## ON THE CONSTRUCTION AND USE OF LIFE-TABLES FROM A PUBLIC HEALTH POINT OF VIEW.

By T. E. HAYWARD, M.B. (Lond.), F.R.C.S. Eng.,<br>Medical Officer of Health for Haydock, Lancashire. (Concluded.)

It was not possible to complete the considerable amount of work necessary for the following Addendum in time for inclusion with the article which appeared in the last number of this Journal.

In order to submit the method explained in the last number of the Journal of Hygiene for graphically constructing the curve of $\log p_{x}$ values to as exact a test as possible, in the first place the data of the Life-Table for England and Wales for 1881-90 (males) have been taken, and a complete series of $\log p_{x}$ values calculated from them according to the methods of interpolation previously described (see the Articles in the two preceding numbers of the Journal of Hygiene), and then in the next place the values obtained by the graphic method have been taken and compared one by one with the values obtained by exact calculation. In order to save space there will only be given below the differences of the measured from the calculated values.

Please note that the value given for age 5 expresses the difference of the measurement of the ordinate $5 \frac{1}{2}$ from the calculated value of $\log p_{5}, \& c$.,

| Age | Differences |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | $+00007$ | 25 | $\pm \cdot 00000$ | 45 | $+{ }^{\circ} 00002$ | 65 | $+\cdot 00004$ | 85 | - 00015 |
| 6 | +.00011 | 26 | -. 00004 | 46 | $\pm \cdot 00000$ | 66 | $+\cdot 00005$ | 86 | - 00032 |
| 7 | $+\cdot 00005$ | 27 | - 000005 | 47 | + $\cdot 00002$ | 67 | - 000001 | 87 | -.00001 |
| 8 | $+\cdot 00003$ | 28 | - $\cdot 00005$ | 48 | + ${ }^{\circ} 00001$ | 68 | $+\cdot 00002$ | 88 | -. 00004 |
| 9 | + 00001 | 29 | - 000003 | 49 | $\pm \cdot 00000$ | 69 | $+\cdot 00003$ | 89 | + $\cdot 00002$ |
| 10 | $+\cdot 00003$ | 30 | + 00002 | 50 | + 00001 | 70 | $+\cdot 00002$ | 90 | - $\cdot 00012$ |
| 11 | + ${ }^{\circ} 00001$ | 31 | $+\cdot 00004$ | 51 | - 00003 | 71 | $+\cdot 00001$ | 91 | + 00001 |
| 12 | - $\cdot 00005$ | 32 | + 00006 | 52 | - 00003 | 72 | + ${ }^{\circ} 00003$ | 92 | - 00005 |
| 13 | - 000006 | 33 | $+\cdot 00003$ | 53 | - 000002 | 73 | + 00008 | 93 | - $\cdot 00001$ |
| 14 | - 000002 | 34 | $+\cdot 00002$ | 54 | -.00004 | 74 | + 000006 | 94 | + $\cdot 00008$ |
| 15 | - 000001 | 35 | $+\cdot 00001$ | 55 | - $\cdot 00004$ | 75 | - $\cdot 00002$ | 95 | + 00016 |
| 16 | + 00003 | 36 | - 000001 | 56 | - 00007 | 76 | - 000004 | 96 | $\pm 00000$ |
| 17 | + 00003 | 37 | - 000001 | 57 | - 000009 | 77 | - $\cdot 00001$ | 97 | + ${ }^{0} 00004$ |
| 18 | $\pm{ }^{\circ} 00000$ | 38 | $+\cdot 00001$ | 58 | - 00008 | 78 | - $\cdot 00014$ | 98 | $+\cdot 00013$ |
| 19 | + 00002 | 39 | - 000003 | 59 | - 000004 | 79 | - 00009 | 99 | - $\cdot 00016$ |
| 20 | - 00002 | 40 | $\pm \cdot 00000$ | 60 | + $\cdot 00002$ | 80 | - 000005 | 100 | - 00007 |
| 21 | - 000003 | 41 | $\pm .00000$ | 61 | $+00005$ | 81 | - 00007 | 101 | + 00005 |
| 22 | - 00001 | 42 | + 00001 | 62 | + 00009 | 82 | - $\cdot 00003$ | 102 | + 00006 |
| 23 | - 00004 | 43 | $\pm \cdot 00000$ | 63 | $+\cdot 00007$ | 83 | $\pm 00000$ | 103 | - $\cdot 00047$ |
| 24 | - 00003 | 44 | - 000001 | 64 | $+\cdot 00004$ | 84 | + ${ }^{0} 00013$ |  |  |

[A somewhat similar comparison, almost equally exact, has also been made from the data of the Life-Table for Selected Healthy Districts (males)].

The actual work of drawing and measuring the curves has been done for the writer by a mining surveyor who had no knowledge of what the calculated values were, and who had given to him as data the $\log p_{x}$ values $4 \frac{1}{2}, 5,10,15,20,25,30 \ldots 105$, and also $67 \frac{1}{2}, 72 \frac{1}{2}, 77 \frac{1}{2} 82 \frac{1}{2}$, $87 \frac{1}{2}, 92 \frac{1}{2}, 97 \frac{1}{2}, 102 \frac{1}{2}$, obtained by calculations as described in the Articles already alluded to.

The curve has been drawn in three sections :-
Section I, from $4 \frac{1}{2}$ to 75 . Vertical scale $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}=\cdot 00050$, horizontal scale $\frac{1^{\prime \prime}}{8}=\frac{1}{2}$ year. This has been used for measuring from $5 \frac{1}{2}$ to $64 \frac{1}{2}$ inclusive.

Section II, from 55 to 95 . Vertical scale $\frac{1}{8}^{\prime \prime}=00100$, horizontal scale, $\frac{1^{\prime \prime}}{8}=\frac{1}{4}$ year. This has been used for measuring from $65 \frac{1}{2}$ to $89 \frac{1}{2}$ inclusive.

Section III, from 85 to 105 . Vertical scale $\frac{1}{8}^{\prime \prime}=00250$, horizontal scale, $\frac{1^{\prime \prime}}{8}=\frac{1}{8}$ year. This has been used for measuring from $90 \frac{1}{2}$ to $103 \frac{1}{2}$ inclusive.

The measured values have been taken as returned to the writer without revision.

A complete Life-Table worked out from them would not differ very sensibly from one constructed from the calculated series of $\log p_{x}$ values.

Even the largest differences are insignificant compared with the differences which may be obtained between the results of different systems of analytical interpolation.

Occasion may be taken to note:
(1) The formula which has been given for $\log p_{20}^{\prime}$ (or $u_{20}$ ), see the last number of this Journal, p. 211, has inadvertently not been reduced to its lowest terms; as all the co-efficients are divisible by 3 , it should be

$$
u_{20}=\frac{\left(35 u_{5}+420 u_{15}+210 u_{25}+3 u_{45}\right)-\left(192 u_{10}+28 u_{35}\right)}{448} .
$$

(2) A more accurate formula for $\log p_{30}^{\prime}\left(\right.$ or $\left.u_{30}\right)$ is

$$
u_{30}=\frac{\left(320 u_{10}+1050 u_{25}+630 u_{35}+7 u_{55}\right)-\left(63 u_{5}+525 u_{15}+75 u_{45}\right)}{1344}
$$

