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1. Introduction 

A subset S of a ring R is a left semigroup ideal of R if RS s R, and a left 
ring ideal of R if in addition S is a subring of R. Gluskin (1960) investigated 
those rings with 1 which possess the property: 

(A) every left semigroup ideal is a left ring ideal. 

Here we study those rings in which every subsemigroup is a subring, and those 
in which every semigroup endomorphism is a ring endomorphism. We note in 
passing that recent work on a rather different, but nonetheless related, question: 
to characterise certain types of semigroups admitting a ring structure, is to be 
found in Peinado (1970), Satyanarayana (1971) and Satyanarayana (1973). 

2. Subsemigroups of Rings 

A subset S of R will be called a subsemigroup of R if it is a subsemigroup 
of (R, • ) . As usual, for x e R, <x> denotes the cyclic subsemigroup of R generated 
by x. We start by characterising the rings R with the property: 

(a) every subsemigroup of R is a subring. 

THEOREM 1. A ring R has (a) iff either \R | = 1 or |R | = 2 and R2 = 0 . 

PROOF. Suppose R has (<r) and that | R | > 1. Choose x e R\0 and consider 
<x>. Then from (er), there exists r ^ 2 such that xr = 0: suppose r is the least 
such integer. Now we also have x + x2 = x1 for some t > 0 . If r > 2 and t ^ 2 , 
we have x r _ 2 ( x + x2) - x,+r~2 and so x r _ 1 = 0 , contradicting the choice of r. 
Hence r > 2 implies t = 1: but then x2 = 0 , again contradicting the choice of r . 
Hence r = 2, and we have x 2 = 0 for all x e R . 

* The work for this paper was begun while a final-year undergraduate student under the 
supervision of the second author. 

172 

https://doi.org/10.1017/S1446788700020474 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020474


[2] Semigroups in rings 173

In particular, for each y e R, xy + yx — (x + y)2 = 0 and {0, x} is a sub-
semigroup of R for each x e R\0. Hence from (o), we have x + x = 0 for all
xeR and so xy + xy = 0 for all yeR; it follows that R is commutative.

Now suppose x, yeR\0. Since {0, x,xy) is a subsemigroup of R, and R
has (a), we see that x + xy equals 0, xy, or x. In the first case, we obtain x = xy
(since x + x = 0) and so 0 = xy2 = xy and x = 0, a contradiction. If x + xy
= xy, then x = 0 trivially and we again obtain a contradiction. So we must
have x + xy = x, in which case xy = 0. But then {0, x, y} is a subsemigroup
of R and so from (<r) we deduce that x + y equals x, y or 0. In the first two cases,
either x or y will equal 0, a contradiction in either case. Hence, x + y = 0 and so
x = y; that is, | ^ \ 0 | = 1 and the result follows.

For the converse, suppose R = {0,a}, a ¥= 0, and a2 = 0. Then a + a
must equal 0, and so the subsemigroups {0} and {0, a] are seen to be subrings.

In the light of the above proof, we now weaken (a), and consider those rings
R with:

(a') every subsemigroup containing 0 is a subring.

In order to characterise all such rings containing 1, we shall need two lemmas:
the first summarises Theorems 1 and 3 of Gluskin (1960); the proof of the second
can be readily deduced from standard results on finite fields (see Burton (1970)).

LEMMA 1. / / R is a ring with 1 which satisfies (X) and G denotes the group
of units in R, then R = G U G + 1.

LEMMA 2. If F is a finite field and a generator of F\0 has order q where
q is odd, then \F\ = 2m for some m S; 1.

THEOREM 2. A ring R containing 1 has {a') iff it is a finite field such that
|R \0 | is a prime number.

PROOF. Since {a') implies (1), we deduce from Lemma 1 that R = G U G + 1
where G is the group of units in R. But G U 0 is a subsemigroup of R, and so
from (a'), G U 0 is a subring. In particular, since 1 e G, we have G + l s G U O
and so R = G U 0, a division ring.

Now {0,1} is a subsemigroup of R and so (<?') implies that 1 + 1 = 0. Hence
x + x = 0 for all x e R. Suppose there exists x e R\{0,1}: we note that if R = {0,1},
then it is a field of the required type. Then 5 = <1 + x> U {0,1} is also a sub-
semigroup of R, and so (a') implies that x = 1 + (1 + x) = (1 + x) ' for some
t>\. But T = < x > u { 0 , 1 } is another subsemigroup of R and so again
using (ff') we obtain 1 + x = xs for some s > 1. Hence, for each xeR\{0,1} ,
there exists r > 1 such that xr = 1, and so from Jacobson's Theorem (see Burton
(1970)) we deduce that R is a field.

If xei?\{0,1}, let q be the least integer such that xq = 1, and suppose

https://doi.org/10.1017/S1446788700020474 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020474
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q = 2k. Then {0,1, x*} is a subsemigroup in which, by choice of q, xk # 1.
But by applying (<r') we obtain a contradiction. Hence q is odd, and T = <x> U 0
is a finite field with a generator having odd order. By Lemma 2, \T\ = 2m for
some m ^ 1 and q = 2m — 1; we assert that in addition q is prime.

For, suppose q = ab: since q is odd, both a, b are odd. Then <x> will contain
subgroups A = <x"> and B = <x6> of order b and a respectively, and so by
(a') , y l u O and B U 0 are finite fields, each with a generator having odd order.
Therefore by Lemma 2, there exists u, v ^ 1 such that a = 2" - 1, b = 2" - 1.
Hence

2m - 1 = q = afc = ( 2 " - l ) ( 2 ' - l ) ,

and so
2"i-i i 2"+""' 2""1 2""1

a contradiction if both w, i; > 1. So either u ^ 1 or u ^ 1, and hence either
a = 1 or & = 1.

We have now shown that for each xeR\{0,1}, x has odd prime order.
Suppose x e R\ {0, 1} and there exists a non-zero yeR\(x}. Then xyeR\{0,l}
and if x,y have prime order p, q respectively, then xy has non-prime order pq,
a contradiction. Hence R = <x> U 0 is a finite field of order 2m for which
2m - 1 is prime.

Suppose conversely that R is such a field. Then <x> is a cyclic group of prime
order, and so any element of <x> is a generator of <x>. Hence if S is a subsemi-
group of R containing 0 and if there exists x e S\{0,1}, then S = R is certainly
a subring; that is, R has (a'), and the proof is complete.

3. Semigroup endomorphisms

A semigroup endomorphism of a ring R is a mapping </>: R -* R such that
(xy)<t> = x(j) • ycj) for all x , y e i ? ; a ring endomorphism is a semigroup endo-
morphism (j): R -> R such that (x + y)<f> = xcj> + ycj> for all x,yeR. We start
by considering the following property of a ring R.

(e) every semigroup endomorphism is a ring endomorphism.

THEOREM 3. If R is a commutative ring with (e), then either (i) | i? | = 1,
or (ii) |K | = 2 and R2 = 0, or (iii) R = R2 and a + a = 0 = a2 for all aeR.

PROOF. Consider the mapping 9n: R -> R defined by setting x6n = x" for all
xeR. Since R is commutative, 0n is a semigroup endomorphism for each n ^ 1,
and hence since R has (e), each 9n is a ring endomorphism. Then putting n = 2,
we obtain xy + xy = 0 for all x, y e R, and from n = 3, we obtain xy2 + x2y = 0.
But then x2 + x2 = 0 and so x>>2 = x2y for all x,yeR. In particular, x5 = x4

when y = x2, and so x 4 is an idempotent. Now fix a eR and define y: R -» R
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by setting xy = a4 for all xeR. Since y is clearly a semigroup endomorphism,
we deduce from (e) that a4 = 0 for all a eR.

Now suppose a eR\0 and define xa: R -* R and na: R -»• R by

0 if xeR2 ' 0 if xeR2

if a if x&R2.

If x,yeR, then xy e R 2 and so (xy)ta = 0. If either xeR2 or y e R2, then
XTo • yza — 0> a n d if both x,y$R2, then xra • yxa = a2 • a2 = 0. Hence xa is
a semigroup endomorphism, and so by (e), is a ring endomorphism. Suppose
veR2 and w £ # 2 . If u + w e fl2, then

a2 = vta + nxa = (v + u)xa = 0.

We assert that now fia is a semigroup endomorphism. For if x,yeR, then xy e R 2

and (xy)jUa = 0, and if either xeR2 or yeR2, then xna-y/.ia = 0; if x,y^-R2,
then X/JO • y/ia = a • a = 0. From (e) we now deduce that

a = vfia + una = (v + u)na = 0,

a contradiction. Hence if w^R2 and veR2, then M + v£R2.
Now suppose there exists ceR\R2 and define Ka:R^>R and Xa: R ^ R by

0 if x e R 2 U c ( 0 if x e # 2 U c

a otherwise \ a otherwise.

If x, y e R, then xy e R2 Uc, and so (xy)Ka = 0. If either x e R2 U c or y e R2 <J c,
then x/ca-y/ca = 0, and if both x,y$R2\Jc, then x/ca • yxa - a2 • a2 = 0.
Hence Ka is a semigroup endomorphism which from (e) is also a ring endo-
morphism. Suppose u,veR2 KJc and u + D ^ i ! 2 U c . Then

a2 = (u + u)K:fl = UKa + VKa = 0,

and so as in the case of (ia above, we can deduce that ktt is a semigroup endo-
morphism. But then (s) implies that a = (« + r)Aa = uXa + vka = 0, a contra-
diction. Hence, if u, veR2 U c, then u + veR2 \J c. In particular, xy + c e . R 2 U c
for all x, y e /?. But we know from the above that xy + c $ R2. Hence, xy + c = c
and so R2 = 0 .

Now define 8: R-> R by setting 0<5 = 0 and xS = a for all xeR\0. If
x, y e R, we know that xy = 0 and so (xy)8 = 0. If either x = 0 or y = 0, then
xd • yd = 0, and if x # 0 and y ^ 0, then x<5 • yd = a2 = 0. Hence 5 is a semi-
group endomorphism which is by (e) a ring endomorphism. So, if there exist
x,y # 0 in R such that x - y ^ O , then 0 = a —a = xd — y5 = (x —y)<5 = a,
a contradiction. Hence, R = {0, a} and so (ii) holds.
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Suppose now that R\R2 — • ; that is, R = R2 . Then for each a e R, a = xy
for some x, y e R and so from an earlier comment, a + a = 0. In addition,
a2 = (xy)2 = x2y2 = (x2)2y = 0, and so (iii) holds.

REMARK. If) R | = 1 or if | R | = 2 and R2 = 0, then R has (e): it is not known
whether rings satisfying condition (iii) in the above theorem exist, nor whether,
if they do, they have (V).

As in Section 2, we now weaken (e), and investigate those rings R with:
(e') every non-constant semigroup endomorphism is a ring endomorphism.

THEOREM 4. / / R is a commutative ring with 1 and satisfies (e'), then R
is afield of order 2.

PROOF. Let 9n: R -> R be defined by setting x6n = x" for all xeR. Then
since i? is commutative, 6n is a semigroup endomorphism of R, and is non-con-
stant since Wn = 1 and 09n = 0 and 0 # 1. Hence (e') implies that 02 is a ring
endomorphism, and so for all x e R , (x + I)2 = (x + 1)02 = x2 + 1; that is,
x + x = 0 for all x e R. Likewise 03 is a ring endomorphism, and for all x e R

(x + 1)3 = (x + l)03 = x3 + l ;

that is, x2 + x = 0 (since x + x = 0) and so x = x2 for all xeR. Hence fl is
Boolean.

Now let aeR\{0 , l} and define y: R -> R by:

xy = a if xa # a
= x if xa = a

We assert that y is a non-constant semigroup endomorphism of R. For, suppose
x, y e R and xya # a. Then (x^)y = a and we may suppose without loss of
generality that xa ^ a: if xa = a = ya, then xya = a since R is Boolean and
this is a contradiction. So, xy • yy = a • yy and this equals a • a if ya ^ a or
ay if ya = a: therefore in either case xy • yy = a = (x_y)y. If on the other hand
x^a = a, then xa = x2>>a = xya = a and j a = a similarly. Hence in this case
also, (xy)y = xy = xy • yy. Finally, y is non-constant since for example ly = 1
and 0y = a =£ 1, and so our assertion holds. But now (e') implies that y is a ring
endomorphism and so in particular Oy = 0; that is, a = 0, a contradiction.
Hence there is no such a in R and we have \R\ = 2 .

In the above theorem, commutativity of R was essentially used to establish
the existence of certain semigroup endomorphisms defined on R: it is unknown
whether an arbitrary ring, with or without 1, has at least one semigroup endo-
morphism that can be defined on R in some algebraic manner. The next result
replaces the criterion of commutativity by one suggested by Mr. J. S. V. Symons:

it holds in, for example, all full matrix rings.
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THEOREM 5. / / R is a ring with 1 in which every l-sided unit is 2-sided
and which has (e), then R is afield of order 2.

PROOF.Let L be the set of left-units, and G the set of units, in R. Define

rR-+R*r x if xeG

xy = ,
0 if x$G.

We assert that y is a non-constant semigroup endomorphism of R. For, if x, y e R
and xyeG, then (xy)y = xy and xeL. Hence xeG and so y = x~1xyeG.
From the definition of y, we therefore have

xyyy = xy = {xy)y.

On the other hand, if xy $ G, then without loss of generality we may assume
x$G. Then

(xy)y = 0 = 0-yy = xyyy,

and clearly ly = 1, Oy = 0, and 1 ^ 0 imply that y is non-constant. By (s),
y is therefore a ring endomorphism. Now suppose xeG, y$G. If x + y$G,
we have x + 0 = xy + yy = (x + y)y == 0 and 0 e G, which is impossible. Hence
x + yeG. But then x + 0 = xy + yy = (x + y)y = x + y and so R\G = {0};
that is, R is a division ring.

Now define A: R -• R by setting OX = 0 and xA = 1 for all x e R \ 0 . If
x, yeR and xy = 0, then x = 0 or y - 0, and so {xy)y = 0 = xy yy. If xy ^ 0,
then both x, y # 0 and we have (xy)y = 1 = xy • yy. Hence y is a semigroup
endomorphism which is obviously non-constant. By (e'), y is therefore a ring
endomorphism. Now suppose there exists xe.R\{0,1}. If x + x =£ 0, we have
1 + 1 = xy + xy = (x + x)y = 1, which is impossible. Hence x + x = 0 and
so 1 + x # 0. But now 1 + 1 = ly + xy = (1 + x)y = 1. Hence R = {0,1} and
the result follows.
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