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Abstract

A method of sequential eigenfunction expansion is developed for a semi-linear parabolic
equation. It allows the time-dependent coefficients of the eigenfunctions to be determined
sequentially and iterated to reach convergence. At any stage, only a single ordinary
differential equation needs to be considered, in contrast to the Galerkin method which
requires the consideration of a system of equations. The method is applied to a central
problem in combustion theory to provide a definitive answer to the question of the influence
of the initial data in determining whether the solution is sub- or super-critical, in the case
of multiple steady-state solutions. It is expected this method will prove useful in dealing
with similar problems.

1. Introduction and formulation

A central problem in combustion theory is the initial-boundary value problem

du/dt = V2u + Seau/(a+u); x e D, t > 0,
(1.1)

u(x_, 0) = h(x); u = 0 for x_edD.

Here u is the temperature, 8 is a positive parameter whose magnitude incorporates
the ambient temperature, heat of reaction and the size of the material, a is a positive
parameter denoting the dimensionless activation energy of the material, typically
a > 20; * and t are spatial and time variables. All quantities are considered non-
dimensionalised. The equation is considered in a bounded domain D. The derivation
of the above equation can be found in Frank-Kamenetski![3], and discussions on the
problem can be found in Gelfand [4], Parks [7], Sattinger [8], Boddington, Gray and
Wake [1] and Tarn [9], among others. It is known that for a given D and a given
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set of boundary conditions, there are two demarcation values of 5, 8e and Scr, such
that when S is less than 8e, the steady-state solution is 0(1) in magnitude. This
state is called sub-critical. When 8 is greater than 8cr, the steady-state solution is
0(e") in magnitude. This state is called super-critical. When 8e < 8 < 8cr, there
are two stable steady states, one sub-critical and one super-critical, and the initial
value determines which one is reached. In 1980, Tam [9] posed the question: for 8
in the range 8e < 8 < 8cr, how large must the initial value be for the solution to be
super-critical? An attempt at the answer was made in Tam [9], using approximations
on the integral equation obtained from the differential equation, and in Tam [5], using
a two-step linearisation approximation on the differential equation. Recently, Tam et
al. [ 11 ] introduced the idea of Sequential Eigenfunction Expansion to study an elliptic
problem associated with (1.1). In principle, the iteration scheme produces the exact
solution, subject only to computational restrictions. In this study, we extend the idea
to parabolic equations, and use it to provide a definitive answer to the question posed
in 1980. We observe that in contrast to the phenomenon of solution bifurcation due
to parameter variation which is usually studied, the present situation is one of initial
value induced bifurcation.

In the next section, we explain the Sequential Eigenfunction Expansion procedure
and consider the contraction property of the iteration. In Section 3, we use the
procedure to construct the solution to the combustion problem, thereby providing
the answer to the posed question. We then conclude with some comments and
observations.

2. Sequential eigenfunction expansion

2.1. Introduction In this section, we are concerned with the solution of the semi-
linear parabolic equation

- ^ = V 2 u + / ( « ) , t>0,x_eD
at

subject to the initial condition u(x_, 0) = h(x) and homogeneous boundary conditions
of Dirichlet or Robin type. In general, the solution has to be obtained numerically,
using finite difference or finite elements. However, if the domain D is simple enough
such that the set of eigenfunctions associated with the Laplacian, the domain and the
homogeneous boundary condition is known, then the spectral method can be used in
which the solution is sought as an expansion of the eigenfunctions with time-dependent
coefficients. The coefficients are then determined from an infinite system of first-order
non-linear ordinary differential equations obtained by using some closure conditions,
with initial conditions derived from u(x_, 0) = h(x). An obvious advantage of the
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spectral method is that the solution is amenable to further analysis. To proceed
numerically, the infinite system has to be truncated to a finite //-dimensional system,
and if the closure condition is to require Pu = du/dt — VM — / (M) to have zero
projection on the first N coordinates of the space spanned by the eigenfunctions, then
the method is attributed to Galerkin and sometimes referred to as a projection method.
It is clear that in the Galerkin method, the approximation improves with increasing N,
but the numerical solution of the N -dimensional system becomes increasingly difficult.
Even with robust programs, such as Auto (see [2]), to carry out the integration, the
nonlinearity can make the integration very difficult, if not impossible, for N sufficiently
large. For this reason, we ask if it is possible to develop an alternate method, in which
the size of N does not play such an important role. We recognise that the difficulty
with large N stems from Galerkin's requirement that Pu should have zero projection
on the first N coordinates of the eigenfunction space simultaneously. To alleviate the
situation, we relinquish the requirement of simultaneity, and compensate for it with
iteration. We calculate the coefficients of the eigenfunctions sequentially, using the
condition of zero projection of Pu sequentially, and then through iteration achieve
the condition of zero projection of Pw on the N eigenfunction coordinates. Indeed,
the sequential nature of the computation makes the size of N somewhat immaterial,
as only a single equation is solved at any stage of the procedure. We develop the
expansion method in Section 2.2, proof of convergence in Section 2.3, and use it in
Section 3 to study the influence of the initial data for the problem posed in Section 1.

2.2. Sequential eigenfunction expansion We present the methodology in a general
setting for the prototype parabolic equation

3M
Pu = — - V 2 « - / ( « ) = 0 ; x e D , r > 0, (2.1)

at
subject to the initial condition

K(X, 0) = h(x) (2.2)

and homogeneous boundary condition A u = 0 of the Dirichlet or Robin type. We
suppose the set of eigenvalues {A.,} and the normalised eigenfunctions {</>,} associated
with the Laplace operator, the domain and the homogeneous boundary conditions
have been obtained. The restriction to the above types of boundary conditions is to
ensure that the eigenvalues are all positive. Since our concern is with the construction
procedure, we further suppose the existence of a solution has been established. Of
course if we are able to construct a solution, its existence is demonstrated. We develop
the expansion procedure in what follows and consider the contraction properties of the
iterative process, but will leave the main part of the convergence proof to an Appendix
in order to make the presentation easier to follow. Let M(X, 0) = h(x) = YlHi c/0< (*)
and let 17 be a generic symbol for an approximation to u.
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We first take u = a?\t)<t>i(x). We have

P 4J

In general PU ^ 0, but we ask that PU has zero projection on <f>i. Denoting the inner
product of two functions / and g by (f, g), the condition (Pu, <p\) = 0 yields the
equation

which, together with a[0)(0) = C\, determines af\t). The quantity PIZis referred to as
the residual. Our condition is that the expansion of PU in terms of the eigenfunctions
{0,} should have zero first component. We next take u = a[O)0i + af)<j>2 and we ask
that (PU, (p2) = 0 be satisfied to give

^ + X2a? - (f (afV, + af fc), fc) = 0
at

^ \which together with ^ = c2, determines a^\t). Proceeding in this manner, we
obtain a sequence of functions af\t), i = 1 , . . . , oo, where af\t) is determined by
solving

faf\0) = c

We denote u(0) = YlHi ai-O>(O^i(i) an(^ consider M(0) as the initial approximation to
the solution u. Writing/ («(0)) = YZi bf*(t)<f>,(x), we have

Let

5 + ^ ^
at

In general, 6J0) ^ 0 and so Pum ^ 0. When Pu = 0 the exact solution for (2.1) and
(2.2) is obtained. We seek to modify af\ with the aim of making i5,-0) = 0. However,
if a,-0) is changed, bf^ will change accordingly. We therefore introduce an iterative
scheme as follows. We construct a new sequence {a^\t)) from the solution of

at
a?\0) = c,;
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from which we obtain «(l) = £ £ , a^\t)^,(x) and/(u0)) = £ " i b^faix). Pro-
ceeding in this manner, we obtain the n* iterate for u

where a,-n)(r) is the solution of

} ) (2.3)
r = l

+ A.,-a.- = b" (t), (2.4)

af\O) = a, (2.5)

and b\"\t) = (f (u(n\t)), </>,)• Now it is clear that if the solution of (2.4) and (2.5)
converges, then / )M( 0 0 ) = 0 and hence the exact solution will be obtained. If we
multiply (2.4) by ek'' and integrate from 0 to t, we will have

I" , n x 1
ci+ I b)"~n(.r)e>"Tdr\ , n > 1. (2.6)f bf

2.3. Convergence of the iterations To demonstrate the convergence of the iteration
in (2.6), it is enough to show that

\af\t) - af-l\t)\ < C, \af-l\t) - a]"-2)(t)\ Wt e J = (0, T],

for some 0 < C, < 1, that is, that there is a contraction on the iteration.

THEOREM 1. For each i and n, where n > mfor some m € N, let

/ ^ ( T ) = f{f (Uin-l)) - f (U(n-2))}<t>idx_,
JD

/<?(£ , T) = max{(«(n-1) - u(n-2))<ph 0),
/£»(x, T) = min{(M

("-1) - «(n-2))0,-, 0},

/W(r) = I f™dx, 1$\T) =
JD

max
re/

< A.,,

c sequence (2.6) u contractive. Here \\ is the first eigenvalue of the negative
Laplacian ^f #}
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FIGURE 1. Herea}0)(0 for A = 5.581,e* = 20 and ,5 = 1.

The idea of the proof is to break up the integral into two parts so that the mean
value theorem can be used in each part. We shall leave it to an Appendix so as not
to impede the presentation of the main results. We emphasise that the convergence
factor can only be assessed a posteriori. Further, since the condition of convergence
is only a sufficient, and not a necessary, condition, numerical convergence serves as a
more practical criterion.

3. The combustion problem

We now return to the problem posed in Section 1. We take D as the unit
sphere. Assuming the solution depends on the radius only, the orthonormal eigen-
functions are (f>n = (l/r-/2jr)sin(nnr) and the corresponding eigenvalues are Xn =
n2n2, where n = 1,2, .... To begin with, let h(r) = (A/«f2nr)sm(7rr), (where
<pi = (l/-s/27rr) sin(7rr) is the first normalised eigenfunction). If we write h(r) =
YZ\ CI4>I>

 t h e n ci = A and c, = 0 for; ^ 1. We fix a = 20, S = 1. It is
known from previous studies [5] that for these parameter values, (1.1) has two steady-
state solutions. We use the expansion procedure to construct solutions for different
values of A, and to determine the 'critical' value of A separating the sub-critical
and super-critical solutions. We also use the Galerkin method to study this problem
and compare the numerical results. Numerical calculations for af\t) indicate that for
A < 5.581, a steady-state solution is obtained andaf))(oo)approaches0.18126015 . . .
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FIGURE 2. Here af\t) for A = 5.582, a = 20 and S = 1.
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which is of 0(1), and for A > 5.582 another steady-state solution is obtained, and
a[0)(oo) approaches 78442987.109 So the critical point of A will be between
5.581 < A < 5.582. It is clear that the steady-state solution is not sensitive to pertur-
bations in A, except when A is near to its critical value. Figures 1 and 2 indicate the
steady-state solutions of a{0)(r) at A = 5.581 and A = 5.582.

Using the Galerkin method, it is difficult to recognise the multiple solutions, since
for each value of A we have to solve a system of nonlinear ordinary differential
equations.

We now consider the case of an arbitrary initial condition. In what follows,
u(x,0) = h(x) is expanded in a series of eigenfunctions. If we write h(x) =
£fei ai0/(i) t n e n a\ — jD h(x)<p\(x) dx^ We know from the previous discussion that
in the absence of all other coefficients, the sub-critical solution will be obtained if
a.\ < 5.581, and if at > 5.582, the super-critical solution will be obtained. Therefore
the critical value depends on the first coefficient of the initial condition u(x_, 0) in the
eigenfunction expansion, when all other coefficients are small by comparison. As a
specific example, we consider

u(x,0) =
\H 0 <x <€
0 otherwise,

where H and e are parameters. We ask: what combination of H and € will determine
if the solution is sub- or super-critical?
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-0.2

FIGURE 3. Comparison of af\t) a n d a f V ) for 5 = l , a = 10andu(r , 0) = s\n(nr)/{r*f2it).

Now

f [f h(x)<pi(x)dx= [ f
JD Je=o J<t>=0=0 Jx=o </2n x

x sin nx dx
•fht JO
An H f sin7re — 7recos7re

Thus if

AH
{Sin 7T€ - JT€ COS 7T6} > 5 . 5 8 2 ,

the solution is super-critical, and if

AH
{sinne — 7recos7re} < 5.581,

the solution is sub-critical. For c <$C 1, we have sin7re — necosne ~ xr3e3/3. Thus
ignition by a hot spot of radius e requires an H > l.O63e~3.

To verify that a[0)(0 is indeed the most important term in the sequence {a,-0)(f). ' =
1,2...} and that the effect of the other terms on the solution u is negligible we show
in Figure 3 that the magnitude of af\t) is very small compared with afV)- The
remaining coefficients are too small to be shown.
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TABLE 1. Comparison of «,(/) and .$,(/), i = 1 , . . . , 5 .
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Method
Galerkin

Present

Galerkin

Present

Galerkin

Present

Galerkin

Present

Galerkin

Present

Galerkin

Present

t

af\t)

af(0

*3(0
flf(0

«?'«
«f(0

<*?>(»
se(t)

0.25
0.276728
0.276964
0.276759

-0.020506
-0.020518

L -0.020505

0.006040
0.006043
0.006040

-0.002539
-0.002539
-0.002539

0.001298
0.001298
0.001298

-0.000750
-0.000750
-0.000750

0.50
0.191945
0.192080
0.191951

-0.020672
-0.020679
-0.020672

0.006048
0.006050
0.006048

-0.002540
-0.002541
-0.002540

0.001298
0.001298
0.001298

-0.000751
-0.000751
-0.000751

1.00
0.181294
0.181397
0.181294

-0.020686
-0.020692
-0.020686

0.006049
0.006050
0.006049

-0.002541
-0.002541
-0.002541

0.001298
0.001298
0.001298

-0.000751
-0.000751
-0.000751

Finally, Table 1 makes a comparison between the solution obtained by the Galerkin
method and the solution obtained by the current method, for different values of t. For
S = 1, a = 10, «(r, 0) = (l/rV27r) sin7rr and u(r, t) = 53(-_, s,0,. It can be seen
that the initial solutions af\t) are very close to the exact ones 5,(r) / = 1, . . . , 6.
After 5 iterations of the current method, convergence of the iterations is achieved and
the modified solutions a}5)(r) almost coincide with the exact ones. In fact, convergence
is achieved up to 10"5 for a,-5)(r), except for a\5)(t).

4. Concluding remarks

We have developed a sequential eigenfunction expansion method for a semi-linear
parabolic equation, and used it to assess the influence of the initial data in a combustion
problem. With minor modifications, the method can be used to assess the influence of
nonhomogeneus boundary conditions, as well as on other similar problems. We have
also demonstrated analytically that, under certain assumptions that must be verified a
posteriori, the iterative process is contractive. While the analysis provides assurance
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about the soundness of the process, the computation can be carried forward irrespective
of the analytical aspects, and whether numerical convergence can be achieved is left
to the numerical results. From this standpoint, it is clear that the method can be used
for a broader class of problems.
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Appendix A. Proof of Theorem 1

From (2.6) we have

af~l){t) = e~x" I c, + f b\"-2\r)ek'r dx[ , n > 1. (A.I)

Subtract (A.I) from (2.6) to get

e ,

= e~kil I ekiX I {f (uin-l)) - f (uin-2))}4>idxdx
Jo JD

= e~k" / e^I?\x)dx. (A.2)

Using the mean value theorem, we have

f(u ) - / ( « )=—(un -un ),

and hence

where fi"\r) > 0 and/ j j^r) < 0. Applying the mean value theorem for integration
to (A.3), l}"\t) can be written as

= f-O f
du JD

(A.4)
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where £,("\ £2
("> € [min^"- '* , uir-2)), max(u("-l), M ( "" 2 ) ) ] . NOW, using (2.3) and the

orthonormality property of 0,, we get

(A.5)

^ > 0 mdfg* < 0 (this is the general case for//;' and/(fConsider/,^ > 0 mdfg* < 0 (this is the general case for//;' and/2
(f and we will

deal with the case when flf or /2f' equals 0 later on). From (A.4) we obtain

Using (A.5), we have

= a?-1 )-a}-2 ) . (A.7)

With m|n)(r) = / 1
( " ' ( T ) / / 2

( ; ) ( T ) , we have two cases for m\n)(r):

(1) m[n)(T) = - 1 ; then / ^ ' ( r ) = - / 2
( , " ' ( T ) or a}"" 0 = fl{"-2) and so convergence is

achieved and the iteration stops.
(2) m("\r) £ - 1 ; then from (A.6) we have

n)Multiplying by m-n), we have

,, '• ( A . 8 )

Also, by rearrangement, we obtain

<)f 1 rif

f + W). (A.9)
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Adding (A.8) and (A.9) we have

<n)
(m<n)(r)

and so, using (A.7), we obtain

1" ( r) = —

Substituting in (A.2) we get

a(n) _

^ O } Vu

(n-2)j_ fl(n-2)j

4-

| n )m|n)(T)

Let r be in the interval J = (0, 7]. We then have

[12]

< max
re/

= max
re/

1
< — max

«i")(T)|^(i

m"

(r)H-1

max {la}"""

maxflfl}"-0-,

re/

A,-

(A. 10)

Now (A. 10) is valid for every t e J, and hence

/ e /

xmax{|a}" " - a } " 2 ) |}.

Therefore if

max
re/

(A.11)

the contraction of the iteration is obtained. Note that in (A. 10) we have used the fact
that the eigenvalues A, form a positive increasing sequence.
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In the previous proof, we considered / /" ' > 0 and /2
(,n) < 0. A simple case is

obtained if//"' or/2f} equals zero. Then (uln~l) - u(n~2))(pi is of one sign. Applying
the mean value theorem for integration to (A.3) we have

= f-(f<n>) f
au JD

?,(n) e [min(«(n-1\ u<"-2)),

Thus, from (A.2), we have

JD °U

Let t be in the interval J : (0, T]. We then have

< maxk w - <tr

= max tt(B
max

1
< — max

< — max
~ A.i reJ

reJ

zeJ

and hence

max

Therefore if

A

max

dx.

-l)

(A. 12)

the contraction is obtained.
We emphasise that the conditions (A.I 1) and (A. 12) which give rise to the contrac-

tion as demonstrated are sufficient conditions for the iteration (2.6) to converge, but
they are not necessary.
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