J. Austral. Math. Soc. 20 (Series A) (1975), 172-177.

SEMIGROUPS IN RINGS

J. CRESP* and R. P. SULLIVAN

(Received 16 August 1973)

Communicated by T. E. Hall

1. Introduction

A subset S of a ring R is a left semigroup ideal of R if $RS \subseteq R$, and a left ring ideal of R if in addition S is a subring of R. Gluskin (1960) investigated those rings with 1 which possess the property:

 (λ) every left semigroup ideal is a left ring ideal.

Here we study those rings in which every subsemigroup is a subring, and those in which every semigroup endomorphism is a ring endomorphism. We note in passing that recent work on a rather different, but nonetheless related, question: to characterise certain types of semigroups admitting a ring structure, is to be found in Peinado (1970), Satyanarayana (1971) and Satyanarayana (1973).

2. Subsemigroups of Rings

A subset S of R will be called a subsemigroup of R if it is a subsemigroup of (R, \cdot) . As usual, for $x \in R$, $\langle x \rangle$ denotes the cyclic subsemigroup of R generated by x. We start by characterising the rings R with the property:

(σ) every subsemigroup of R is a subring.

THEOREM 1. A ring R has (σ) iff either |R| = 1 or |R| = 2 and $R^2 = 0$.

PROOF. Suppose R has (σ) and that |R| > 1. Choose $x \in R \setminus 0$ and consider $\langle x \rangle$. Then from (σ), there exists $r \ge 2$ such that $x^r = 0$: suppose r is the least such integer. Now we also have $x + x^2 = x^t$ for some t > 0. If r > 2 and $t \ge 2$, we have $x^{r-2}(x + x^2) = x^{t+r-2}$ and so $x^{r-1} = 0$, contradicting the choice of r. Hence r > 2 implies t = 1: but then $x^2 = 0$, again contradicting the choice of r. Hence r = 2, and we have $x^2 = 0$ for all $x \in R$.

^{*} The work for this paper was begun while a final-year undergraduate student under the supervision of the second author.

Semigroups in rings

In particular, for each $y \in R$, $xy + yx = (x + y)^2 = 0$ and $\{0, x\}$ is a subsemigroup of R for each $x \in R \setminus 0$. Hence from (σ), we have x + x = 0 for all $x \in R$ and so xy + xy = 0 for all $y \in R$; it follows that R is commutative.

Now suppose x, $y \in R \setminus 0$. Since $\{0, x, xy\}$ is a subsemigroup of R, and R has (σ) , we see that x + xy equals 0, xy, or x. In the first case, we obtain x = xy(since x + x = 0) and so $0 = xy^2 = xy$ and x = 0, a contradiction. If x + xy= xy, then x = 0 trivially and we again obtain a contradiction. So we must have x + xy = x, in which case xy = 0. But then $\{0, x, y\}$ is a subsemigroup of R and so from (σ) we deduce that x + y equals x, y or 0. In the first two cases, either x or y will equal 0, a contradiction in either case. Hence, x + y = 0 and so x = y; that is, $|R \setminus 0| = 1$ and the result follows.

For the converse, suppose $R = \{0, a\}$, $a \neq 0$, and $a^2 = 0$. Then a + a must equal 0, and so the subsemigroups $\{0\}$ and $\{0, a\}$ are seen to be subrings.

In the light of the above proof, we now weaken (σ), and consider those rings R with:

 (σ') every subsemigroup containing 0 is a subring.

In order to characterise all such rings containing 1, we shall need two lemmas: the first summarises Theorems 1 and 3 of Gluskin (1960); the proof of the second can be readily deduced from standard results on finite fields (see Burton (1970)).

LEMMA 1. If R is a ring with 1 which satisfies (λ) and G denotes the group of units in R, then $R = G \cup G + 1$.

LEMMA 2. If F is a finite field and a generator of $F\setminus 0$ has order q where q is odd, then $|F| = 2^m$ for some $m \ge 1$.

THEOREM 2. A ring R containing 1 has (σ') iff it is a finite field such that $|R \setminus 0|$ is a prime number.

PROOF. Since (σ') implies (λ) , we deduce from Lemma 1 that $R = G \cup G + 1$ where G is the group of units in R. But $G \cup 0$ is a subsemigroup of R, and so from (σ') , $G \cup 0$ is a subring. In particular, since $1 \in G$, we have $G + 1 \subseteq G \cup 0$ and so $R = G \cup 0$, a division ring.

Now $\{0, 1\}$ is a subsemigroup of R and so (σ') implies that 1 + 1 = 0. Hence x + x = 0 for all $x \in R$. Suppose there exists $x \in R \setminus \{0, 1\}$: we note that if $R = \{0, 1\}$, then it is a field of the required type. Then $S = \langle 1 + x \rangle \cup \{0, 1\}$ is also a subsemigroup of R, and so (σ') implies that $x = 1 + (1 + x) = (1 + x)^t$ for some t > 1. But $T = \langle x \rangle \cup \{0, 1\}$ is another subsemigroup of R and so again using (σ') we obtain $1 + x = x^s$ for some s > 1. Hence, for each $x \in R \setminus \{0, 1\}$, there exists r > 1 such that $x^r = 1$, and so from Jacobson's Theorem (see Burton (1970)) we deduce that R is a field.

If $x \in \mathbb{R} \setminus \{0, 1\}$, let q be the least integer such that $x^q = 1$, and suppose

q = 2k. Then $\{0, 1, x^k\}$ is a subsemigroup in which, by choice of q, $x^k \neq 1$. But by applying (σ') we obtain a contradiction. Hence q is odd, and $T = \langle x \rangle \cup 0$ is a finite field with a generator having odd order. By Lemma 2, $|T| = 2^m$ for some $m \ge 1$ and $q = 2^m - 1$; we assert that in addition q is prime.

For, suppose q = ab: since q is odd, both a, b are odd. Then $\langle x \rangle$ will contain subgroups $A = \langle x^a \rangle$ and $B = \langle x^b \rangle$ of order b and a respectively, and so by (σ') , $A \cup 0$ and $B \cup 0$ are finite fields, each with a generator having odd order. Therefore by Lemma 2, there exists $u, v \ge 1$ such that $a = 2^u - 1$, $b = 2^v - 1$. Hence

$$2^{m} - 1 = q = ab = (2^{u} - 1)(2^{v} - 1),$$

and so

$$2^{m-1} - 1 = 2^{u+v-1} - 2^{u-1} - 2^{v-1},$$

a contradiction if both u, v > 1. So either $u \leq 1$ or $v \leq 1$, and hence either a = 1 or b = 1.

We have now shown that for each $x \in R \setminus \{0, 1\}$, x has odd prime order. Suppose $x \in R \setminus \{0, 1\}$ and there exists a non-zero $y \in R \setminus \langle x \rangle$. Then $xy \in R \setminus \{0, 1\}$ and if x, y have prime order p, q respectively, then xy has non-prime order pq, a contradiction. Hence $R = \langle x \rangle \cup 0$ is a finite field of order 2^m for which $2^m - 1$ is prime.

Suppose conversely that R is such a field. Then $\langle x \rangle$ is a cyclic group of prime order, and so any element of $\langle x \rangle$ is a generator of $\langle x \rangle$. Hence if S is a subsemigroup of R containing 0 and if there exists $x \in S \setminus \{0, 1\}$, then S = R is certainly a subring; that is, R has (σ') , and the proof is complete.

3. Semigroup endomorphisms

A semigroup endomorphism of a ring R is a mapping $\phi: R \to R$ such that $(xy)\phi = x\phi \cdot y\phi$ for all $x, y \in R$; a ring endomorphism is a semigroup endomorphism $\phi: R \to R$ such that $(x + y)\phi = x\phi + y\phi$ for all $x, y \in R$. We start by considering the following property of a ring R.

(ɛ) every semigroup endomorphism is a ring endomorphism.

THEOREM 3. If R is a commutative ring with (ε), then either (i) |R| = 1, or (ii) |R| = 2 and $R^2 = 0$, or (iii) $R = R^2$ and $a + a = 0 = a^2$ for all $a \in R$.

PROOF. Consider the mapping $\theta_n: R \to R$ defined by setting $x\theta_n = x^n$ for all $x \in R$. Since R is commutative, θ_n is a semigroup endomorphism for each $n \ge 1$, and hence since R has (ε) , each θ_n is a ring endomorphism. Then putting n = 2, we obtain xy + xy = 0 for all $x, y \in R$, and from n = 3, we obtain $xy^2 + x^2y = 0$. But then $x^2 + x^2 = 0$ and so $xy^2 = x^2y$ for all $x, y \in R$. In particular, $x^5 = x^4$ when $y = x^2$, and so x^4 is an idempotent. Now fix $a \in R$ and define $y: R \to R$ by setting $x\gamma = a^4$ for all $x \in R$. Since γ is clearly a semigroup endomorphism, we deduce from (ε) that $a^4 = 0$ for all $a \in R$.

Now suppose $a \in R \setminus 0$ and define $\tau_a : R \to R$ and $\mu_a : R \to R$ by

$$x\tau_a = \begin{cases} 0 & \text{if } x \in R^2 \\ a^2 & \text{if } x \notin R^2 \end{cases} \quad x\mu_a = \begin{cases} 0 & \text{if } x \in R^2 \\ a & \text{if } x \notin R^2 \end{cases}.$$

If $x, y \in R$, then $xy \in R^2$ and so $(xy)\tau_a = 0$. If either $x \in R^2$ or $y \in R^2$, then $x\tau_a \cdot y\tau_a = 0$, and if both $x, y \notin R^2$, then $x\tau_a \cdot y\tau_a = a^2 \cdot a^2 = 0$. Hence τ_a is a semigroup endomorphism, and so by (ε), is a ring endomorphism. Suppose $v \in R^2$ and $u \notin R^2$. If $v + u \in R^2$, then

$$a^2 = v\tau_a + \mu\tau_a = (v+u)\tau_a = 0.$$

We assert that now μ_a is a semigroup endomorphism. For if $x, y \in R$, then $xy \in R^2$ and $(xy)\mu_a = 0$, and if either $x \in R^2$ or $y \in R^2$, then $x\mu_a \cdot y\mu_a = 0$; if $x, y \notin R^2$, then $x\mu_a \cdot y\mu_a = a \cdot a = 0$. From (ε) we now deduce that

$$a = v\mu_a + u\mu_a = (v+u)\mu_a = 0,$$

a contradiction. Hence if $u \notin R^2$ and $v \in R^2$, then $u + v \notin R^2$.

Now suppose there exists $c \in R \setminus R^2$ and define $\kappa_a \colon R \to R$ and $\lambda_a \colon R \to R$ by

$$x\kappa_a = \begin{cases} 0 & \text{if } x \in R^2 \cup c \\ a^2 & \text{otherwise} \end{cases} \quad x\lambda_a = \begin{cases} 0 & \text{if } x \in R^2 \cup c \\ a & \text{otherwise.} \end{cases}$$

If $x, y \in R$, then $xy \in R^2 \cup c$, and so $(xy)\kappa_a = 0$. If either $x \in R^2 \cup c$ or $y \in R^2 \cup c$, then $x\kappa_a \cdot y\kappa_a = 0$, and if both $x, y \notin R^2 \cup c$, then $x\kappa_a \cdot y\kappa_a = a^2 \cdot a^2 = 0$. Hence κ_a is a semigroup endomorphism which from (ε) is also a ring endomorphism. Suppose $u, v \in R^2 \cup c$ and $u + v \notin R^2 \cup c$. Then

$$a^2 = (u+v)\kappa_a = u\kappa_a + v\kappa_a = 0,$$

and so as in the case of μ_a above, we can deduce that λ_a is a semigroup endomorphism. But then (ε) implies that $a = (u + v)\lambda_a = u\lambda_a + v\lambda_a = 0$, a contradiction. Hence, if $u, v \in R^2 \cup c$, then $u + v \in R^2 \cup c$. In particular, $xy + c \in R^2 \cup c$ for all $x, y \in R$. But we know from the above that $xy + c \notin R^2$. Hence, xy + c = c and so $R^2 = 0$.

Now define $\delta: R \to R$ by setting $0\delta = 0$ and $x\delta = a$ for all $x \in R \setminus 0$. If $x, y \in R$, we know that xy = 0 and so $(xy)\delta = 0$. If either x = 0 or y = 0, then $x\delta \cdot y\delta = 0$, and if $x \neq 0$ and $y \neq 0$, then $x\delta \cdot y\delta = a^2 = 0$. Hence δ is a semigroup endomorphism which is by (ε) a ring endomorphism. So, if there exist $x, y \neq 0$ in R such that $x - y \neq 0$, then $0 = a - a = x\delta - y\delta = (x - y)\delta = a$, a contradiction. Hence, $R = \{0, a\}$ and so (ii) holds. Suppose now that $R \setminus R^2 = \square$; that is, $R = R^2$. Then for each $a \in R$, a = xy for some $x, y \in R$ and so from an earlier comment, a + a = 0. In addition, $a^2 = (xy)^2 = x^2y^2 = (x^2)^2y = 0$, and so (iii) holds.

REMARK. If |R|=1 or if |R|=2 and $R^2=0$, then R has (ε): it is not known whether rings satisfying condition (iii) in the above theorem exist, nor whether, if they do, they have (ε).

As in Section 2, we now weaken (ε) , and investigate those rings R with: (ε') every non-constant semigroup endomorphism is a ring endomorphism.

THEOREM 4. If R is a commutative ring with 1 and satisfies (ε'), then R is a field of order 2.

PROOF. Let $\theta_n: R \to R$ be defined by setting $x\theta_n = x^n$ for all $x \in R$. Then since R is commutative, θ_n is a semigroup endomorphism of R, and is non-constant since $1\theta_n = 1$ and $0\theta_n = 0$ and $0 \neq 1$. Hence (ε') implies that θ_2 is a ring endomorphism, and so for all $x \in R$, $(x + 1)^2 = (x + 1)\theta_2 = x^2 + 1$; that is, x + x = 0 for all $x \in R$. Likewise θ_3 is a ring endomorphism, and for all $x \in R$

$$(x+1)^3 = (x+1)\theta_3 = x^3 + 1;$$

that is, $x^2 + x = 0$ (since x + x = 0) and so $x = x^2$ for all $x \in R$. Hence R is Boolean.

Now let $a \in R \setminus \{0, 1\}$ and define $\gamma: R \to R$ by:

$$x\gamma = a$$
 if $xa \neq a$
= x if $xa = a$

We assert that γ is a non-constant semigroup endomorphism of R. For, suppose $x, y \in R$ and $xya \neq a$. Then $(xy)\gamma = a$ and we may suppose without loss of generality that $xa \neq a$: if xa = a = ya, then xya = a since R is Boolean and this is a contradiction. So, $x\gamma \cdot y\gamma = a \cdot y\gamma$ and this equals $a \cdot a$ if $ya \neq a$ or ay if ya = a: therefore in either case $x\gamma \cdot y\gamma = a = (xy)\gamma$. If on the other hand xya = a, then $xa = x^2ya = xya = a$ and ya = a similarly. Hence in this case also, $(xy)\gamma = xy = x\gamma \cdot y\gamma$. Finally, γ is non-constant since for example $1\gamma = 1$ and $0\gamma = a \neq 1$, and so our assertion holds. But now (ε') implies that γ is a ring endomorphism and so in particular $0\gamma = 0$; that is, a = 0, a contradiction. Hence there is no such a in R and we have |R| = 2.

In the above theorem, commutativity of R was essentially used to establish the existence of certain semigroup endomorphisms defined on R: it is unknown whether an arbitrary ring, with or without 1, has at least one semigroup endomorphism that can be defined on R in some algebraic manner. The next result replaces the criterion of commutativity by one suggested by Mr. J. S. V. Symons: it holds in, for example, all full matrix rings. **THEOREM 5.** If R is a ring with 1 in which every 1-sided unit is 2-sided and which has (ε') , then R is a field of order 2.

PROOF.Let L be the set of left-units, and G the set of units, in R. Define $\gamma: R \to R$ by:

$$x\gamma = \begin{cases} x & \text{if } x \in G \\ 0 & \text{if } x \notin G. \end{cases}$$

We assert that γ is a non-constant semigroup endomorphism of R. For, if $x, y \in R$ and $xy \in G$, then $(xy)\gamma = xy$ and $x \in L$. Hence $x \in G$ and so $y = x^{-1}xy \in G$. From the definition of γ , we therefore have

$$x\gamma \cdot y\gamma = xy = (xy)\gamma$$

On the other hand, if $xy \notin G$, then without loss of generality we may assume $x \notin G$. Then

$$(xy)\gamma = 0 = 0 \cdot y\gamma = x\gamma \cdot y\gamma,$$

and clearly $1\gamma = 1$, $0\gamma = 0$, and $1 \neq 0$ imply that γ is non-constant. By (ε'), γ is therefore a ring endomorphism. Now suppose $x \in G$, $y \notin G$. If $x + y \notin G$, we have $x + 0 = x\gamma + y\gamma = (x + y)\gamma = 0$ and $0 \in G$, which is impossible. Hence $x + y \in G$. But then $x + 0 = x\gamma + y\gamma = (x + y)\gamma = x + y$ and so $R \setminus G = \{0\}$; that is, R is a division ring.

Now define $\lambda: R \to R$ by setting $0\lambda = 0$ and $x\lambda = 1$ for all $x \in R \setminus 0$. If $x, y \in R$ and xy = 0, then x = 0 or y = 0, and so $(xy)\gamma = 0 = x\gamma \cdot y\gamma$. If $xy \neq 0$, then both $x, y \neq 0$ and we have $(xy)\gamma = 1 = x\gamma \cdot y\gamma$. Hence γ is a semigroup endomorphism which is obviously non-constant. By (ε') , γ is therefore a ring endomorphism. Now suppose there exists $x \in R \setminus \{0, 1\}$. If $x + x \neq 0$, we have $1 + 1 = x\gamma + x\gamma = (x + x)\gamma = 1$, which is impossible. Hence x + x = 0 and so $1 + x \neq 0$. But now $1 + 1 = 1\gamma + x\gamma = (1 + x)\gamma = 1$. Hence $R = \{0, 1\}$ and the result follows.

References

- D. M. Burton (1970), A first course in the theory of rings and ideals (Addison-Wesley, London, 1970).
- L. M. Gluskin (1960), 'Ideals in rings and their multiplicative semigroups', Uspedni Mat. Nauk. (N. S.) 15, No. 4 (94), 141-148; translated in Amer. Math. Soc. Translations, 27 (2) (1963), 297-304.
- R. E. Peinado (1970), 'On semigroups admitting ring structure', Semigroup Forum 1, 189-208.
- M. Satyanarayana (1971), 'On semigroups admitting ring structure', Semigroup Forum 3, 43-50,
- M. Satyanarayana (1973), 'On semigroups admitting ring structure II', Semigroup Forum 6, 189–197.

University of Western Australia Nedlands W.A. 6009 Australia.