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Abstract

Moudafi and Maingé [Towards viscosity approximations of hierarchical fixed-point problems, Fixed
Point Theory Appl. (2006), Art. ID 95453, 10pp] and Xu [Viscosity method for hierarchical fixed
point approach to variational inequalities, Taiwanese J. Math. 13(6) (2009)] studied an implicit
viscosity method for approximating solutions of variational inequalities by solving hierarchical fixed
point problems. The approximate solutions are a net (x5 ;) of two parameters s, ¢ € (0, 1), and under
certain conditions, the iterated lim,_, ¢ lim,_, ¢ x ; exists in the norm topology. Moudafi, Maingé and Xu
stated the problem of convergence of (x; ;) as (s, t) — (0, 0) jointly in the norm topology. In this paper
we further study the behaviour of the net (x; ,); in particular, we give a negative answer to this problem.
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1. Introduction and preliminaries

A useful method for solving ill-posed nonlinear problems is to substitute the originally
ill-posed problem by a family of regularized (well-posed) problems. A particular
(viscosity) solution of the original problem is then obtained as limit of the solutions
of the regularized problems. In [4, 7, 10] the authors used this idea to provide a
viscosity method for solving variational inequality problems via a hierarchical fixed
point approach.

Let T, V be two nonexpansive mappings from C to C, where C is a closed convex
subset of a Hilbert space H. Consider the variational inequality (VI) of finding
hierarchically a fixed point of T with respect to V, that is,

Find x* € Fix(T) such that (x* — Vx*, y — x*) > 0, y € Fix(T). (1.1)
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Equivalently, x* = Pgix(r)Vx*; thatis, x* is a fixed point of the nonexpansive mapping
Prix(t)V, where Px denotes the metric projection from H on a closed convex
subset K of H. The VI (1.1) covers several topics investigated in the literature
(see [1, 3,5, 6,8, 11, 12] and the references cited therein).

Let S denote the solution set of (1.1) and assume throughout the rest of this paper
that § # . Note that S = Fix(Pgixr)V). We also adopt the following notation:
X, — x means that (x,) converges to x in the norm topology; x, — x means that
(x,) converges to x in the weak topology.

Let f:C — C be a p-contraction and define, for s, ¢ € (0, 1), two mappings W,
and f; by

Wi=tV+A-0T, for=sf+0—-s5)W,.

It is easy to verify that W; is nonexpansive and f ; is a [1 — (1 — p)s]-contraction.
Let x,,; be the unique fixed point of f; ;, that is, the unique solution of the fixed
point equation
X0 =Sf(xg,1) + (1 — ) Wixg,s. (1.2)

Moudafi and Maingé [7] initiated the investigation of the iterated behaviour of the
net (x; /) as s — O firstly and + — 0 secondly. They make the following assumptions:

(A1) for each t € (0, 1), the fixed point set Fix(W;) of W; is nonempty and the set
{Fix(W;):0<t <1} = Uze(o,l) Fix(W;) is bounded; and
(A2) B #S C | - || = liminf,_ ¢ Fix(W;) := {z : 3z, € Fix(W;) such that z;, — z}.

Moudafi and Maingé [7] (see also [9]) proved that, for each fixed ¢ € (0, 1), as s — O,
Xg,; — X;; moreover, as t — 0, x; — X Which is the unique solution to the VI

Xoo €S, (Xoo — f(Xc0), X — Xo0) >0, x €8S. (1.3)

The following theorem, due to Xu [10], improves the Moudafi—-Maingé result since he
proves that (x;) actually strongly converges to x,.. Moreover, Xu does not need the
boundedness assumption of the set | ¢ o 1) Fix(W;).

THEOREM 1.1. [10] Let the above assumption (A2) hold. Assume also that, for
each t € (0, 1), Fix(W;) is nonempty (but not necessarily bounded). Then the strong
limg_,0 x5,; =: x; exists for each t € (0, 1). Moreover, the strong lim;_,o X; =: X0
exists and solves the VI (1.3). Hence, for each null sequence (s,) in (0, 1), there is
another null sequence (t,) in (0, 1) such that x5, ;, — X0, As 1 — 00.

In [7, 10], the authors stated the problem of the convergence of (x;,) when
(s, t) = (0, 0) jointly. In this paper, we further investigate the behaviour of the
net (x, ) along the curve t =¢(s) and our results point to a negative answer to this
problem. Specifically, we prove that:

(1) ift(s) = 0(s),ass — 0, then x5 ;(5) = Zoo € Fix(T); and
(i) ifr(s)/s — 00, as s — 0, then x4 ;(5) = X0 € S.
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We next include two lemmas which are pertinent to the proof of many convergence
results of iterative methods. Let H be a real Hilbert space and C be a nonempty closed
convex of H. Recall that the metric projection, Pc, from H onto C, assigns to each
x € H aunique point Pcx in C with the property

lx — Pcx|| = inf |lx — yl|.
yeC

LEMMA 1.2. Given x € H and 7 € C, then 7z = Pcx if and only if
(x—z,y—2)<0 VyeC. (1.4)

LEMMA 1.3 ([2] Demiclosedness principle). If T : C — C is a nonexpansive map-
ping with Fix(T) # 0, then the mapping (I — T) is demiclosed; that is, if a sequence
(xp) in C is weakly convergent to x and if the sequence ((I — T)xy) is strongly
convergent to y, then (I — T)x = y.

2. On convergence of (x5 1), re(0,1)

In this section we study the convergence of the net (x, ;) along the curve t = 1(s) =:
ts, where t;, = O(s), as s — 0.

THEOREM 2.1. Let H be a real Hilbert space and let C be a closed convex subset
of H. Let V, T : C — C be nonexpansive mappings with Fix(T) # 0. Let f : C — C
be a p-contraction with p €0, 1). Assume that t; = O(s), as s —> 0, and let | =
lim sup,_, o (ts/s). Then the net (xs s, )sc(,1) defined by

Xty = 8f (K1) + (1 — ) Wigxs 2.1
strongly converges to 7o € Fix(T) which is the unique solution of the VI
Zoo €FiX(T), ([ — f)+1 —V)]zoo, X — 200) > 0, x € Fix(T). (2.2)

PROOF. We first note that the VI (2.2) has a unique solution, due to the fact that the
operator (I — f)+I(I — V) is strongly monotone. The proof is divided into two
steps.

The first step is to prove that the net (x; ;,)se(0,1) is bounded. Let z € Fix(T); then,
from (2.1),

1xg.q, = 2lI* = (g, — 20 Xy — 2)
= 5(f (xs.1,) — 2 X5y — 2) + (1 = ) (Wi X5ty — 2, X1y — 2)
= s[{f(xs,1,) = [ (@), Xs5.1, — 2) + ([ (2) — 2, Xs1, — 2)]
+ (1= )[(Wrxsr, — Wiz, xgp, —2) + (W2 — 2, Xs.t, — 2)]
spllxss, — 27+ s(f () — 2, X, — 2)
(L= $) x50, — 2zl + t5(1L = ){(VZ — 2, Xgp, — 2).

IA
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Simplifying, we obtain

ts(1 —s)

1
lxs,r, — 2l1* < 1—[<f(z) -2, Xep, —2) +

(Vz—2z, x5, — z)] (2.3)

In particular,

1 t
15,2, = 2l < :[II]‘(Z) -zl + ;SHVZ - Z||:|- 2.4

Since t; = O(s), as s — 0, (2.4) implies the boundedness of (x;,;,) and the first step is
proved.

The second step is to prove that the net x; ;, — zoo € Fix(T'), as s — 0, where z
is the unique solution of the VI (2.2). We observe that

s,y — Txs 1 Il < sllf s )M+ (1 =)t | Vs o | + (s + 15 — st) [T x5, |-
Since (x;,,) is bounded when s — 0 (hence #; — 0), we find that
x5, — Txg,1, [l = 0. (2.5)

We now claim that (x ;,)se(0,1) is relatively compact as s — 0 in the norm topology.
To see this, assume (s;) is null sequence in (0, 1). Without loss of generality, we may
assume that x, ; — X which implies from (2.5) and Lemma 1.3 that X € Fix(7). We
thus immediately get from (2.3) that xy, ; — X.

We next further claim that X = z, the unique solution to the VI (2.2), which then
completes the proof. Indeed, observing

1—ys

1—s
= xs=— (x5,r — Wixg ) = —T[l(l — WVxse + (A —1)Txg 41,

we deduce that, for z € Fix(T),
(I = f)xsps Xs0 —2) = —ls;s[t((l — V)Xsts X506 — 2)
+ (1 =) —T)xsz, x50 — 2)].
However, since
(I = T)xg,r, x50 —2) = = T)xgy — (I = T)z, x5 —2) 20,

we obtain

t(1—ys)

(a — f)xs,t, Xs,t — )< — (I — V)xs,ts Xs,t — 7). (2.6)

Now since x,,, — X, setting s =s, and r =1, in (2.6) and letting n — oo, we

immediately see that x satisfies the VI (2.2) and therefore we must have X =z,
since zo is the unique solution of (2.2). O
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REMARK 2.2. (i) If #; = o(s) (that is, [ = 0), then the above argument shows that the
net (x; ;) actually converges in norm to the unique solution of the VI

Yoo € FIX(T),  (xoo — f(Xo0), P — Xoo) 2 0, p € Fix(T), (2.7)

which is also the unique fixed point of the contraction Prix(7) f, Xoo = (PFix(T) f)Xoo-
This is Theorem 3.3 in Xu [10].

(ii) The net (x4,)s.r(0,1) does not converge, in general, as (s, t) — (0, 0) jointly,
to the unique solution xs, € S of the VI (1.3). As a matter of fact, if (x;,)s./c(0,1)
converged to x jointly as (s, t) — (0, 0), then (by (2.7) we would have the relation
and (1.3))

Xoo = Ps f(x00) = Prix(1) f (¥c0)

for all p-contractions f. This implies that § = Fix(7T") which is not true, in general.

(iii) Consider the case of [ > 0. If xo,, the unique solution of (2.7), belongs to S,
then, clearly, Xoo = Zoo- If Xoo ¢ S, the following example shows that there are, in
general, no links among zso, S and x,. Take

c=1[0,1, T=I, f(x):%, V) =1—x, [=1.
The unique solution X, of the VI
Xoo €10, 1],  (xoo — f(¥x0), 2 — Xx0) =0,z € [0, 1],
is X0 = 0; the unique solution 74, of the VI
X0 €10, 1], {(Zoo — f(2e0)) + (oo — VZeo)s 2 — 200) 2 0, 2 € [0, 1],
18 Zoo = %, and the set S of the solutions of the VI
xel0,1], (x—=Vx,z—x)>0,z€]0,1],
is the singleton {1/2}.

3. Thecasel = o0

In this section we examine the convergence of the net (x, ;,)sc(0,1) along the curve
where ¢, /s — 00, as s — 0. We shall prove that the net converges strongly to a point
Xso € S which is the unique solution of the VI (1.3).

THEOREM 3.1. Let H be a real Hilbert space and let C be a closed convex subset
of H. Assume that V, T : C — C are nonexpansive mappings with Fix(T) # () and
f:C — Cisa p-contraction with p € [0, 1). Assume the condition (A2) in Section 1.
Let ty =t (s) satisfy limg_,q t; /s = 00. Then the net (x; ;1 )se(0,1) defined by

Xs,ty = sf(xs,t_q) +(1- S)Wt.yxs,tx (3.1

strongly converges to xXo, € S which is the unique solution of the VI (1.3).
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PROOF. The proof is divided into three steps, the first of which is to prove the
boundedness of (xs, )se0,1)- Let z € S. By condition (A2) there exists p, € Fix(Ws)
such that p; — z as s — 0. We then derive that

x50, = PslZ = Is(f (i) = F(P)) +5(f(ps) = ps) + (1 = )Wy x4, — po)lI?
< Is(f (sry) — F(Ps)) + (1 — ) (Wi xg.1, — o)1
+ 2s(f(ps) — Ps» Xs.t; — Ps)
< sl f () = FPOIP 4+ (1= )Wy, x50, — psll®
+ 25(f(ps) — Ps» Xs,1;;, — Ds)
< (1= (1 = p?)9)Ixss, — Psll> + 25(F(Ps) = Py Ko, — Ps)-

It follows that

2
s, = sl < 1 AP = ps. xety = po). (3.2)
This implies immediately that
2
5.0, = Psll = 7= ps I/ (ps) — psll- (3.3)

From (3.3) the boundedness of (x; s, )sc(0,1) follows since {p,} is bounded.

The second step is to prove that the set of weak cluster points of (xs;)se(0,1)s
wy (Xs,1.), 1s a subset of S; moreover, w,,(xs;,) = ws(xs ). First observe that the
boundedness of (x;y,,), (2.5), and Lemma 1.3 imply that w,, (xs,;,) C Fix(T).

Now let w € wy(xs,,,) and assume that x, := xs, ,, — w, where s, — 0. For
convenience, we write f, = f;, for all n; thus, t,/s, — 00 as n — oo. Noticing that

Xp =Spf(xn) + (A = st Vg + (1 — 1) Txpl,

we derive that, for each fixed X € Fix(7T') and for a constant M > sup,{|l f (x,) —
Xllxn =1},

0 = X11* = sn(f (xn) — X, X0 — )
+ (A = s5) @ {Vxy _3?7 Xn _55\) + (1 = t2){Txp _3?, Xn _3?))
= Sn(f(xn) _55\7 Xn _f) + _Sn)tn<V55\_5€a Xn _}\)
+ (A =s)ta{Vxp — VX, % — %)+ (A — t, ) {Txp — TX, x5 — )]
1Xn — X0+ (1 = $2)ta (VX — X, X — %) + 54 M.

IA

It follows that
sy M

I—V)X,x,—X)<—— 0
(( )X, Xy — X) < T s —
as s, /t, — 0. But x, — w, and we get
(d—-V)x,w—x)<0, ¥xeFix(T). 3.4
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Upon replacing the X in (3.4) with w + y (X — w) € Fix(T), where y € (0, 1) and
X € Fix(T), we get

(=) w+yE—w),w—X)<0

Letting y — 0, we obtain the VI
(d—-V)w,w—-X)<0, XxeFix(T).

Therefore, w € S.

Next using condition (A2) again, we have a sequence p, € Fix(W; ) such that
pn — w. Then in relation (3.2) we replace z and pg with w and p,, respectively,
to get

1 _2,02 (f(Pn) = Pns Xu — Pn). (3.5)
Now since f(p,) — pn — f(w) —w and x,, — p, — 0, taking the limit in (3.5), we
immediately get x,, — w. Hence w € ws(x;.s,).

The third and final step is to prove that the net (x;,) converges in norm to
Xoo = (Ps f)xco. It suffices to prove that each norm limit point w € w;(x; ;) solves
the VI (1.3). We still use the same subsequence {x,} of the net (x; ;) such that x, — w
as shown in the second step. On the other hand, for every p € S, by condition (A2),
we have, for each n, p; € Fix(W,, ) such that p, — p asn — oc.

Now since I — W;, is monotone and since

2
lxn — pull” <

1—s5
I - f)xn = — z (xp — Wt,,xn)7
n
we get
1—s5,
(I — f)xna Xp — pt,,) = - S (Cxn — thxn)’ Xp — Ptn>
n
1 —sp
i (= Wy)xn — U — Wi,)pt,» Xn — Pi,)
n
<0.

Passing to the limit as n — oo in the last inequality, we conclude that
(= fw,w—-p)=<0, peSs.

This is the VI (1.3). Hence w = x, as required. d
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