic of privilege escalation. Attacking of adjacent nodes mimics the tactic of lateral
movement. The defender mimics two defensive approaches of the MITRE Engage (Corporation, n.d. b)
cyberdefense framework for adversary engagement operations. The detect action mimics the defensive
goal of exposing an adversary through the approach of detection. The secure device action mimics the
defensive goal of affecting the adversary with the approach of disrupting the adversaries operation.

SNAPT States SNAPT models a network as an unweighted graph where nodes are individual devices.
Edges indicate that two devices are connected in some way (e.g. by a router). Aside from its connectiv-
ity, each device has three properties: its security state s, which is either ‘secure (S)’, ‘vulnerable (V )’, or
‘compromised (C)’; its value, which is its worth to an attacker; and its vulnerability probability, which
is the likelihood that an exploit will succeed if used against it. We represent these properties as a tuple
(s, v, p), where s ∈ {S, V , C} is the security state, and v, p ∈ [0, 1] are the value and vulnerability
probability, respectively. Figure 1 shows an example SNAPT network.

The SNAPT game begins with the one device in the network, representing a device connected to the
Internet, being in a ‘vulnerable’ state, and all other devices being ‘secure’. The attacker and defender
have asymmetric information on the status of the network. The attacker knows the security state s of

https://doi.org/10.1017/S0269888923000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000012


6 Alexander Shashkov et al.

Figure 1. The SNAPT setup used for training with three nodes. Each node contains the triple of data
(s, v, p) equal to the security state(s), value(v) and exploit probability(p).

Figure 2. The network topology of a CyberBattleSim environment. Nodes represent devices and edges
represent potential exploits sourced at the tail of the arrow and targeted at the head. The label of each
node is its type. At the start of the simulation, the attacker has control of only the ‘Start’ node and needs
to control the ‘Goal’ node in order to receive the full reward.

each device, the defender knows the exploit probability pe of each device, and both players know the
value v of each device.

SNAPT actions During an attacker’s turn, they select a device to target with an exploit. Attackers may
only target devices which are in a vulnerable state, or which are connected to a device in a vulnerable
state. Exploits succeed with a probability equal to the device’s vulnerability probability and raise the
security state of a device from secure to vulnerable or vulnerable to compromised if they succeed.

The defender can take two kinds of mitigation actions: detecting exploits and securing devices.
Detection actions are only effective against devices which were successfully compromised in the previ-
ous turn. If the defender targets a detection action against a device which was not compromised in the
previous turn, the action immediately fails and nothing happens. Otherwise, the action succeeds with
probability pd. If the action succeeds, the security state of the device is reduced. If the action does not
succeed, the network is left unchanged.

Moreover, the defenders have no knowledge of the security state of each device, so they have to
‘guess’ which device the attacker is likely to have targeted when using detection. If the defender targets a
securing action at a certain device, the exploit probability of that device is reduced, making an attacker’s
exploit less likely to succeed by a fixed value δs. However, defenders have limited number of resources
to secure a device and may only secure a specific device a maximum of three times. Furthermore, the
attackers have no knowledge of the exploit probabilities of devices, so they are unaware if a device has
been secured.

SNAPT rewards At the end of the game, the attacker receives a reward equal to sum of the value of
all the devices in a ‘compromised’ state. Given a network with devices (d1, d2, . . . , dn), with device di

having properties (si, vi, pi), the reward R is given by

R =
∑

1≤i≤n, si=C

vi (1)

If R ≥ 1, the attacker wins, otherwise the defender wins.

3.3 CyberBattleSim
CyberBattleSim (Team, 2021) is a network simulation in which an automated attacker attempts to take
control of a network, and an automated defender tries to deter the attacker. The network is represented
as a directed graph, with each node representing a device and each edge directed from node X to node Y
representing an exploit sourced at device X targeting device Y , for a concrete CyberBattleSim network
example see Figure 2. Each machine has a specific set of vulnerabilities which may be exploited, as well
as a specific value representing its importance to the attacker and defender.

CyberBattleSim is implemented as a reinforcement learning environment, where at a given time t an
agent receives an observation of the state st, takes an action at and then receives a reward rt+1 as well as

https://doi.org/10.1017/S0269888923000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000012


The Knowledge Engineering Review 7

the observation for the next state st+1. The agent then takes an action at+1 and the cycle continues until
either a terminal state is reached or the maximum number of time steps is surpassed.

CyberBattleSim States In our CyberBattleSim environment, there are two agents, the attacker and
the defender, which receive different observations at each time step in order to model the asynchronous
information of a real network. Additionally, the observation given to the attacker is dependent on how
much of the network the attacker has discovered and controls. For instance, the attacker receives no
information on nodes it has not discovered. The specifics on the information given to the attacker and
defender can be found in Appendix C.

CyberBattleSim Actions The attacker and defender also take different actions representative of their
different roles. The attacker can take three kinds of actions at each time step: local exploits (e.g. privilege
escalation techniques), remote exploits (e.g. lateral movement techniques), and connections (e.g. lateral
movement techniques). These actions are abstracted as tuples: (α, T) for local exploits, (α, T , S) for
remote exploits, and (α, T , S, C) for connections, where α is the action type, T is the target node, S is the
source node, and C is the credential used. Note that only α and T are necessary information for every
type of action, while S is only necessary for remote exploits and connections and C is only needed for
connections. The defender recovers against the attacker by ‘reimaging’ nodes, and only needs to choose
a node T to target during the reimaging process. When a node is selected to be reimaged, it goes into
an ‘offline’ state for a fixed number of time steps, making it unavailable to exploits. After reimaging,
nodes are returned to their original state, without any exploits used against them. Only certain nodes
are available for reimaging (representing non-critical infrastructure in a network) and the defender may
only reimage a node every tI time steps. The defender may also choose to leave the network unchanged.
The specifics on the information given to the attacker and defender can be found in Appendix C.

CyberBattleSim Rewards The attacker earns rewards for successfully using exploits against nodes
in the network, and loses rewards when an exploited node is reimaged. The defender’s reward is the
negative of the attacker’s reward. The reward given by reimaging a node is equal to the negative sum
of the rewards of all exploits used against that node since its last reimaging. For instance, if an attacker
has used 2 exploits against a node X for a total reward of 100, the attacker will be given a reward of
−100 when the node is reimaged and the defender will be given a reward of 100. In the initial release of
CyberBattleSim, no rewards were given out due to reimaging, and we make this modification in order to
give the defender greater influence over the rewards in the network. Denote the attacker’s reward at time
t by rA

t and the defender’s reward by rD
t . As the defender only takes an action every tI time steps, rD

t = 0
if t �≡ 0(mod tI). If t ≡ 0(mod tI), then the reward given to the defender is the negative of the attacker’s
reward from the previous tI time steps:

rD
t = −

t∑
i=t−tI+1

rA
t

The simulation ends when the attacker reaches a winning state or the current time t is greater than
some predefined threshold tmax. Winning states are those where the attacker has complete control of the
network or the number of nodes in an ‘offline’ state due to reimaging exceeds a predefined threshold,
in which case a reward is given to the attacker and a penalty given to the defender. Thus, the defender’s
goal is to reimage nodes strategically to deter the attacker while making sure that enough of the network
is online so that the simulation does not end.

4. Methods
We implement the policy of the adversaries on each platform environment as a neural network (NN).
Section 4.1 describes NN architectures. Section 4.2 describes the policy learning algorithms.

https://doi.org/10.1017/S0269888923000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000012


8 Alexander Shashkov et al.

Figure 3. The neural network (NN) architecture used for the defender. When choosing an action, the
actor/policy NN picks a node T to reimage or to leave the network unchanged (this can be seen as picking
a ‘null’ node). The value is chosen separately by the critic/value NN.

Figure 4. The multi-stage neural network (NN) architecture used for the attacker. When choosing an
action, each element of the tuple is selected individually and passed onto the next stage of the actor/policy
neural network. The ordering of the Type NN and Target NN may be swapped, and the Source NN
and Credential NN are only used for certain action types. The value is chosen separately by the
critic/value NN.

4.1 Neural network architectures
Connect 4 We represent each player’s policy with an actor-critic approach which uses two feed-forward
NNs with two hidden layers. They map state observation vectors to action probabilities and values. The
value vt of a state is the expected reward of that state, see Figure 3.

SNAPT For SNAPT the Defender’s policy and value neural networks are two feed-forward NNs with
two hidden layers, similar to Connect 4, see Figure 3.

CyberBattleSim In CyberBattleSim, due to a more complex action space, Attackers use a multi-stage
NN similar to the approach introduced in Metz et al. (2017) and implemented in Vinyals et al. (2019).
Each stage is a feed-forward neural network with two hidden layers. The policy network first passes the
state sA

t into the ‘attack type neural network’ which returns a probability vector for the attack type α (see
Section 3.3). Once α is chosen using the given probabilities, α is concatenated with sA

t and passed into
the ‘target neural network’ which returns a probability vector for the target node T . The order of these
steps: Type before Target, can be switched to Target before Type. We compare the two orderings in our
experiments.

Should a source decision be needed, T is concatenated onto the state vector (along with α) and
passed into the ‘source neural network’. If the action type is ‘connection’, then finally α, T , and S are
concatenated onto sA

t and passed into the ‘credential neural network’.
This approach decomposes the attacker’s action selection into at most four steps, each with a signif-

icantly smaller output vector. A summary of the attacker neural network design is shown in Figure 4.

4.2 Policy learning algorithms
We characterize the different algorithms we use to train our policies in Table 1. The algorithms vary
in parameter updates during training, the number of neural network samples used, and the use of tree
search.

https://doi.org/10.1017/S0269888923000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000012


The Knowledge Engineering Review 9

Table 1. Overview of training methods. The methods are chosen based on how they update the neural
network. The training choices are gradient descent and/or weighted average, the number of samples
(#Samples) used, and if tree search is used

Name Training #Samples Tree search
A2C Gradient descent 1 No
AZ Gradient descent 1 Yes

(1 + 1)-ES Best sample 2 No
AZ-ES Best sample 2 Yes

CEM Best sample N No
A2C+CEM Gradient descent & best sample N No

FB-ES Smoothed best sample 2 No
A2C+FB-ES Gradient descent & smoothed best sample 2 No

Figure 5. The iterative process used for evolutionary strategies (ES). At iteration t, a set of sam-
ples is taken from the distribution (μt, σt). These samples are then evaluated by executing episodes
of CyberBattleSim. Sample performance is determined by average reward from these episodes. The dis-
tribution is then updated towards the better performing samples. The process then begins again with the
new distribution (μt+1, σt+1).

4.2.1 Advantage Actor-Critic (A2C)
Advantage Actor-Critic (A2C) is a common deep reinforcement learning (DRL) algorithm (Grondman
et al., 2012). After completing a predetermined number GA2C of rollouts utilizing an attacker and
defender that are not updated, the A2C policy gradient for the attacker and defender is calculated and
back-propagated to update the attack and defense policies through gradient descent.

4.2.2 Evolutionary Strategies (ES)
Evolutionary strategies (ES) are a class of optimization algorithms based on biological evolution
(Rechenberg, 1989). A high-level overview of ES algorithms can be found in Figure 5. We utilize three
ES algorithms: (1 + 1)-ES (Droste et al., 2002), fitness-based ES (Lee et al., 2020), and the cross-
entropy method (CEM) (Hansen, 2016). All three rely on iterating a multi-variate Gaussian distribution
of the parameters of the attacker and defender network. The distributions at time t are given by (μA

t , σ A
t )

and (μD
t , σ D

t ) for the attacker and defender, respectively, where μt is the mean and σt is the covariance
matrix. We will sometimes omit the superscript A or D in writing operations which are performed on
both distributions. In order to reduce computational complexity, we constrain σt to be diagonal as in

https://doi.org/10.1017/S0269888923000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000012


10 Alexander Shashkov et al.

Pourchot and Sigaud (2018). Thus σt can be interpreted as a vector, and we write σ 2
t to mean the square

of each element in σt. Our ES methodology is derived from Lee et al. (2020).

(1+1)-ES (Droste et al., 2002) In (1 + 1)-ES, a single-sample zA and zD is taken from the distri-
butions (μA

t , σ A
t ) and (μD

t , σ D
t ). A fixed number G(1+1) of simulations are rolled out for each of the four

attacker-defender pairings (μA
t , μD

t ), (μA
t , zD), (zA, μD

t ), (zA, zD) and the average reward for each agent over
the simulations is calculated. In this way the mean and sample face each opponent the same number of
times, allowing for a more balanced evaluation. We are also able to evaluate attackers and defenders
simultaneously this way, reducing the number of competitions executed in each training step. If the
sample z outperforms μt (i.e. it has a higher average reward), the distribution is updated by

μt+1 = z and σ 2
t+1 = (μt − z)2 (2)

In order to guarantee convergence, we also introduce an update to σt with σt+1 = 0.99σt if μt performs
the same or better as z.

Fitness-based ES (Lee et al., 2020) Fitness-based ES (FB-ES) is similar to (1 + 1)-ES, as one sample
zA and zD are taken from each distribution and a fixed number Gfit of simulations with each of the four
possible pairings are rolled out. Then, μt is updated if and only if the sample z outperforms it. However,
instead of utilizing the somewhat aggressive update strategy of (1+1)-ES, the distribution is updated
using a smoother formula. When the sample z outperforms μt the distribution is updated by

μt+1 = (1 − pz)μt + pz · z and σ 2
t+1 = σ 2

t + (z − μt)2 − σ 2
t

nz

(3)

where pz and nz depend on the relative performance of z and μt. Let f (z) and f (μt) denote the average
reward of z and μt, respectively. We use a relative fitness baseline to calculate pz and Rechenberg’s
method (Rechenberg, 1989) to calculate nz:

pz = f (z) − f (μt) + b

f (z) − f (μt) + 2b
and nz = max

(
1 − p

p
, 1

)
(4)

Here, bA and bD are fixed parameters known as fitness baselines. These specifications were chosen due
to their success in Lee et al. (2020).

CEM (Hansen, 2016) In the cross-entropy method (CEM), two samples {zA
1 , zA

2 , . . . , zA
N} and

{zD
1 , zD

2 , . . . zD
N}, each of predetermined size N are taken from the attacker and defender distributions,

respectively. Each attacker executes a fixed number, GCEM, of competitions against each defender and the
average reward determines their fitness. Note that setting up every attacker or defender to plays against
the same field of adversaries supports unbiased evaluation. It also supports evaluating the attackers
and defenders in unison, halving the training time. Lastly, since each agent plays against a variety of
adversaries, they may be more robust.

The attacker and defender distributions are updated by

μt+1 =
K∑

i=1

λixi and σ 2
t+1 =

K∑
i=1

λi(xi − μt)
2 + ε (5)

where λi is a weight and ε is a fixed noise value to prevent the variance from vanishing. We set λi = 1
i·HK

,
where HK = ∑K

i=1
1
i

is the K-th harmonic number. Here, K is a fixed parameter known as the elite size
and xA

i and xD
i are the i-th best-performing attacker and defender, respectively.

The setup of this system means that a total number of GCEMN2 episodes must be executed during each
training iteration, making it expensive for large values of N . An example of the standard and round-robin
average reward (mean expected utility) calculation can be found in Table 2.

https://doi.org/10.1017/S0269888923000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000012


The Knowledge Engineering Review 11

Table 2. Example calculations (using mock numbers) for the round-robin
system introduced in Section 4.2.2 with N = 3. Each cell gives the average
reward from executing GCEM episodes between an attacker (given by the
row) and defender (given by the column). The average for each attacker and
defender is given at the end of each row and column. The best-performing
attacker is zA

2 and the best-performing defender is zD
3 , so these samples will

be relabeled as xA
1 and xD

1 and have the largest weight when calculating μA
t+1

and μD
t+1, respectively

Attacker/Defender zD
1 zD

2 zD
3 Mean

zA
1 100 97 94 97

zA
2 102 99 102 101

zA
3 95 92 89 89

Mean 99 96 95

4.2.3 DRL and ES in combination
We combine DRL and ES methods by alternating between executing one iteration of A2C with one
iteration of the two single-sample ES algorithms as in Pourchot and Sigaud (2018).

4.2.4 Planning with policy-guidance
AlphaZero (AZ) (Silver et al., 2018) is an algorithm relying on planning which has been successful
in complex board games. During a rollout, AlphaZero plays itself utilizing the policy and value network
to calculate move probabilities and position values through Monte Carlo tree search (MCTS). After
completing the tree search, the NN is updated according to a loss function

� =(z − v)2 + πT · log p (6)

where z is the value calculated from the tree search, v is the value given by the value network, π is the
action probabilities calculated from the tree search, and p is the action probabilities given by the policy
network. The NN is then updated through gradient descent on the loss function.

AlphaZero-ES (AZ-ES) This substitutes a gradient-free method for updating the NN, during the last
step of the AlphaZero algorithm. We take N samples from a distribution (μt, σt) and select the K samples
with the lowest loss function. We then update the distribution with the cross-entropy method

μt+1 =
K∑

i=1

λizi and σ 2
t+1 =

K∑
i=1

λi(zi − μt)
2 + ε. (7)

5. Experimental setup
In this section we give the setup of the training algorithms and environments used in the ModSim plat-
forms. We also cover our policy evaluation procedures. All relevant code can be found in Group (2022).
In Table 3 we provide an overview of how we evaluate the training methods.

Computational Hardware We train and compare all algorithms using a 4-core Intel Xeon CPU E5-
2630 v4 at 2.2 GHz with 8GB of RAM.

Connect 4 & SNAPT We train the NNs of each algorithm in Table 4 for one hour in the environment
settings listed. During training, the AlphaZero methods had the fewest iterations with fewer than 100 in
each case, while CEM was typically able to complete several hundred iterations. A2C and (1 + 1)-ES
both completed several thousand iterations. In order to compare the algorithms, each trained NN plays

https://doi.org/10.1017/S0269888923000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000012


12 Alexander Shashkov et al.

Table 3. Overview of training method evaluation. Column shows the evaluation setup and results
section. Row shows the training method. CBS is CyberBattleSim

Training method Connect 4 Section 6.1 SNAPT Section 6.2 CBS Section 6.3

No MCTS MCTS No MCTS MCTS No MCTS
AZ � � � �
AZ-ES � � � �

A2C � � � � �
(1 + 1)-ES � � � � �
CEM � � � � �
Random � � � � �

A2C+CEM �
FB-ES �
A2C+FB-ES �
None (no defender) �

CEM round-robin �
A2C+CEM target first �
A2C+CEM simple �

100 matches twice against each of the other trained NN, once as the first player (1st) and once as the
second (2nd).

The SNAPT platform’s competition environment is a simple network of three nodes with topology
as shown in Figure 1. The various algorithms and environments have many hyperparameters, shown in
Table 4.

CyberBattleSim We train the NNs of each algorithm for 24 hours. The NNs each have two hidden
layers of size 512. Each algorithm requires a set of constants which we list in Table 5. We set the constants
so that on each training iteration 64 episodes of CyberBattleSim are executed. The number of iterations
executed during the 24 hour training period for each algorithm is shown in Table B.1.

The CyberBattleSim environment is a network with 6 nodes of 4 different types (we use the built-in
‘CyberBattleChain’ Group, 2022). A visualization of the network topology can be found in Figure 2. The
attacker’s observations have dimension 114 and the defender’s observations have dimension 13, details
in Appendix C. There are 15 total attack types (5 local exploits, 2 remote exploits, and 8 connections),
meaning the attack type neural network has an output dimension of 15 (see Appendix C). As there are
six nodes the target and source neural networks have output dimension 6. There are 5 total credentials in
the environment so the credential neural network has output dimension 5. In total there are 1542 unique
actions available to the attacker. There are 7 actions available to the defender, one for each node and one
‘do nothing’ action. The maximum number of steps in each simulation tmax is 100 and each node takes
15 time steps to reimage.

During training, we record the reward for each attacker when simulated against the coevolving
defender as well as in an environment without a defender. The difference in these quantities can be
interpreted as the quality of the defender. In order to compare the attackers and defenders, we execute
100 simulations with each attacker and defender pairing and report the average reward. In addition, we
introduce a control by testing each training method against an untrained attacker and defender which
choose each action randomly. Finally, we also test each attacker in an environment without a defender.

https://doi.org/10.1017/S0269888923000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000012


The Knowledge Engineering Review 13

Table 4. Environment and algorithm parameters used in Connect 4
and SNAPT

Environment Parameter Value
Connect 4 board width 7

board height 6

SNAPT player moves 20
total moves 40
exploit probability (pe) 0.7
detect probability (pd) 0.7
probability decrease (δs) 0.1

Algorithm Parameter Value

A2C Adam learning rate 0.001

(1 + 1)-ES G 50

CEM N 8
K 4
ε 10−6

AZ GAZ 10
MCTS iterations 50

AZ-ES N 8
K 4

Random Probability Uniform

Table 5. Environment and algorithm parameters used
with CyberBattleSim

Algorithm Parameter Value
A2C GA2C 64

Adam learning rate 10−4

(1 + 1)-ES G(1+1) 16

FB-ES Gfit 16
bA 200
bD −200

CEM GCEM 1
N 8
K 4
ε 10−6

https://doi.org/10.1017/S0269888923000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000012


14 Alexander Shashkov et al.

Table 6. Comparison of Connect 4 training algorithms without players using tree search
(top) and with all players using tree search (bottom). Rows are the first player, and columns
the second. Each cell shows how many games out of 100 the first player won against the sec-
ond. The final column gives the average of each row and the final row gives the average of
each column. The largest value in each column is bolded to highlight the best-performing
attacker. The smallest value in each row is underlined to highlight the best-performing
defender

Connect 4 games won by 1st player. No use of tree search

1st/2nd A2C AZ AZ-ES CEM (1 + 1) − ES Random Mean
A2C 59 55 61 48 38 48 51.5
AZ 63 54 64 48 48 60 56.2
AZ-ES 43 52 60 44 47 59 50.8
CEM 59 61 50 53 53 72 58.0
(1 + 1)ES 66 62 69 69 44 67 61.3
Random 54 51 52 48 40 59 50.7

Mean 57.3 55.8 59.3 51.7 45.0 60.8

Connect 4 games won by 1st player. Both players use tree search

1st/2nd A2C AZ AZ-ES CEM (1 + 1)ES Random Mean

A2C 72 51 30 55 58 64 55.0
AZ 72 55 46 73 76 71 65.6
AZ-ES 84 75 47 91 84 85 77.7
CEM 68 36 33 56 58 69 53.3
(1 + 1)ES 72 51 30 55 58 64 44.7
Random 69 61 30 38 48 58 49.2

Mean 72.8 54.8 36.0 61.3 63.7 68.5

6. Results
We present results from in Connect 4 (Section 6.1), then SNAPT (Section 6.2), and finally in
CyberBattleSim (Section 6.3). For an overview of the experiments and see Figure A.1.

6.1 Connect 4
The Connect 4 player training algorithm comparisons can be found in Table 6. In the games where players
did not use look-ahead tree search (MCTS), the player trained by (1 + 1)-ES won the most games on
average when playing first and lost the fewest on average when playing second. This ranking is followed
by CEM training. When utilizing Monte Carlo Tree Search (MCTS) during play, the player trained by
AlphaZero-ES, followed by AlphaZero, won the most games on average when playing first and lost the
fewest on average when playing second. We also tested using MCTS for only one opponent and each
algorithm was able to win more than 90% of its games against opponents that did not use tree search,
so these results are not shown.

6.2 SNAPT
The SNAPT algorithm comparisons can be found in Table 7. In the competitions where the adver-
saries did not use look-ahead tree search, the AZ-ES-trained Attacker won the most competitions, with

https://doi.org/10.1017/S0269888923000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000012


The Knowledge Engineering Review 15

Table 7. Comparison of SNAPT Attacker vs. Defender competitions without agents using
tree search (top) and with both adversaries using tree search (bottom). Rows are the
Attackers and columns the Defenders. Each cell shows how many competitions out of
100 the Attacker won against the Defender. The final column gives the average of each
row and the final row gives the average of each column. The largest value in each column
is bolded to highlight the best-performing attacker. The smallest value in each row is
underlined to highlight the best-performing defender

SNAPT competitions won by Attacker. No use of tree search

Attacker/Defender A2C AZ AZ-ES CEM (1 + 1)ES Random Mean
A2C 94 95 89 33 22 42 62.5
AZ 65 77 29 4 8 31 35.7
AZ-ES 100 100 100 30 29 49 68.0
CEM 13 18 14 12 28 47 22.0
(1 + 1)ES 11 14 11 18 32 38 20.7
Random 4 6 6 6 19 37 13.0

Mean 47.8 51.7 41.5 17.2 23.0 40.7

SNAPT competitions won by Attacker. Both adversaries use tree search.

Attacker/Defender A2C AZ AZ-ES CEM (1 + 1)ES Random Mean

A2C 25 41 27 32 40 38 33.8
AZ 27 42 35 33 35 30 33.2
AZ-ES 39 38 35 30 38 34 35.8
CEM 28 31 38 35 43 37 35.3
(1 + 1)ES 29 31 30 36 39 38 33.8
Random 37 36 37 40 31 50 38.5

Mean 30.8 36.5 33.7 34.0 37.7 37.8

an average of 68.0 wins, followed by the Attacker trained by A2C with 62.5. These two algorithms
were particularly successful against the Defenders trained with A2C, AZ, and AZ-ES, with the Attacker
trained by AZ-ES winning all of its competitions against these Defenders.

Among Defenders, the CEM-trained agent performed the best, losing on average 17.2 out of 100
games, followed by agents trained by AZ and (1 + 1)-ES with an average of 23.0. Like the Attackers,
the success of the Defenders was not consistent. The A2C, AZ, and AZ-ES-trained Defenders performed
better than the random Defender against the CEM-trained, (1 + 1)-ES-trained, and Random-trained
Attackers, while performing worse than the random Defender against the A2C-trained, AZ-trained, and
AZ-ES-trained Attackers.

When using MCTS, all the models performed similarly, with the Random attacker winning the most
games on average. One possible explanation for this behavior is that the MCTS was much stronger than
the models themselves, so the relative difference in their performance was not apparent when utilizing
MCTS.

Initial States Output Probabilities The inconsistent success of the Attackers and Defenders suggests
that the trained models use different strategies. For instance, if all of the Attackers were converging
towards one global optima in training, the best Attackers would likely perform the best against all of
the Defenders. To gain more insight into this, we examined move selections made by the trained models
on the initial state. A heatmap showing the probability of each agent taking a given move from the

https://doi.org/10.1017/S0269888923000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000012


16 Alexander Shashkov et al.

Figure 6. A heatmap showing the move (output) probabilities for the trained SNAPT agents at the
initial state. The row is the Attacker or Defender and the column is the move (output), with darker
shades indicating the agent is more likely to make a certain move. The Attacker has 3 possible moves,
and the Defender has 6 possible moves.

initial state is given in Figure 6. The heatmap shows that different agents favor different moves in the
initial state. Random, as expected, is the only one that has uniform probabilities. While only looking at
the initial state does not fully explain the performance of the agents against each other, it does suggest
the emergence of varying strategies even in a simple SNAPT environment. See Section 7 for further
discussion.

6.3 CyberBattleSim
Table 8 presents the average reward from executing 100 episodes of CyberBattleSim. A larger value
between agents indicates that one agent outperformed the other. While the absolute rewards offer no
interpretation, the relative rewards reflect comparative performance of the algorithms. The standard
deviations for these data are given in Table C.1.

The best-performing attacker is A2C, with an average reward of 349 across all defenders, followed by
A2C+FB-ES with 345 and A2C+CEM with 340. The pure ES methods FB-ES and CEM also perform
well with 323 and 293, respectively, and (1+1)-ES was only able to achieve an average reward of 98,
while the untrained random attacker had an average reward of 38.

Among defenders, A2C+FB-ES performs best, allowing an average reward of 189 (or, alternatively,
achieving an average reward of −189), followed by FB-ES, CEM and A2C+CEM which allow an
average reward of 205, 216 and 233, respectively. Notably, A2C+FB-ES also was the best-performing
defender against each individual attacker as well. A2C and (1+1)-ES allowed an reward of 296 and
300, performing worse than the untrained random defender which has an average of 279 but better than
no defender which has an average of 325. Overall, it appears that A2C+FB-ES is the best-performing
defender and is among the best attackers (along with A2C and A2C+CEM).

Reward over time The reward over time versus no defender for the attackers trained using all the algo-
rithms and the regular Type First neural network is shown in Figure 7 (Left). All algorithms except for
(1+1)-ES appear to train the attacker to similar final rewards, with A2C, A2C+FB-ES and A2C+CEM
having the best stability. The reward over time for each attacker versus the coevolving defender is some-
what uninformative as it depends on the performance of both the attacker and defender. However, by

https://doi.org/10.1017/S0269888923000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000012


The
K

nowledge
Engineering

Review
17

Table 8. The average rewards (rounded to the nearest integer) from 100 episodes in each attacker and defender pairing. The column gives
the defender and the row gives the attacker. We include an untrained attacker and defender which randomly select each action as a control
as well as an environment with no defender. The averages of each row and column are given at the end. The largest value in each column
is bolded to show which attacker performed best against a given defender. The smallest value in each row is underlined to show which
defender performed the best against a given attacker

Attacker/Defender A2C (1+1)-ES FB-ES CEM A2C+ FB-ES A2C+ CEM Random None Mean
A2C 422 412 270 266 255 322 382 467 349
(1+1)-ES 101 97 98 97 94 100 97 102 98
FB-ES 357 380 275 275 244 293 362 396 323
CEM 339 341 215 254 194 283 340 374 293
A2C+FB-ES 410 410 260 304 250 298 386 444 345
A2C+CEM 404 414 277 274 255 295 353 452 340
Random 38 46 41 40 33 38 33 38 38

Mean 296 300 205 216 189 233 279 325 255

https://doi.org/10.1017/S0269888923000012 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0269888923000012


18 Alexander Shashkov et al.

Figure 7. (Left) The attacker’s reward over time versus no defender for each algorithm used in training.
(Right) The difference in reward between the attacker versus the trained defender and the attacker versus
no defender during coevolution. The rewards are smoothed by averaging consecutive terms.

calculating the difference between the attacker’s reward with no defender and the attacker’s reward with
the defender, we can obtain a rough heuristic for the defender’s performance over time. This graph
is shown in Figure 7 (Right). While significantly more noisy than the previous graph, it appears that
A2C+FB-ES performs the best and with the most stability over time, with FB-ES, CEM and A2C+CEM
also creating a significant difference in reward. A2C and (1+1)-ES are close to zero for much of the
training period.

6.3.1 Coevolutionary round-robin training
The reward over time versus no defender for the attackers trained using CEM with and without the
round-robin is shown in Figure 8 (Left). The CEM with round-robin appears to overtake the CEM
without round-robin during the course of training and finish at a higher average reward. When testing
each attacker against both defenders trained with CEM for 100 episodes each, the CEM with round-robin
earned an average reward of 234 while the CEM without round-robin earned an average reward of 194.

6.3.2 Attacker neural network architectures
The reward over time versus no defender for the three attacker architectures trained using A2C+CEM are
shown in Figure 8 (Right). The Type First and Target First models appear to train the attacker
to a similar final average reward, although the regular Type First neural network outperforms the
alternate Target First neural network for most of the training period. The Simple neural network
architecture does not to appear to perform as well as the other two. We also compare the performance of
the three neural networks trained with A2C+CEM by executing 100 simulations between each pairing
of three attackers and three defenders. The average rewards from these pairings are shown in Table 9.
The Type First neural network performs best with an average reward of 295, closely followed by
the Target First neural network with an average reward of 287. The Simple neural network had an
average reward of 217.

https://doi.org/10.1017/S0269888923000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000012


The Knowledge Engineering Review 19

Figure 8. (Left) Attacker’s reward at various checkpoints during the 24 hours of training by CEM
with and without the round-robin method. (Right) The Attacker’s reward at various checkpoints during
the 24 hours of training of A2C+CEM with the ‘Type First’, ‘Target First’, and ‘Simple’ neural
network approaches described in Section 4.1. The rewards are smoothed by averaging consecutive terms.

7. Discussion and future work
This section provides a discussion about the results from the experimental comparisons (Section 7.1)
and the limitations (Section 7.2) of our work, as well as future work (Section 7.3).

7.1 Experimental comparisons
Our results suggest that the AlphaZero algorithm, which incorporates planning, could be effective
in training agent-based Attackers and Defenders both with deep reinforcement learning methods and
with gradient-free methods. The different strategies used by the different trained models suggest the
emergence varying strategies, even in a simple SNAPT environment. More work is needed to deter-
mine whether the different training algorithms tend to converge to consistent but different strategies.
Additionally, these results suggest that a training approach using multiple agents, such as a population-
based method, might result in robust Attackers and Defenders that are successful against a variety of
different strategies. In addition, a game-theoretic analysis to determine optimal strategies may also be
possible.

In CyberBattleSim, the Attacker trained with CEM not training in round-robin style was strong.
When round-robin competitions were compared, they outperformed the Attacker trained with CEM not
training in round-robin style. Note the pairing system used in (1+1)-ES and fitness-based ES (FB-ES)
is essentially this round-robin system with only two attackers and defenders. This first suggests the ES
with sample size greater than one is advantageous and round-robin play offers even greater advantage.

In the investigation of A2C NN architectures, there was no significant performance difference
between the Type First and Target First NNs trained with A2C+CEM. This suggests that this
NN architecture design is invariant to a change in element selection. Both the Type First and Target
First NNs outperformed the Simple NN architecture, suggesting the multi-stage architecture pro-
vides advantage to Attacker policy training in CyberBattleSim. Applying this multi-stage neural network
design to agents in other cybersecurity ModSim platforms could provide additional evidence for this
hypothesis. We also note that the multi-stage neural network architecture utilizes about 300 000 weights,

https://doi.org/10.1017/S0269888923000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000012


20 Alexander Shashkov et al.

Table 9. The average rewards (rounded to the nearest integer) from 100 episodes for
each pairing of trained attackers and defenders from the three attacker neural network
architectures trained with A2C+CEM. The row gives the attacker and the column gives
the defender. The average reward for each attacker is given in the Mean column. The
largest value in each column is bolded to show which attacker performed best against a
given defender

Attacker/Defender Type First Target First Simple Mean
Type First 275 325 284 295
Target First 275 290 296 287
Simple 220 218 212 217

Table 10. CyberBattleSim settings. The feature vector observations given to the attacker and
defender. The Agent column gives whether the observation is given to the attacker or defender, the
Type column gives whether the observation is global or device-specific, the Observation column gives
the name of the observation (see Section C), and the Dimension column gives the dimension of the
observation. For device-specific observations, the dimension is multiplied by 6 as there are 6 nodes
in the network. The total size of the attacker and defender observations is given in the Total row in
the observation column

Agent Type Observation Dimension
Attacker Global Credentials 5

Time 1
Device-specific Discovered 1(×6)

Installed 1(×6)
Privilege level 1(×6)
Attack count 1(×6)
Discovered properties 14(×6)

Total 114

Defender Global Time 1
Device-specific Reimage count 1(×6)

Running status 1(×6)

Total 13

about 3 times fewer than the 900 000 weights used by the Simple neural network architecture. The extent
of this complexity difference would be even greater in larger, more complex simulated environments.

We see that among the algorithms, the best-performing attackers appear to be those trained with deep
reinforcement learning (DRL) either solely or in combination with ES. One somewhat surprising result
is the apparent instability of the ES algorithms relative to DRL, contradicting the idea that ES may be a
more stable alternative to DRL (Mnih et al., 2015). Among Defenders, the algorithms training with ES
solely or in combination with A2C performed best (except for (1+1)-ES). The algorithm only utilizing
A2C performed quite poorly relative to the others, possibly due to the relative instability of the envi-
ronment from the Defender’s perspective. (1+1)-ES performed poorly in both Attacker and Defender
settings, likely due to its aggressive update strategy (Lee et al., 2020). Overall, the combined method
A2C+FB-ES was among the best algorithms for training both Attackers and Defenders. However we are
hesitant to make conclusions about the statistical significance of such results without more information
on the stability of each algorithm across training runs.

https://doi.org/10.1017/S0269888923000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000012


The Knowledge Engineering Review 21

Our results suggest that combining DRL and ES may provide more stable and robust algorithms
for training agents in a competitive environment. We find that these algorithms are able to coevolve
autonomous attackers to take actions in CyberBattleSim, and that introducing certain specializations
such as round-robin evaluation and a multi-stage network architecture may improve performance.

7.2 Limitations and threats to validity
Based on the experimental setup which had each algorithm train only a single neural network, it is
premature to draw conclusions about the statistical significance of the results without more information
on the stability of each algorithm. While it appears the trained SNAPT models converged to different
strategies, it is unclear to what extent this is due to the different training methodologies as opposed
to random noise. Training multiple models with each algorithm could provide more insight into the
stability of the models.

Simple Network APT (SNAPT) has many simplified assumptions. First, the use of a device (node)
value is a simplifying assumption. For example the attribution of events is notoriously hard, both post-
incident and during, and without knowledge of the attacker intent it is difficult for a defender to know
the value of a device. In addition, it is difficult to ascribe devices intrinsic value to attackers, although
information stored on a device, or the abilities provided by the device can provide quantifiable value.

The fixed number of moves make the environment susceptible to the horizon effect that is, an agent
who can delay an opponent from reaching a device till past the max number of moves can avoid con-
sequences on their reward. Moreover, the exploit probability is a simple approximation of the notion of
a security upper bound, with a securing action not able to exceed the bound. Furthermore, the limited
resources of defenders is a very general concept and cannot capture actions that would be obvious in
actual networks. For example, if one device controls access to the network or contains the classified
document server, the defender would allocate all their securing actions to that device.

CyberBattleSim The formulation of the reward as a zero-sum game is a simplified assumption to
the complexity of cybersecurity realities. From a practical view the available actions for a defender
in CyberBattleSim somewhat limits the practical use of discovered defender policies, as in practice
compromised services are often patched, not only shut down or rebooted. Additionally, currently the
agents only work in the particular network they are trained on, and their strategies would be ineffective
in a different topology. From a more theoretical standpoint the CyberBattleSim environment has not been
analyzed too rigorously, and it has over 1,000 available actions to the attacker which makes analysis quite
complex.

7.3 Future work
In future work we will expand and improve the training methods used for better performance in larger,
more complex simulations. The input dimension for both attacker and defender neural networks grows
linearly with the number of devices in the simulated network, and introducing a recurrent neural network
design similar to that used in natural language processing (Palangi et al., 2016) may provide an effective
design whose input dimension size remains small even in large networks. Such a design may also allow
for the model to learn general strategies independent of network topology. We will also expand the scope
of the algorithms used, including methodologies such as AI planning or population-based evolutionary
algorithms which have found success in other domains, in addition to other coevolution setups (Popovici
et al., 2012). Moreover, the ability to train agents on multiple scenarios and to transfer policies to unseen
scenarios will be investigated. The practical application of the policy search method could be improved
by analyzing the discovered policies. Finally, the hyperparameters of the algorithms and the setup can
be explored further, for example the training time until convergence.

https://doi.org/10.1017/S0269888923000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000012


22 Alexander Shashkov et al.

Conflicts of interest. The author(s) declare none.

References
Allis, L. V. 1988. A knowledge-based approach of connect-four. Journal of the International Computer Games Association 11,

165.
Applebaum, A., Miller, D., Strom, B., Korban, C. & Wolf, R. 2016. Intelligent, automated red team emulation. In Proceedings of

the 32nd Annual Conference on Computer Security Applications, 363–373.
Arulkumaran, K., Deisenroth, M. P., Brundage, M. & Bharath, A. A. 2017. Deep reinforcement learning: a brief survey. IEEE

Signal Processing Magazine 34(6), 26–38.
Backes, M., Hoffmann, J., Künnemann, R., Speicher, P. & Steinmetz, M. 2017. Simulated penetration testing and mitigation

analysis. ArXiv abs/1705.05088.
Baillie, C., Standen, M., Schwartz, J., Docking, M., Bowman, D. & Kim, J. 2020. Cyborg: An autonomous cyber operations

research gym. ArXiv abs/2002.10667.
Bräm, T., Brunner, G., Richter, O. & Wattenhofer, R. 2020. Attentive multi-task deep reinforcement learning. In Machine Learning

and Knowledge Discovery in Databases, Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M. & Robardet, C. (eds).
Springer International Publishing, 134–149.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J. & Zaremba, W. 2016. Openai gym. ArXiv
abs/1606.01540.

Corporation, T. M. (n.d.a). Mitre att&ck. https://attack.mitre.org.
Corporation, T. M. (n.d.b). Mitre engage. https://engage.mitre.org.
Droste, S., Jansen, T. & Wegener, I. 2002. On the analysis of the (1+1) evolutionary algorithm. Theoretical Computer Science

276(1), 51–81. https://www.sciencedirect.com/science/article/pii/S0304397501001827.
Engström, V. & Lagerström, R. 2022. Two decades of cyberattack simulations: a systematic literature review. Computers &

Security, 102681.
Falco, G., Viswanathan, A., Caldera, C. & Shrobe, H. 2018. A master attack methodology for an ai-based automated attack planner

for smart cities. IEEE Access 6, 48360–48373.
Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization and Machine Learning, 1st edition. Addison-Wesley Longman

Publishing Co., Inc.
Grondman, I., Buşoniu, L., Lopes, G. & Babuška, R. 2012. A survey of actor-critic reinforcement learning: standard and natural

policy gradients. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42, 1291–1307.
Group, A. 2022. Adversarial agent-learning for cybersecurity. https://github.com/ALFA-group/adversarial_agent_learning_for_

cybersecurity.
Hansen, N. (2016). The CMA evolution strategy: a tutorial. ArXiv abs/1604.00772.
Harris, S. N. & Tauritz, D. R. 2021. Competitive Coevolution for Defense and Security: Elo-Based Similar-Strength Opponent

Sampling. Association for Computing Machinery, 1898–1906. https://doi.org/10.1145/3449726.3463193.
Huang, L. & Zhu, Q. 2020. A dynamic games approach to proactive defense strategies against advanced persistent threats in

cyber-physical systems. Computers & Security 89, 101660.
Jiménez, S., De La Rosa, T., Fernández, S., Fernández, F. & Borrajo, D. 2012. A review of machine learning for automated

planning. The Knowledge Engineering Review 27(4), 433–467.
Klijn, D. & Eiben, A. E. 2021. A Coevolutionary Approach to Deep Multi-Agent Reinforcement Learning. Association for

Computing Machinery, 283–284. https://doi.org/10.1145/3449726.3459576.
Lee, K., Lee, B.-U., Shin, U. & Kweon, I. S. 2020. An efficient asynchronous method for integrating evolutionary and

gradient-based policy search. In Advances in Neural Information Processing Systems, Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M. F. & Lin, H. (eds), 33. Curran Associates, Inc., 10124–10135. https://proceedings.neurips.cc/
paper/2020/file/731309c4bb223491a9f67eac5214fb2e-Paper.pdf.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N. M. O., Erez, T., Tassa, Y., Silver, D. & Wierstra, D. 2016. Continuous control
with deep reinforcement learning. ArXiv abs/1509.02971.

Liu, J., Pérez-Liébana, D. & Lucas, S. M. 2016. Rolling horizon coevolutionary planning for two-player video games. In 2016 8th
Computer Science and Electronic Engineering (CEEC), 174–179.

Liu, L., Yasin Chouhan, A., Li, T., Fatima, R. & Wang, J. 2018. Improving software security awareness using a serious game. IET
Software 13, 159–169.

Luh, R., Temper, M., Tjoa, S., Schrittwieser, S. & Janicke, H. 2019. Penquest: a gamified attacker/defender meta model for cyber
security assessment and education. Journal of Computer Virology and Hacking Techniques 16, 19–61.

Macua, S. V., Davies, I., Tukiainen, A. & De Cote, E. M. 2021. Fully distributed actor-critic architecture for multitask deep
reinforcement learning. The Knowledge Engineering Review 36, e6.

Metz, L., Ibarz, J., Jaitly, N. & Davidson, J. 2017. Discrete sequential prediction of continuous actions for deep RL. ArXiv
abs/1705.05035.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M. A., Fidjeland, A.,
Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S. & Hassabis,
D. 2015. Human-level control through deep reinforcement learning. Nature 518, 529–533.

Molina-Markham, A., Winder, R. K. & Ridley, A. 2021. Network defense is not a game. ArXiv abs/2104.10262.

https://doi.org/10.1017/S0269888923000012 Published online by Cambridge University Press

http://arxiv.org/abs/1705.05088
http://arxiv.org/abs/2002.10667
http://arxiv.org/abs/1606.01540
https://attack.mitre.org
https://engage.mitre.org
https://www.sciencedirect.com/science/article/pii/S0304397501001827
https://github.com/ALFA-group/adversarial_agent_learning_for_cybersecurity
https://github.com/ALFA-group/adversarial_agent_learning_for_cybersecurity
http://arxiv.org/abs/1604.00772
https://doi.org/10.1145/3449726.3463193
https://doi.org/10.1145/3449726.3459576
https://proceedings.neurips.cc/paper/2020/file/731309c4bb223491a9f67eac5214fb2e-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/731309c4bb223491a9f67eac5214fb2e-Paper.pdf
http://arxiv.org/abs/1509.0297
http://arxiv.org/abs/1705.05035
http://arxiv.org/abs/2104.10262
https://doi.org/10.1017/S0269888923000012


The Knowledge Engineering Review 23

Nguyen, T. T. & Reddi, V. J. 2021. Deep reinforcement learning for cyber security. IEEE Transactions on Neural Networks and
Learning Systems, 1–17.

Olesen, T. V. A. N., Nguyen, D. T. T., Palm, R. B. & Risi, S. 2021. Evolutionary planning in latent space. In Applications of
Evolutionary Computation, Castillo, P. A. & Jiménez Laredo, J. L. (eds). Springer International Publishing, 522–536.

Palangi, H., Deng, L., Shen, Y., Gao, J., He, X., Chen, J., Song, X. & Ward, R. 2016. Deep sentence embedding using long
short-term memory networks: analysis and application to information retrieval. IEEE/ACM Transactions on Audio, Speech,
and Language Processing 24, 694–707.

Panait, L. & Luke, S. 2002. A comparison of two competitive fitness functions. In Proceedings of the 4th Annual Conference on
Genetic and Evolutionary Computation, GECCO’02, Morgan Kaufmann Publishers Inc., 503–511.

Partalas, I., Vrakas, D. & Vlahavas, I. 2012. Reinforcement learning and automated planning: a survey. In Artificial Intelligence
for Advanced Problem Solving Techniques.

Popovici, E., Bucci, A., Wiegand, R. P. & Jong, E. D. 2012. Coevolutionary principles. In Handbook of Natural Computing.
Potter, M. A. & Jong, K. A. D. 2000. Cooperative coevolution: an architecture for evolving coadapted subcomponents.

Evolutionary Computation 8, 1–29.
Pourchot, A. & Sigaud, O. 2018. CEM-RL: combining evolutionary and gradient-based methods for policy search. ArXiv

abs/1810.01222.
Prince, M. H., McGehee, A. J. & Tauritz, D. R. 2021. Edm-drl: toward stable reinforcement learning through ensembled directed

mutation. In Applications of Evolutionary Computation, Castillo, P. A. & Jiménez Laredo, J. L. (eds). Springer International
Publishing, 275–290.

Rechenberg, I. 1989. Evolution strategy: nature’s way of optimization. In Optimization: Methods and Applications, Possibilities
and Limitations, Bergmann, H. W. (ed.). Springer Berlin Heidelberg, 106–126.

Reinstadler, B. 2021. Ai Attack Planning for Emulated Networks. Master’s thesis, Massachusetts Institute of Technology.
Rush, G., Tauritz, D. R. & Kent, A. D. 2015. Coevolutionary agent-based network defense lightweight event system (candles).

In Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation.
GECCO Companion’15. Association for Computing Machinery, 859–866. https://doi.org/10.1145/2739482.2768429.

Salimans, T., Ho, J., Chen, X. & Sutskever, I. 2017. Evolution strategies as a scalable alternative to reinforcement learning. ArXiv
abs/1703.03864.

Schaul, T. & Schmidhuber, J. 2008. A scalable neural network architecture for board games. In 2008 IEEE Symposium on
Computational Intelligence and Games, CIG 2008, 357–364.

Sigaud, O. & Stulp, F. 2019. Policy search in continuous action domains: an overview. Neural Networks: The Official Journal of
the International Neural Network Society 113, 28–40.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T.,
Lillicrap, T., Simonyan, K. & Hassabis, D. 2018. A general reinforcement learning algorithm that masters chess, shogi, and
go through self-play. Science 362(6419), 1140–1144. https://www.science.org/doi/abs/10.1126/science.aar6404.

Simione, L. & Nolfi, S. 2017. Achieving long-term progress in competitive co-evolution. In 2017 IEEE Symposium Series on
Computational Intelligence (SSCI), 1–8.

Team, M. D. R. 2021. Cyberbattlesim. https://github.com/microsoft/cyberbattlesim. Created by Christian Seifert, Michael Betser,
William Blum, James Bono, Kate Farris, Emily Goren, Justin Grana, Kristian Holsheimer, Brandon Marken, Joshua Neil,
Nicole Nichols, Jugal Parikh, Haoran Wei.

The MITRE Corporation 2020. Caldera. https://github.com/mitre/caldera.
Vinyals, O., Babuschkin, I., Czarnecki, W., Mathieu, M., Dudzik, A., Chung, J., Choi, D., Powell, R., Ewalds, T., Georgiev, P., Oh,

J., Horgan, D., Kroiss, M., Danihelka, I., Huang, A., Sifre, L., Cai, T., Agapiou, J., Jaderberg, M., Vezhnevets, A., Leblond,
R., Pohlen, T., Dalibard, V., Budden, D., Sulsky, Y., Molloy, J., Paine, T., Gulcehre, C., Wang, Z., Pfaff, T., Wu, Y., Ring, R.,
Yogatama, D., Wünsch, D., McKinney, K., Smith, O., Schaul, T., Lillicrap, T., Kavukcuoglu, K., Hassabis, D., Apps, C. &
Silver, D. 2019. Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature 575(7782), 350–354.

Walter, E. C., Ferguson-Walter, K. J. & Ridley, A. D. 2021. Incorporating deception into cyberbattlesim for autonomous defense.
ArXiv abs/2108.13980.

Yang, L.-X., Pengdeng, L., Zhang, Y., Yang, X., Xiang, Y. & Zhou, W. 2018. Effective repair strategy against advanced persistent
threat: a differential game approach. IEEE Transactions on Information Forensics and Security14(7), 1713–1728.

Zhu, Q. & Rass, S. 2018. On multi-phase and multi-stage game-theoretic modeling of advanced persistent threats. IEEE Access
6, 13958–13971.

https://doi.org/10.1017/S0269888923000012 Published online by Cambridge University Press

http://arxiv.org/abs/1810.01222
https://doi.org/10.1145/2739482.2768429
http://arxiv.org/abs/1703.03864
https://www.science.org/doi/abs/10.1126/science.aar6404
https://github.com/microsoft/cyberbattlesim
https://github.com/mitre/caldera
http://arxiv.org/abs/2108.13980
https://doi.org/10.1017/S0269888923000012


24 Alexander Shashkov et al.

Appendix A. Experiment Overview

Figure A.1. An overview of our experimental setup. We start with an untrained network and apply one
of the training algorithms described in Section 4.2. For Connect 4 and SNAPT we compare ES, DRL
and MCTS. For CyberBattleSim we then compare the CEM algorithms with and without round-robin,
A2C+CEM with the three different attacker network architectures, and all the algorithms using a Type
First neural network.

Appendix B. CyberBattleSim Training Iterations
Table B.1 shows the number of training iterations for CyberBattleSim.

Table B.1 The number of training
iterations executed during the 24 hour
training period for each algorithm
for CyberBattleSim. For the combined
methods (A2C + FB-ES and A2C +
CEM) one iteration is counted as one
step of both A2C and the ES method

Algorithm Iterations
A2C 877
(1 + 1)-ES 1359
FB-ES 1425
CEM 1281
A2C + FB-ES 600
A2C + CEM 631

https://doi.org/10.1017/S0269888923000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000012


The Knowledge Engineering Review 25

Appendix C. CyberBattleSim RL Environment Specifications
C.1. CyberBattleSim RL Input
Here we give the details on the feature vector input, observations, given to the attacker and defender. The
information was chosen based on what information might be available to a real life attacker or defender in
a network and is thus asymmetric. Some observations are specific to each device and some are global and
relate to the network as a whole. Some pieces of information, such as the time, are expressed as integers,
and some, such as whether a credential has been discovered, are boolean. The global information given
to the attacker is which credentials it has discovered and the number of steps taken so far (the time).
The device-specific information corresponds to whether or not a device has been discovered, whether or
not malware has been installed on the device, the attacker’s privilege level on the device, the number of
times the device has been attacked, and the discovered properties of the device. The only global property
given to the defender is the time. The device-specific information is the number of times each device
has been reimaged and whether each device is running or not. A summary of this information can be
found in Table 10.

C.2. CyberBattleSim Environment
From Group (2022) Chain pattern environment. In the environment the local vulnerabilities are: Scan
bash history, Scan explorer recent files, sudo attempt, Crack keep PassX and Crack keep Pass. Remote
vulnerabilities are probe Linux or Windows. Connections are: HTTPs, GIT, SSH, RDP, PING, MySQL,
SSH-key and su.

https://doi.org/10.1017/S0269888923000012 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888923000012


26
AlexanderShashkov

etal.

Table C.1 The standard deviations (rounded to the nearest integer) from 100 episodes in each attacker and defender pairing. The column
gives the defender and the row gives the attacker. We include an untrained attacker and defender which randomly select each action as a
control as well as an environment with no defender. The averages of each row and column are given at the end.

Attacker/Defender A2C (1+1)-ES FB-ES CEM A2C+ FB-ES A2C+ CEM Random None Mean
A2C 80 81 93 99 90 84 100 21 81
(1+1)-ES 24 23 19 26 18 22 16 36 23
FB-ES 117 85 78 81 92 104 103 116 97
CEM 128 129 107 114 92 105 106 131 114
A2C+FB-ES 89 78 93 90 92 94 90 63 86
A2C+CEM 83 71 88 93 90 94 92 38 81
Random 30 38 27 31 27 28 34 25 30

Mean 79 72 72 76 72 76 77 62 73

https://doi.org/10.1017/S0269888923000012 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0269888923000012

	Introduction
	Related work
	Cybersecurity simulations and games
	Algorithms for training
	Environments
	Connect 4
	Simple Network APT (SNAPT)
	CyberBattleSim
	Methods
	Neural network architectures
	Policy learning algorithms
	Advantage Actor-Critic (A2C)
	Evolutionary Strategies (ES)
	DRL and ES in combination

	Planning with policy-guidance
	Experimental setup
	Results
	Connect 4
	SNAPT
	CyberBattleSim
	Coevolutionary round-robin training
	Attacker neural network architectures
	Discussion and future work
	Experimental comparisons
	Limitations and threats to validity
	Future work
	CyberBattleSim RL Input
	C.2. CyberBattleSim Environment

