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1. Introduction

A subset S of a ring R is a left semigroup ideal of R if RS < R, and a left
ring ideal of R if in addition S is a subring of R. Gluskin (1960) investigated
those rings with 1 which possess the property:

(2) every left semigroup ideal is a left ring ideal.

Here we study those rings in which every subsemigroup is a subring, and those
in which every semigroup endomorphism is a ring endomorphism. We note in
passing that recent work on a rather different, but nonetheless related, question:
to characterise certain types of semigroups admitting a ring structure, is to be
found in Peinado (1970), Satyanarayana (1971) and Satyanarayana (1973).

2. Subsemigroups of Rings

A subset S of R will be called a subsemigroup of R if it is a subsemigroup
of (R, ). As usual, for x € R, {x) denotes the cyclic subsemigroup of R generated
by x. We start by characterising the rings R with the property:

(o) every subsemigroup of R is a subring.

THEOREM 1. A ring R has (o) iff either |R[ =1 or IRI =2 and R* =0.

PROOF. Suppose R has (o) and that lRi > 1. Choose x€R\0 and consider
{x). Then from (o), there exists r = 2 such that x" = 0: suppose r is the least
such integer. Now we also have x + x2 = x’ for some t > 0. If r>2and t 2 2,
we have x""%(x 4+ x?) = x'*""2 and so x’~! = 0, contradicting the choice of r.
Hence r> 2 implies ¢ = 1: but then x> = 0, again contradicting the choice of r.
Hence r = 2, and we have x? = 0 for all xeR.

* The work for this paper was begun while a final-year undergraduate student under the
supervision of the second author.
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In particular, for each yeR, xy + yx = (x + y)*> = 0 and {0,x} is a sub-
semigroup of R for each xe R\0. Hence from (o), we have x + x = 0 for all
xeR and so xy + xy = 0 for all y e R; it follows that R is commutative.

Now suppose x, y € R\0. Since {0,x,xy} is a subsemigroup of R, and R
has (), we see that x + xy equals 0, xy, or x. In the first case, we obtain x = xy
(since x + x = 0) and so 0 = xy*> = xy and x = 0, a contradiction. If x + xy
= xy, then x = 0 trivially and we again obtain a contradiction. So we must
have x + xy = x, in which case xy = 0. But then {0,x, y} is a subsemigroup
of R and so from (¢) we deduce that x + y equals x, y or 0. In the first two cases,
either x or y will equal 0, a contradiction in either case. Hence, x + y = 0 and so
x = y; that is, |[R\0| = 1 and the result follows.

For the converse, suppose R = {0,a}, a # 0, and a®> = 0. Then a +a
must equal 0, and so the subsemigroups {0} and {0,a} are seen to be subrings.

In the light of the above proof, we now weaken (o), and consider those rings
R with:

(¢') every subsemigroup containing O is a subring.
In order to characterise all such rings containing 1, we shall need two lemmas:

the first summarises Theorems 1 and 3 of Gluskin (1960); the proof of the second
can be readily deduced from standard results on finite fields (see Burton (1970)).

LEMMA 1. If R is a ring with 1 which satisfies (1) and G denotes the group
of units in R, then R=GUG+1.

LemMmA 2. If F is a finite field and a generator of F\O has order q where
q is odd, then |F| = 2" for some m = 1.

THEOREM 2. A ring R containing 1 has (¢”) iff it is a finite field such that
|R\O| is @ prime number.

PrOOF. Since (¢”) implies (1), we deduce from Lemma 1that R=G UG + 1
where G is the group of units in R. But G U0 is a subsemigroup of R, and so
from (6"), G U0 is a subring. In particular, since 1eG, wehave G+1 S GUQ
and so R = G U0, a division ring.

Now {0,1} is a subsemigroup of R and so (¢") implies that 1 + 1 = 0. Hence
x + x = Oforall x € R. Suppose there exists x € R\{0, 1} : we note that if R={0, 1},
then it is a field of the required type. Then S = {1 + x)> U {0,1} is also a sub-
semigroup of R, and so (¢") implies that x = 1 + (1 + x) = (1 + x)* for some
t>1. But T=<{x)U{0,1} is another subsemigroup of R and so again
using (¢") we obtain 1+ x = x* for some s > 1. Hence, for each xeR\{0,1},
there exists » > 1 such that x” = 1, and so from Jacobson’s Theorem (see Burton
(1970)) we deduce that R is a field.

If xeR\{0,1}, let g be the least integer such that x? = 1, and suppose
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q = 2k. Then {0, l,x"} is a subsemigroup in which, by choice of q, x* # 1.
But by applying (¢") we obtain a contradiction. Hence g is odd, and T = {x)> U0
is a finite field with a generator having odd order. By Lemma 2, [T ] = 2" for
some m = 1 and g = 2™ — 1; we assert that in addition ¢ is prime.

For, suppose g=ab: since g is odd, both a, b are odd. Then {x)> will contain
subgroups 4 = (x*» and B = {x") of order b and a respectively, and so by
('), A0 and B U are finite fields, each with a generator having odd order.
Therefore by Lemma 2, there exists u, v = 1 such that a =2"—1, b =2 -1,
Hence

2" -1 =¢q=ab=2"-1)(2"-1),

and so
2m—1 -1 = 2u+v—l . 2u—1 _ 20—1

a contradiction if both u, v > 1. So either u £ 1 or v £ 1, and hence either
a=lorb=1.

We have now shown that for each xe R\{0,1}, x has odd prime order.
Suppose x € R\ {0, 1} and there exists a non-zero yeR\{x). Then xye R\{0,1}
and if x,y have prime order p, g respectively, then xy has non-prime order pq,
a contradiction. Hence R = <{x> U0 is a finite field of order 2™ for which
2™ — 1 is prime.

Suppose conversely that R is such a field. Then {x} is a cyclic group of prime
order, and so any element of {x) is a generator of {x). Hence if S is a subsemi-
group of R containing 0 and if there exists x € S\{0,1}, then S = R is certainly
a subring; that is, R has (¢'), and the proof is complete.

3. Semigroup endomorphisms

A semigroup endomorphism of a ring R is 2 mapping ¢: R = R such that
(xy)¢ = x¢ + y¢p for all x, yeR; a ring endomorphism is a semigroup endo-
morphism ¢: R —» R such that (x + y)¢ = x¢ + y¢ for all x,ye R. We start
by considering the following property of a ring R.

(¢) every semigroup endomorphism is a ring endomorphism.

THEOREM 3. If R is a commutative ring with (g), then either (i) IRI =1,
or (i) [R| =2and R* = 0, or (i) R =R*and a+a = 0 = a® for all aeR.

Proor. Consider the mapping 6,: R > R defined by setting x8, = x" for all
x e R. Since R is commutative, 0, is a semigroup endomorphism for each n = 1,
and hence since R has (&), each 6, is a ring endomorphism. Then putting n = 2,
we obtain xy + xy = Oforall x,ye R, and from n = 3, we obtain xy? + x%y = 0.
But then x? + x = 0 and so xy? = x?y for all x,yeR. In particular, x> = x*
when y = x2, and so x* is an idempotent. Now fix ae R and define y: R - R
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by setting xy = a* for all xeR. Since y is clearly a semigroup endomorphism,
we deduce from (g) that ¢* = 0 for all aeR.

Now suppose ae R\0 and define 7,: R = R and p,: R - R by

XT, =

Xpy =

{O if xeR? ;0 if xeR?
a? if x¢R? a if x¢R?.

If x,yeR, then xye R? and so (xy)r, = 0. If either xe R*> or ye R?, then
xt, - y1, = 0, and if both x,y ¢ R?, then xt,° yt, = a®*-a* = 0. Hence 7, is
a semigroup endomorphism, and so by (¢), is a ring endomorphism. Suppose
veR? and u¢ R?. If v + ue R?, then

a? =vt, +put, = (v+wr, = 0.

We assert that now p, is a semigroup endomorphism, For if x,y € R, then xy € R?
and (xp)u, = 0, and if either x € R? or y € R?, then xu, yu, = 0; if x,y¢R?,
then xu, - yu, = a-a = 0. From (¢) we now deduce that

a = vp, +up, = @V +uy, =0,

a contradiction. Hence if u ¢ R? and ve R?, then u + v¢ R?.

Now suppose there exists ¢ € R\R? and define x,: R - R and 1,: R - R by

XK, = 5 XA, =

0 if xeR*Uc {0 if xeR*Uc
a

otherwise a otherwise.

If x,ye R, then xy e R? Uc, and so (xp)x, = 0. Ifeitherxe R* Ucor ye R? Ucg,
then xk,-yx, = 0, and if both x,y¢R?Uc, then xx,  yk, = a*>-a?> = 0.
Hence k, is a semigroup endomorphism which from (e) is also a ring endo-
morphism. Suppose u,veR*Uc and u + v¢ R* Uc. Then

a? = (u+vk, = ux, + vk, =0,

and so as in the case of y, above, we can deduce that 4, is a semigroup endo-
morphism. But then (¢) implies that a = (u -+ v)A, = ul, + v4, = 0, a contra-
diction. Hence, if u,ve R* U ¢, then u + ve R* Uc. In particular, xy + ce R2 U ¢
for all x, y € R. But we know from the above that xy + c¢ R?. Hence, xy + ¢ = ¢
and so R?2=0.

Now define §: R - R by setting 06 = 0 and x6 = a for all xeR\0. If
x,y€R, we know that xy = 0 and so (xy)0 = 0. If either x = 0 or y = 0, then
x3-y6 =0,and if x # 0and y 5 0, then x6 - y5 = a*> = 0. Hence 6 is a semi-
group endomorphism which is by (¢) a ring endomorphism. So, if there exist
x,y # 0 in R such that x — y # 0, then 0 =a—a = x5 — y6 = (x—y)d = a,
a contradiction. Hence, R = {0,4} and so (ii) holds.
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Suppose now that R\R? = [}; thatis, R = R?, Then foreachaeR,a = xy
for some x,yeR and so from an earlier comment, a + a = 0. In addition,
a? = (xy)? = x*y* = (x¥)?y = 0, and so (iii) holds.

ReMark. If l R!=1 or iflRl =2 and R? =0, then R has (g): it is not known
whether rings satisfying condition (iii) in the above theorem exist, nor whether,
if they do, they have (¢).

As in Section 2, we now weaken (¢), and investigate those rings R with:

(¢') every non-constant semigroup endomorphism is a ring endomorphism.

THEOREM 4. If R is a commutative ring with 1 and satisfies (¢'), then R
is a field of order 2.

PrROOF. Let 8,1 R > R be defined by setting x8, = x" for all xeR. Then
since R is commutative, 8, is a semigroup endomorphism of R, and is non-con-
stant since 16, = 1 and 08, = 0 and 0 # 1. Hence (&) implies that 8, is a ring
endomorphism, and so for all xeR, (x + 1) = (x + 1), = x> + 1; that is,
x + x = 0 for all xeR. Likewise 0 is a ring endomorphism, and for all xeR

x+1)P° =@x+1D0; =x>+1;

that is, x> + x = 0 (since x + x = 0) and so x = x? for all xe R. Hence R is
Boolean.
Now let ae R\{0,1} and define y: R — R by:

xy =a if xa#a
x if xa=a

if

We assert that y is a non-constant semigroup endomorphism of R. For, suppose
x,yeR and xya # a. Then (xy)y = a and we may suppose without loss of
generality that xa # a: if xa = a = ya, then xya = a since R is Boolean and
this is a contradiction. So, xy - yy = a -+ yy and this equals a-a if ya # a or
ay if ya = a: therefore in either case xy - yy = a = (xy)y. If on the other hand
xya = a, then xa = x2ya = xya = a and ya = a similarly. Hence in this case
also, (xy)y = xy = xy - yy. Finally, v is non-constant since for example 1y =1
and 0y = a # 1, and so our assertion holds. But now (¢') implies that vy is a ring
endomorphism and so in particular Oy = 0; that is, a = 0, a contradiction.
Hence there is no such a in R and we have ]R‘ = 2.

In the above theorem, commutativity of R was essentially used to establish
the existence of certain semigroup endomorphisms defined on R: it is unknown
whether an arbitrary ring, with or without 1, has at least one semigroup endo-
morphism that can be defined on R in some algebraic manner. The next result

replaces the criterion of commutativity by one suggested by Mr. J. S. V. Symons:
it holds in, for example, all full matrix rings.
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THEOREM 5. If R is a ring with 1 in which every 1-sided unit is 2-sided
and which has (¢'), then R is a field of order 2.

Proor.Let L be the set of left-units, and G the set of units, in R. Define

y: R =+ R by: x  if xeG

Xy =
' 0 if x¢G.

We assert that y is a non-constant semigroup endomorphism of R. For, if x,ye R
and xyeG, then (xy)y = xy and xeL. Hence xeG and so y = x"'xyeG.
From the definition of y, we therefore have

xy-yy = xy = (xy)y.

On the other hand, if xy¢ G, then without loss of generality we may assume

x¢G. Then
(xy)y =0=0-yy = xy-yy,

and clearly 1y =1, Oy = 0, and 1 # 0 imply that y is non-constant. By (g"),
y is therefore a ring endomorphism. Mow suppose xeG, y¢G. If x + y¢G,
we have x + 0 = xy + yy = (x + y)y == 0 and 0 e G, which is impossible. Hence
x+yeG. But then x+0=xy+yy=(x+y)y =x+y and so R\G = {0};
that is, R is a division ring.

Now define A: R - R by setting 04 =0 and x4 =1 for all xeR\0. If
x,yeRandxy =0,thenx =0o0ry = 0,andso(xy)y =0 = xy-yy. If xy 0,
then both x,y # 0 and we have (xy)y =1 = xy-yy. Hence y is a semigroup
endomorphism which is obviously non-constant. By (¢'), y is therefore a ring
endomorphism. Now suppose there exists x e R\{0,1}. If x + x £ 0, we have
1+1=xy+xy=(x+x)y =1, which is impossible. Hence x + x = 0 and
sol+x #0.Butnow 14+ 1 =1y+xy = (1 +x)y = 1. Hence R = {0,1} and
the result follows.
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