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Abstract

Moudafi and Maingé [Towards viscosity approximations of hierarchical fixed-point problems, Fixed
Point Theory Appl. (2006), Art. ID 95453, 10pp] and Xu [Viscosity method for hierarchical fixed
point approach to variational inequalities, Taiwanese J. Math. 13(6) (2009)] studied an implicit
viscosity method for approximating solutions of variational inequalities by solving hierarchical fixed
point problems. The approximate solutions are a net (xs,t ) of two parameters s, t ∈ (0, 1), and under
certain conditions, the iterated limt→0 lims→0 xs,t exists in the norm topology. Moudafi, Maingé and Xu
stated the problem of convergence of (xs,t ) as (s, t)→ (0, 0) jointly in the norm topology. In this paper
we further study the behaviour of the net (xs,t ); in particular, we give a negative answer to this problem.
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1. Introduction and preliminaries

A useful method for solving ill-posed nonlinear problems is to substitute the originally
ill-posed problem by a family of regularized (well-posed) problems. A particular
(viscosity) solution of the original problem is then obtained as limit of the solutions
of the regularized problems. In [4, 7, 10] the authors used this idea to provide a
viscosity method for solving variational inequality problems via a hierarchical fixed
point approach.

Let T, V be two nonexpansive mappings from C to C , where C is a closed convex
subset of a Hilbert space H . Consider the variational inequality (VI) of finding
hierarchically a fixed point of T with respect to V , that is,

Find x∗ ∈ Fix(T ) such that 〈x∗ − V x∗, y − x∗〉 ≥ 0, y ∈ Fix(T ). (1.1)
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Equivalently, x∗ = PFix(T )V x∗; that is, x∗ is a fixed point of the nonexpansive mapping
PFix(T )V , where PK denotes the metric projection from H on a closed convex
subset K of H . The VI (1.1) covers several topics investigated in the literature
(see [1, 3, 5, 6, 8, 11, 12] and the references cited therein).

Let S denote the solution set of (1.1) and assume throughout the rest of this paper
that S 6= ∅. Note that S = Fix(PFix(T )V ). We also adopt the following notation:
xn→ x means that (xn) converges to x in the norm topology; xn ⇀ x means that
(xn) converges to x in the weak topology.

Let f : C→ C be a ρ-contraction and define, for s, t ∈ (0, 1), two mappings Wt
and fs,t by

Wt = tV + (1− t)T, fs,t = s f + (1− s)Wt .

It is easy to verify that Wt is nonexpansive and fs,t is a [1− (1− ρ)s]-contraction.
Let xs,t be the unique fixed point of fs,t , that is, the unique solution of the fixed

point equation
xs,t = s f (xs,t )+ (1− s)Wt xs,t . (1.2)

Moudafi and Maingé [7] initiated the investigation of the iterated behaviour of the
net (xs,t ) as s→ 0 firstly and t→ 0 secondly. They make the following assumptions:

(A1) for each t ∈ (0, 1), the fixed point set Fix(Wt ) of Wt is nonempty and the set
{Fix(Wt ) : 0< t < 1} =

⋃
t∈(0,1) Fix(Wt ) is bounded; and

(A2) ∅ 6= S ⊂ ‖ · ‖ − lim inft→0 Fix(Wt ) := {z : ∃zt ∈ Fix(Wt ) such that zt → z}.

Moudafi and Maingé [7] (see also [9]) proved that, for each fixed t ∈ (0, 1), as s→ 0,
xs,t → xt ; moreover, as t→ 0, xt ⇀ x∞ which is the unique solution to the VI

x∞ ∈ S, 〈x∞ − f (x∞), x − x∞〉 ≥ 0, x ∈ S. (1.3)

The following theorem, due to Xu [10], improves the Moudafi–Maingé result since he
proves that (xt ) actually strongly converges to x∞. Moreover, Xu does not need the
boundedness assumption of the set

⋃
t∈(0,1) Fix(Wt ).

THEOREM 1.1. [10] Let the above assumption (A2) hold. Assume also that, for
each t ∈ (0, 1), Fix(Wt ) is nonempty (but not necessarily bounded). Then the strong
lims→0 xs,t =: xt exists for each t ∈ (0, 1). Moreover, the strong limt→0 xt =: x∞
exists and solves the VI (1.3). Hence, for each null sequence (sn) in (0, 1), there is
another null sequence (tn) in (0, 1) such that xsn,tn → x∞, as n→∞.

In [7, 10], the authors stated the problem of the convergence of (xs,t ) when
(s, t)→ (0, 0) jointly. In this paper, we further investigate the behaviour of the
net (xs,t ) along the curve t = t (s) and our results point to a negative answer to this
problem. Specifically, we prove that:

(i) if t (s)= O(s), as s→ 0, then xs,t (s)→ z∞ ∈ Fix(T ); and
(ii) if t (s)/s→∞, as s→ 0, then xs,t (s)→ x∞ ∈ S.
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We next include two lemmas which are pertinent to the proof of many convergence
results of iterative methods. Let H be a real Hilbert space and C be a nonempty closed
convex of H . Recall that the metric projection, PC , from H onto C , assigns to each
x ∈ H a unique point PC x in C with the property

‖x − PC x‖ = inf
y∈C
‖x − y‖.

LEMMA 1.2. Given x ∈ H and z ∈ C, then z = PC x if and only if

〈x − z, y − z〉 ≤ 0 ∀y ∈ C. (1.4)

LEMMA 1.3 ([2] Demiclosedness principle). If T : C→ C is a nonexpansive map-
ping with Fix(T ) 6= ∅, then the mapping (I − T ) is demiclosed; that is, if a sequence
(xn) in C is weakly convergent to x and if the sequence ((I − T )xn) is strongly
convergent to y, then (I − T )x = y.

2. On convergence of (xs,t)s,t∈(0,1)

In this section we study the convergence of the net (xs,t ) along the curve t = t (s)=:
ts , where ts = O(s), as s→ 0.

THEOREM 2.1. Let H be a real Hilbert space and let C be a closed convex subset
of H. Let V, T : C→ C be nonexpansive mappings with Fix(T ) 6= ∅. Let f : C→ C
be a ρ-contraction with ρ ∈ [0, 1). Assume that ts = O(s), as s→ 0, and let l =
lim sups→0(ts/s). Then the net (xs,ts )s∈(0,1) defined by

xs,ts = s f (xs,ts )+ (1− s)Wts xs,ts (2.1)

strongly converges to z∞ ∈ Fix(T ) which is the unique solution of the VI

z∞ ∈ Fix(T ), 〈[(I − f )+ l(I − V )]z∞, x − z∞〉 ≥ 0, x ∈ Fix(T ). (2.2)

PROOF. We first note that the VI (2.2) has a unique solution, due to the fact that the
operator (I − f )+ l(I − V ) is strongly monotone. The proof is divided into two
steps.

The first step is to prove that the net (xs,ts )s∈(0,1) is bounded. Let z ∈ Fix(T ); then,
from (2.1),

‖xs,ts − z‖2 = 〈xs,ts − z, xs,ts − z〉

= s〈 f (xs,ts )− z, xs,ts − z〉 + (1− s)〈Wts xs,ts − z, xs,ts − z〉

= s[〈 f (xs,ts )− f (z), xs,ts − z〉 + 〈 f (z)− z, xs,ts − z〉]

+ (1− s)[〈Wts xs,ts −Wts z, xs,ts − z〉 + 〈Wts z − z, xs,ts − z〉]

≤ sρ‖xs,ts − z‖2 + s〈 f (z)− z, xs,ts − z〉

+ (1− s)‖xs,ts − z‖2 + ts(1− s)〈V z − z, xs,ts − z〉.
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Simplifying, we obtain

‖xs,ts − z‖2 ≤
1

1− ρ

[
〈 f (z)− z, xs,ts − z〉 +

ts(1− s)

s
〈V z − z, xs,ts − z〉

]
. (2.3)

In particular,

‖xs,ts − z‖ ≤
1

1− ρ

[
‖ f (z)− z‖ +

ts
s
‖V z − z‖

]
. (2.4)

Since ts = O(s), as s→ 0, (2.4) implies the boundedness of (xs,ts ) and the first step is
proved.

The second step is to prove that the net xs,ts → z∞ ∈ Fix(T ), as s→ 0, where z∞
is the unique solution of the VI (2.2). We observe that

‖xs,ts − T xs,ts‖ ≤ s‖ f (xs,ts )‖ + (1− s)ts‖V xs,ts‖ + (s + ts − sts)|‖T xs,ts‖.

Since (xs,ts ) is bounded when s→ 0 (hence ts→ 0), we find that

‖xs,ts − T xs,ts‖→ 0. (2.5)

We now claim that (xs,ts )s∈(0,1) is relatively compact as s→ 0 in the norm topology.
To see this, assume (sn) is null sequence in (0, 1). Without loss of generality, we may
assume that xsn,tsn

⇀ x̂ which implies from (2.5) and Lemma 1.3 that x̂ ∈ Fix(T ). We
thus immediately get from (2.3) that xsn,tsn

→ x̂ .
We next further claim that x̂ = z∞, the unique solution to the VI (2.2), which then

completes the proof. Indeed, observing

(I − f )xs,t =−
1− s

s
(xs,t −Wt xs,t )=−

1− s

s
[t (I − V )xs,t + (1− t)T xs,t ],

we deduce that, for z ∈ Fix(T ),

〈(I − f )xs,t , xs,t − z〉 = −
1− s

s
[t〈(I − V )xs,t , xs,t − z〉

+ (1− t)〈(I − T )xs,t , xs,t − z〉].

However, since

〈(I − T )xs,t , xs,t − z〉 = 〈(I − T )xs,t − (I − T )z, xs,t − z〉 ≥ 0,

we obtain

〈(I − f )xs,t , xs,t − z〉 ≤ −
t (1− s)

s
〈(I − V )xs,t , xs,t − z〉. (2.6)

Now since xsn,tsn
→ x̂ , setting s = sn and t = tsn in (2.6) and letting n→∞, we

immediately see that x̂ satisfies the VI (2.2) and therefore we must have x̂ = z∞
since z∞ is the unique solution of (2.2). 2
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REMARK 2.2. (i) If ts = o(s) (that is, l = 0), then the above argument shows that the
net (xs,ts ) actually converges in norm to the unique solution of the VI

x∞ ∈ Fix(T ), 〈x∞ − f (x∞), p − x∞〉 ≥ 0, p ∈ Fix(T ), (2.7)

which is also the unique fixed point of the contraction PFix(T ) f , x∞ = (PFix(T ) f )x∞.
This is Theorem 3.3 in Xu [10].

(ii) The net (xs,t )s,t∈(0,1) does not converge, in general, as (s, t)→ (0, 0) jointly,
to the unique solution x∞ ∈ S of the VI (1.3). As a matter of fact, if (xs,t )s,t∈(0,1)
converged to x∞ jointly as (s, t)→ (0, 0), then (by (2.7) we would have the relation
and (1.3))

x∞ = PS f (x∞)= PFix(T ) f (x∞)

for all ρ-contractions f . This implies that S = Fix(T ) which is not true, in general.
(iii) Consider the case of l > 0. If x∞, the unique solution of (2.7), belongs to S,

then, clearly, x∞ = z∞. If x∞ /∈ S, the following example shows that there are, in
general, no links among z∞, S and x∞. Take

C = [0, 1], T = I, f (x)=
x

2
, V (x)= 1− x, l = 1.

The unique solution x∞ of the VI

x∞ ∈ [0, 1], 〈x∞ − f (x∞), z − x∞〉 ≥ 0, z ∈ [0, 1],

is x∞ = 0; the unique solution z∞ of the VI

x∞ ∈ [0, 1], 〈(z∞ − f (z∞))+ (z∞ − V z∞), z − z∞〉 ≥ 0, z ∈ [0, 1],

is z∞ = 2
5 , and the set S of the solutions of the VI

x ∈ [0, 1], 〈x − V x, z − x〉 ≥ 0, z ∈ [0, 1],

is the singleton {1/2}.

3. The case l = ∞

In this section we examine the convergence of the net (xs,ts )s∈(0,1) along the curve
where ts/s→∞, as s→ 0. We shall prove that the net converges strongly to a point
x∞ ∈ S which is the unique solution of the VI (1.3).

THEOREM 3.1. Let H be a real Hilbert space and let C be a closed convex subset
of H. Assume that V, T : C→ C are nonexpansive mappings with Fix(T ) 6= ∅ and
f : C→ C is a ρ-contraction with ρ ∈ [0, 1). Assume the condition (A2) in Section 1.
Let ts = t (s) satisfy lims→0 ts/s =∞. Then the net (xs,ts )s∈(0,1) defined by

xs,ts = s f (xs,ts )+ (1− s)Wts xs,ts (3.1)

strongly converges to x∞ ∈ S which is the unique solution of the VI (1.3).
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PROOF. The proof is divided into three steps, the first of which is to prove the
boundedness of (xs,ts )s∈(0,1). Let z ∈ S. By condition (A2) there exists ps ∈ Fix(Ws)

such that ps→ z as s→ 0. We then derive that

‖xs,ts − ps‖
2
= ‖s( f (xs,ts )− f (ps))+ s( f (ps)− ps)+ (1− s)(Wts xs,ts − ps)‖

2

≤ ‖s( f (xs,ts )− f (ps))+ (1− s)(Wts xs,ts − ps)‖
2

+ 2s〈 f (ps)− ps, xs,ts − ps〉

≤ s‖ f (xs,ts )− f (ps)‖
2
+ (1− s)‖Wts xs,ts − ps‖

2

+ 2s〈 f (ps)− ps, xs,ts − ps〉

≤ (1− (1− ρ2)s)‖xs,ts − ps‖
2
+ 2s〈 f (ps)− ps, xs,ts − ps〉.

It follows that

‖xs,ts − ps‖
2
≤

2

1− ρ2 〈 f (ps)− ps, xs,ts − ps〉. (3.2)

This implies immediately that

‖xs,ts − ps‖ ≤
2

1− ρ2 ‖ f (ps)− ps‖. (3.3)

From (3.3) the boundedness of (xs,ts )s∈(0,1) follows since {ps} is bounded.
The second step is to prove that the set of weak cluster points of (xs,ts )s∈(0,1),

ωw(xs,ts ), is a subset of S; moreover, ωw(xs,ts )= ωs(xs,ts ). First observe that the
boundedness of (xs,ts ), (2.5), and Lemma 1.3 imply that ωw(xs,ts )⊂ Fix(T ).

Now let w ∈ ωw(xs,ts ) and assume that xn := xsn,tsn
⇀w, where sn→ 0. For

convenience, we write tn = tsn for all n; thus, tn/sn→∞ as n→∞. Noticing that

xn = sn f (xn)+ (1− sn)[tnV xn + (1− tn)T xn],

we derive that, for each fixed x̂ ∈ Fix(T ) and for a constant M ≥ supn{‖ f (xn)−

x̂‖‖xn − x̂‖},

‖xn − x̂‖2 = sn〈 f (xn)− x̂, xn − x̂〉

+ (1− sn)(tn〈V xn − x̂, xn − x̂〉 + (1− tn)〈T xn − x̂, xn − x̂〉)

= sn〈 f (xn)− x̂, xn − x̂〉 + (1− sn)tn〈V x̂ − x̂, xn − x̂〉

+ (1− sn)[tn〈V xn − V x̂, xn − x̂〉 + (1− tn)〈T xn − T x̂, xn − x̂〉]

≤ ‖xn − x̂‖2 + (1− sn)tn〈V x̂ − x̂, xn − x̂〉 + sn M.

It follows that

〈(I − V )̂x, xn − x̂〉 ≤
sn M

(1− sn)tn
→ 0

as sn/tn→ 0. But xn ⇀w, and we get

〈(I − V )̂x, w − x̂〉 ≤ 0, x̂ ∈ Fix(T ). (3.4)
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Upon replacing the x̂ in (3.4) with w + γ (̃x − w) ∈ Fix(T ), where γ ∈ (0, 1) and
x̃ ∈ Fix(T ), we get

〈(I − V )(w + γ (̃x − w)), w − x̃〉 ≤ 0.

Letting γ → 0, we obtain the VI

〈(I − V )w, w − x̃〉 ≤ 0, x̃ ∈ Fix(T ).

Therefore, w ∈ S.
Next using condition (A2) again, we have a sequence pn ∈ Fix(Wtn ) such that

pn→ w. Then in relation (3.2) we replace z and ps with w and pn , respectively,
to get

‖xn − pn‖
2
≤

2

1− ρ2 〈 f (pn)− pn, xn − pn〉. (3.5)

Now since f (pn)− pn→ f (w)− w and xn − pn ⇀ 0, taking the limit in (3.5), we
immediately get xn→ w. Hence w ∈ ωs(xs,ts ).

The third and final step is to prove that the net (xs,ts ) converges in norm to
x∞ = (PS f )x∞. It suffices to prove that each norm limit point w ∈ ωs(xs,ts ) solves
the VI (1.3). We still use the same subsequence {xn} of the net (xs,ts ) such that xn→ w

as shown in the second step. On the other hand, for every p ∈ S, by condition (A2),
we have, for each n, ptn ∈ Fix(Wtn ) such that ptn → p as n→∞.

Now since I −Wtn is monotone and since

(I − f )xn =−
1− sn

sn
(xn −Wtn xn),

we get

〈(I − f )xn, xn − ptn 〉 = −
1− sn

sn
〈(xn −Wtn xn), xn − ptn 〉

= −
1− sn

sn
〈(I −Wtn )xn − (I −Wtn )ptn , xn − ptn 〉

≤ 0.

Passing to the limit as n→∞ in the last inequality, we conclude that

〈(I − f )w, w − p〉 ≤ 0, p ∈ S.

This is the VI (1.3). Hence w = x∞, as required. 2
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