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Abstract. We consider a dynamical system consisting of a compact subset of RN or
CN with several contracting maps chosen with prescribed probabilities, which may
depend on position. We show that if the maps and the probabilities are C1+t*
functions of the spatial variable and an external parameter, then the average value
of a C l + " function is a differentiate function of the parameter. One implication
of this theorem is that for certain families of complex functions dependent on a
parameter the reciprocal of the dimension of an invariant measure on the Julia set
is a harmonic function of the parameter.

1. Introduction
In this article we consider a dynamical system consisting of a subset X of RN or
CN, n contracting functions j 8 , , . . . ,)3n :X-»X, and n continuous positive prob-
abilities px,... ,pn: X -* (0,1), so that if xk represents the state of the system at time
k, then xk+] = /3,(xt) with probability Pi(xk). The study of this type of system is
facilitated by the existence of a unique invariant probability measure ix, which gives
long-term trajectory averages:

lim-J- !/(**) = </*,/>, (1)

as is proved in § 2. This type of system has been studied by Karlin [8], Barnsley &
Demko [1], Barnsley & Elton [3], Barnsley et al. [2], Barnsley & Harrington [4],
and Elton [7]. The equilibrium measures on Julia sets studied by Brolin [5] are also
an example of such an invariant measure.

We suppose further that the system is dependent on an external parameter we W,
where W is a subset of RN or CN, so that in fact / 3 , , . . . , j8n:X x W->X and
p , , . . . ,pn:X x W-»(0,1). Concerning this type of system we prove the following
theorem:

THEOREM. If / 3 , , . . . , /?„; p,,...,p,,; and f are C ' + " functions, then (fi,f) is a
differentiable function of the parameter w.

tThis research was supported by a grant from the Naval Academy Research Council.
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600 W. D. Withers

The structure of this article is as follows. In § 2 we prove the existence and
uniqueness of fx. In § 3 we prove our main theorem that under appropriate hypotheses
(ix,f) is a differentiable function of the parameter w. In § 4 we apply our results to
the study of invariant measures on Julia sets, obtaining the result that for certain
families of complex functions, including the functions F(z) = z2-w, for values of
w outside the Mandelbrot set, the reciprocal of the dimension of the invariant
measure on the Julia set is a harmonic function of the parameter.

2. The unique invariant probability measure
In this section we show that a system of the type described in the Introduction with
positive Holder-continuous probabilities has a unique invariant probability measure.
Throughout this section we make the following assumptions:
(i) (X, p) is a compact metric space.
(ii) The functions / ? , , . . . , /?„ from X to X are contractions; i.e., there exists A < 1

such that

(iii) The functions pt,...,pn from X to (0, oo) are probabilities; £/>;(*) = 1.
(iv) The functions pt are Holder continuous and positive and thus bounded away

from zero; there exists q > 0 such that p,(x) > q for all x. For convenience we
assume q<{.

Let C be the space of real-valued continuous functions on X; then its dual space
C* is the space of finite Borel measures on X; an element m of C* is a probability
measure if and only if (m, / ) & 0 for a l l / a 0 and (m, h)= h for all constant functions
h. Let T: C -> C be defined by

(7J0W = !

Then the adjoint operator T* of T is a bounded linear operator from C* to C*. If
a measure /A represents trajectory averages as in equation (1), then /x must be a
probability measure and /x must be a fixed point of T*. We show that these conditions
make /x unique, and for any probability measure m e C*, the sequence T*km
converges weakly to fx.

We use the symbol F(/) to denote sup/ - inf / Note that F is a seminorm on C.

LEMMA 2.1. Let 8 be a modulus ofcontinuity for / :

\f(x)-f(y)\£S(p(x,y)).

Then

r(Tkf)<(\-2qk)r(f) + 2qk8(\k diamX).

Proof. If i d e n o t e s t h e /c- tuple ( ( , , . . . , ik), t h e n w e let

P,(x) = ph(pl2(---plk{x)))
and

P t ( x ) = U p i l ( P i , J - - -
7=1
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Then we may write

Note that the functions /3j and p, satisfy assumptions (ii), (iii), and (iv) with different
constants;

X p,(x) = 1; and p,(x) >qk for all x.
Let Xk denote the set U Pi(X), where the union is taken over all fc-tuples i. Then

there exists yeX and a fc-tuple j such that/(/3,(y)) = infXk f and for any x e X w e
have

x)) s inf/+ S(Afc diam X).

We have

< (1 -pj(x)) sup/+Pj(x)(inf/+ S(Afc diam X))

<sup/+/>j(x)(inf/+S(A''diam X ) - s u p / )

(< d iamX)-sup/) .

Similarly, we may obtain

Tkf(x) > inf/+ qk(supf- 8(\k diam X) - inf/).

Substracting the two inequalities, and noting that

sup/- inf /==r( / ) ,

we obtain

THEOREM 2.2. There exists a unique probability measure /x invariant under T*.
Moreover, for any m 6 C* with (m, 1) = 1, the sequence of measures T*km converges
weakly to ft.

Proof. First we show that the sequence of functions Tkf converges in C to a constant.
It is not difficult to show that the sequence sup Tkf is nonincreasing and the sequence
inf Tkf is nondecreasing. We show that the sequence T(Tkf) decreases to zero by
finding a subsequence which decreases to zero.

Using the Holder continuity of the functions p, it can be shown that the family
of functions Tkf is uniformly equicontinuous. Thus we can choose a modulus of
continuity S for Tkf independently of k. We also choose 5 so that it has an inverse
function and sup 5 = F(/).
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We define our subsequence iteratively: let ao = r ( / ) . When a0,..., a, have been
defined, we define a/+, as follows. Let j be the integer with a, = T{T'f). Choose an
integer k so that

1 (S-\a,/2)\ 1 /g- '(a,/2)\
log I I < K S log I I + 1.

log A B \ diam X ) log A e \ diam X )

It can be verified that k is nonnegative. We set a,+ l =r(TJ+k(f)). With this choice
of k, we have

8(AkdiamX)<a,/2.

Thus, from the preceding lemma,

On the other hand, from the upper bound on k, we can obtain:

\ diam.

Thus

Let us define g :.(0, a0) -» R by

Clearly, g(x)<x; thus g maps (0, a0) into itself. Moreover, 0 is the unique fixed
point of g; it follows that g"(ao)-»0. Since fl/+i <g(a,)< g"(ao), we have a, -»0 and
r(Tk/)-»0.

Define /u, e C* by

</t,/> = limT*/

It is easily shown from the properties of T that /J. is a probability measure and a
fixed point for T*. Let m e C*. Then

lim (m, Tkf) = (m, lim T*/> = (m, <,*,/» = <m, 1><M,/>;

thus if (m, 1)= 1 then the sequence T*km converges weakly to /A. •

The fact that /u. is a fixed point of the operator T* is equivalent to the invariance
property

= I
J E

when the sets /?,(£) are nonoverlapping.
I am indebted to M. F. Barnsley, J. H. Elton, S. G. Demko, and J. S. Geronimo

for pointing out that more than ordinary continuity of the probabilities p, is necessary
to prove that the family {Tkf} is uniformly equicontinuous. Karlin [8] overlooked
this point. It is still an open question whether there is a unique invariant probability
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measure if the probabilities p, are merely continuous. Elton [7] and Barnsley et al.
[2] prove the existence of a unique invariant probability measure under hypotheses
weaker than those used here, including cases where the functions / } , , . . . , )3n are
not always contracting.

The following example shows that the requirement that the functions p, be bounded
away from zero cannot be omitted. Let X = [0,1], /3,(x) = x/2, /32(x) = (x + l)/2,
Pi{x) = 1 -x , and p2(x) = x. Then any measure which assigns weight o> to the point
0 and weight 1 — w to the point 1 is a fixed point of T*.

We note that the theorem of this section remains true if we consider complex-
valued functions/and complex-valued measures. This can be shown by application
of the previous theorem to the real and imaginary parts off.

3. The main theorem
In this section we assume that X and W are compact subsets of R'" with connected
interiors. We will use | -1 to representlhe norms on X, W, and X x W. The functions
Pi and Pi are dependent on we W as well asxeX, so that the average value (n,f)
is a function of w.

For differentiate manifolds Y and Z we denote by Ca(Y,Z) the space of
functions from Y to Z that are Holder-continuous with exponent a. We denote by
Cl+a(Y, Z) the space of differentiable functions from Y to Z whose derivatives
are Holder continuous with exponent a.

THEOREM 3.1. Suppose / 3 , , . . . , /?„ :X x W-*X are in C 1 + a ( X x W,X), and there
exists 0 < A < 1 such that

P-j8,-(x,w) <A
II dX ||

for i = 1 , . . . , « . Suppose further that the probabilities p x , . . . ,pn are in Ci+a(X x
W, (0 ,1)) andf:X->Ris in CI+"(X, R). For a given value ofw, let fiK. be the unique
invariant probability measure for the system. Then {(J-W,f) is a differentiable function
of the parameter w.

Proof. For simplicity's sake we couch our argument in terms of the case where X
and W are one-dimensional; the only modifications necessary for the general case
are the substitution of operator norms for absolute values, etc.

We let p be the metric on X given by the shortest distance along paths in X;
then we have

p(Pi{x),Pi(y))<\p(x,y).

Note that |x— _y|sp(x, y), and thus any function which is C" with respect to the
|-| metric is C" with respect to p.

From the arguments of the previous section we know that if T is the linear
operator from C to C given by:

https://doi.org/10.1017/S0143385700005769 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005769
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then the sequence Tkf converges uniformly to the constant function with value
(f*w,f)- It is apparent that Tkf is a differentiate function of w; we show that the
derivatives converge uniformly, thus proving the theorem.

Let g:Xx W->R and let us consider DTg = (d/dw)(Tg):

DTg{x, w) = D\T, Pi(x, w)g(p,{x, w), w)J

= Ag+TDg, (2)
where

Ag(x, w) = X (DPi(x, w)g(pi{x, w), w) + pi(x, w)g'(pi(x, w), w)D/3i(x, w)). (3)

Note that we use g' to denote dg/dx as opposed to Dg = dg/dw.
While we assume that / is independent of w, Tkf depends on w for fc>0. We

thus have:

DTf=Af;
DT2f=ATf+TDTf

= ATf+TAf;

DT*f=AT2f+ TATf+ T2Af
And in general,

DTkf= £ TJATk-'f
j = 0

We now turn our attention to upper bounds for T(T'ATk~'f).

LEMMA 3.2. Suppose ph /?,, and f are C functions for some a > 0 . Then there exist
constants c and re (0,1), independent off, so that

r(Tkf)scrk sup {IV), ¥(/)},
where the operator ty is defined by

\f(x)-f(y)\
p(x,y)"

Proof For a function h which depends on w as well as x, we define

= sup sup \h(x, w)-h(y, w)\;
KL IV x,ycX

\h(x,w)-h(y,w)\
= sup sup •: — .

»cw,*y p(x,yY
In this proof we do not show dependence on w explicitly. Note that ^ is subadditive.

Let z be any point in X. We have the following upper bound on

Tf(x)-
p(x,y) p(x,y)

)np,(x))-npl(y))p(pl(x),pl{y))"
)
 P(x,yY' '
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where we have used the fact that S A = 1- Taking the supremum over x^ y and
we W, we obtain

We can iterate this inequality to obtain

) L
1 A i

From Lemma 2.1 we have:

where q is a lower bound for px,..., pn; we assume q e (0, \).
Thus we have

(r(Tkf)\ I \~2qk 2qk\ka
( Tkf)\

Tkf)J

The < sign here means that each component of the vector on the left is not greater
than the corresponding component of the vector on the right. Let us denote the
matrix in this inequality Mk, and investigate its dynamics. Its eigenvalues are given
by

where

Since q <\, the eigenvalue e+ has the larger absolute value. Using the fact that the
graph of Vx lies below the tangent line at x,, = (l -2qk -kka)2, we obtain

f_

Since the limit of the term in parentheses is 1 as k-»oo, we can choose a valued for
k so that \e+\ < 1 and the origin is a stable fixed point of M,.

Let £ be a matrix whose columns are the eigenvectors of M,; thus P= E~lMjE
is diagonal. Then | |P| |op=e+, where || • ||op is the operator norm derived from the
supremum norm on R2. Let u and v <j be positive integers such that k = uj+ v. Then

Thus

sup {r(T*/),*(Tl/)}s||M1||Sp||£||Ope:||£-| | |op sup

Thus the lemma holds with c= ||M,||j)p||£'||op||£"1||op/e+ and r=el/J. D
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LEMMA 3.3. Suppose p,, /?,, and f are Cl+a functions for some a > 0. Then there exist
constants c and r<\, independent of f and w, so that

sup {HTkf), ||( Tkf)'\\, *(( Tkf)')} == cr* sup {r(/), H/'ll, * ( / ' ) } .

Pfoo/ The proof of this lemma is a three-dimensional argument analogous to the
two-dimensional argument used to prove Lemma 3.2 and we omit it.

Proof of Theorem 3.1 continued. Using Lemma 3.3, we choose constants c, and r, < 1
such that

sup {T{Tkf), \\{Tkf)% *((T"f)')}s c,r* sup {F(/), ||/'||, * ( / ' ) } .

We recall the definition (3) of the operator A. Since £,- Dp, = 0, for arbitrary zeX,
we may write

Ag(x, w)=Y,Dpi(x, w)(g(Pi(x, w), w)-g(z, w))

i{x, w)g'(/3,(x, w), w)Dpi(x, w).

Thus

where a=I , . ||Dp,,|| and fe = sup, ||D/3,|
Thus

Y|| < (a + fc)c,rf-> sup

Note that if h' exists and is bounded, then ^(/i)< ||/i'||(diampX)'"". Thus we
may calculate

Thus

< uT(g) + v\\g'\\
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where

w = sup||Dj3,||,
i i

and

Therefore,

r(AT*-Jf) < 2||ATk~'f\\ < 2(a + 6 ) ^ ' sup

and

¥(Ar*-J / ) < (« + »+ W)c,rf-J sup

Finally, applying Lemma 3.2 to ATk~'f, we obtain constants c2 and r2 < 1 such that

r(T'ATk-Jf)^c2r
J
2 sup {KAT^f), V{ATk~Jf)}

^ c2ri(2a + 2b + u + v+ w)ctr
k

Then

)< I T(TJATk-sf)
7=0

It is easily shown that || Th - h || < F(/i). Referring to formula (2), we have
t + l / - DTkf ||

sup
a

This shows that the series DTkf converges uniformly and thus proves the theorem.

•
An interesting special case of this theorem occurs when the functions Pi are

independent of w, so that the dependence of /AB on w arises solely from the
dependence of the probabilities p, on w. In this case it can be shown that the
conclusion of the theorem holds even if the functions are not differentiable functions
of x, but merely C functions of x.

Concerning the complex case, we have the following:
THEOREM 3.4. Theorem 3.1 remains true if X and W are compact subsets of CN and
f-.X^C.

Proof. Exactly the same methods used to prove Theorem 3.1 will serve to prove this
theorem. In fact, since the uniform limit of holomorphic functions is holomorphic,
a slightly modified version of this theorem could be proved much more easily than
Theorem 3.1.

With regard to the hypotheses of Theorem 3.4 in the complex case, we note that
if the probabilities p , , . . . , pn are to be real-valued functions and at the same time
differentiable functions of x and w, then they must be constant on the interior of
X x.W. Thus ix has the invariance property /i/3,(E) = Pif
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4. Invariant measures on Julia sets
We now demonstrate how the results of the previous section may be applied to the
study of invariant measures on Julia sets, such as the equilibrium measures studied
by Brolin [5].

We consider a nonconstant holomorphic function F:CN xC-*CN. We shall
sometimes suppress dependence on the parameter weC and for xeCN we write
F(x) for F(x, w), etc.

Let w0 be a fixed value of w and W be a compact neighbourhood of w0. We
suppose that for each w there exists a compact set J = J(w) satisfying the following
conditions:
(i) There exists a compact simply connected neighbourhood X of J (independent

of w) such that X c F(X) and

7 = 0 F~k{X).

(ii) For all xeJ there exists A < 1 and k such that

(iii) F is topologically mixing on J; that is, for every open set U which intersects
J nontrivially there exists k such that /<= Fk(U).

(iv) There exists an integer n so that F is n-to-one on X.
An example of a set satisfying these conditions is given by the case where F is

a rational function on C and J is a hyperbolic, totally disconnected Julia set for F.
We call particular attention to the case F{x) = x2 - w, for values of w outside the
Mandelbrot set M and J is the Julia set for F. The set M is defined to contain just
those values of the parameter w for which the set J is connected. For a fuller
discussion of the characteristics of this system in terms of the parameter, see Douady
and Hubbard [6].

It can be shown that under conditions (i)-(iii) the neighbourhood X can be
chosen so that the following more stringent condition holds:
(ii)' There exist A < 1 and k (independent of x) so that for all xeX,

If we consider the function Fk rather than F we can assume k = 1 without loss of
generality.

Let )3, , . . . , /?„ denote the branches of the inverse of F on X. Since X is simply
connected, the functions /?, can be chosen to be continuous. Condition (ii)' also
implies that the functions )B, ,...,/}„ are contractions.

Let p . , . . . , p,, e (0,1) with I p, = 1. Then the hypotheses of Theorem 2.1 hold and
for each we W there is a unique invariant measure /i. = (j,K. satisfying

Moreover, the hypotheses of Theorem 3.4 are satisfied. Thus we can conclude that
for any complex-valued function / holomorphic on X, (/, /&„.) is an analytic function
of w.
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Withers [11, 12] discusses algorithms for the calculation of (d/dw)((f, /u,w)) in
the one-dimensional case; these can easily be adapted to the n-dimensional case
and provide values for the derivative in about as much time as is required for the
calculation of (/, /*„.) itself to the same accuracy.

In the one-dimensional case F:CxC->C, we can also investigate the Hausdorfi
dimension HD (//.„.) of the measure (JLW as a function of w. We shall use the following
formula for the Hausdorff dimension of a measure which is derived from its definition
in Manning [9]:

<log|F|,/it)

where /iM(F) is the entropy of /A. In the case at hand, this is given by /iM(F) =

~Z Pi l°g Pi> ana" t n u s

HD (/*„.) - I fl-log p,-"
Since X is simply connected and does not contain the critical points of F', log F'

can be defined to be analytic on X. Thus

(log F; A Q

8 ( H > ) = — ;

- S Pi ^g Pi
is an analytic function of w. Thus we have the following theorem:
THEOREM 4.1. Under hypotheses (i)-(iv), Re 8(w) = 1/HD (/u.».) is a harmonic function
of w.

It is interesting to compare this result with that obtained by Ruelle [10], who
proved that when the Julia set for a rational function is hyperbolic (similar to our
hypothesis (ii)) the Hausdorfi dimension of the set depends real-analytically on a
parameter. The Hausdorfi dimension of a set is equal to the supremum of the
Hausdorfi dimensions of measures supported on that set.

Theorem 4.1 includes the case of the mapping F(x) = x2 — w for values of w
outside M. The question of values of w inside the Mandelbrot set was treated for
general polynomials by Manning [9], who showed with pf = l/n that HD(/i) is
always unity.

The quantity Im S( w) is intriguing. Its value depends on the choice of X; however,
if the value of Im 5(w0) for a particular w0 is known, then the values of Im 8{w)
for values of w near w0 are determined; thus Im S(w) is defined locally up to a
constant independent of the choice of X. In the quadratic case F(x) — x2 — w, through
eyeball examination of the sets involved, it can be determined that as w travels
counterclockwise once around a path enclosing M the value of Im 8(w) increases
by - w / I P; log pf.

REFERENCES

[1] M. Barnsley & S. Demko. Iterated function systems and the global construction of fractals. Proc.
R. Soc. Land. A399 (1985), 243-275.

https://doi.org/10.1017/S0143385700005769 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005769


610 W. D. Withers

[2] M. Bamsley, S. Demko, J. Elton & J. Geronimo. Invariant measures for Markov processes arising
from iterated function systems with place-dependent probabilities. Ann. Inst. Henri Poincare 24 (3)
(1988), 367-394.

[3] M. Barnsley & J. Elton. Stationary attractive measures for a class of Markov chains arising from
function iteration. A new class of Markov processes for image encoding. Adv. in Appl. Probab. 20
(1988), 14-32.

[4] M. Barnsley & A. Harrington. A Mandelbrot set for pairs of linear maps. Physica I5D (1985), 421-432.
[5] H. Brolin. Invariant sets under iteration of rational functions. Ark. Mat. 6 (1965), 103-144.
[6] A. Douady & J. Hubbard. Iteration des polynomes quadratiques complexes. C.R. Acad. Sc. Paris,

Ser. I 294 (1982), 123-126.
[7] J. Elton. An ergodic theorem for iterated maps. Ergod. Th. & Dynam. Sys. 7 (1987), 481-488.
[8] S. Karlin. Some random walks arising in learning models Pac. J. Math. 3 (1953), 752-756.
[9] A. Manning. The dimension of the maximal measure for a polynomial map. Ann. Math. 119 (1984),

425-430.
[10] D. Ruelle. Repellers for real analytic maps. Ergod. Th. & Dynam. Sys. 2 (1982), 99-107.
[11] W. Withers. Calculation of Taylor series for Julia sets in powers of a parameter, in: Chaotic Dynamics

and Fractals, pp. 203-213, Academic Press: New York, 1986.
[12] W. Withers. Calculating derivatives with respect to parameters in iterated function systems. Physica

28D (1987), 206-214.

https://doi.org/10.1017/S0143385700005769 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005769

