H. Sato
Nagoya Math. J.
Vol. 57 (1975), 1-26

ON PERIODS OF MEROMORPHIC EICHLER INTEGRALS
HIROKI SATO

0. Introduction.

In this paper we treat cohomology groups HYG,C*',M) of
meromorphic Eichler integrals for a finitely generated Fuchsian group G
of the first kind. According to L. V. Ahlfors [2] and L. Bers [4],
HY(G, C*', M) is the space of periods of meromorphic Eichler integrals
for G. In the previous paper [8], we had period relations and inequal-
ities of holomorphic Eichler integrals for a certain Kleinian groups.

Let G be a Fuchsian group of the first kind which is generated by
{A,B,,---,A,,B;} with a vrelation [[%.,B;'A;'B;A; =1. Set §;=
B;'A;'B;A;, j=1,---,9. We denote by HYG,C*"',M) the space of
cohomology classes Z with Zg5,=0,7=1,---,9. In general, ZeH'
-(G,C*'\, M) is represented by direct sum of Eichler cohomology and
Bers cohomology, that is, Z = a(f) + p*(g) (I. Kra [6], for notations see
§1). We denote by Hi(G, C**', M) the space of cohomology classes Z =
a(f) + p*(@ with a,((2)) = p%(@) for AeG and ze U, the upper half
plane. We shall study some properties of the spaces Hy(G,C* ', M) and
HY(G,C*?',M). The main result is Theorem 3, that is, if £ is a
meromorphic Eichler integral whose S; periods Z; are all zero, j =1,
-++, 9, then

tZ~A;11;1+1ZB, - tZ~B;11;.+1ZAj =0 and ¥ _l(tiA;1I:L+1ZBI - tZ:B;II;;nZAJ)

are real numbers and they may be positive, negative and zero (for nota-
tions see §1).

In §1 we state notations and preliminaries. In §2 we enumerate
theorems. In §3 we state some lemmas which is necessary to prove the
theorems. In §4 we prove the theorems. In appendix, we state rep-
resentations of period relation and inequalities by means of matrices.
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1. Notation.

Throughout this paper I' denotes a non-elementary finitely generated
Kleinian group and G denotes a Fuchsian group of the first kind which
is generated by {A,,B,, ---,4,, B;} with a relation [[%_, Bj'4A7'B;A; = 1.
Let 2 be the region of discontinuity of I and let 4 be a component of
2. We denote by 4 the limit set, 1(2)|dz| the Poincaré metric on Q.
We denote by U and L the upper and lower half planes, respectively.
Let ¢ =1 be an integer.

We denote by R” and C* n dimensional vector spaces over R and C,
respectively, n = 0 being an integer. We regard an element in R"(C")
as a matrix with » rows and 1 column. We consider an element of I”
as a matrix A = <‘c” 3) with ad — bc = 1. We denote by GL(m, C) the
group of m X m invertible matrices over C. Let (z) be a vector in C2
For each n = 2q — 2, we denote by <;b;)” the vector in C**' whose com-

- _ u\°
ponents are u®,u” v, -..,uv" !, v®, where (’u) =1. For Ael we set

(“A) - A(Z) and define M(A) e GL( + 1,C) by

Va
() =2 (y)
Vy v
For m X n matrix N = (a;;),¢=1,---,m;j =1, ...,n), matrices N and
N are defined by N = (@;;) and N = (@p_i41,n_ i+1)» respectively, where a;;

is the complex conjugate of a;;. We denote by I, the n X n identity
matrix. We define (n + 1) X (n + 1) matrix I;,, and n X n matrix I/ by

[+Co
_nC1 O

I;z+l = (—l)qncq

and
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I;,,, = (—1)q_2an—2
0 (__1)an¢1

2Ch )

respectively, where ,C; = n!/(n — 7)!j!. We define the product of matri-
ces (U, Uy - - -5 Uy) and (v, v, + -+, V) by setting

UV, UVy - UV

UV UV UV
t(uly Uzy ==y um)(/ul) (XTI v'm.) =

.............

A mapping y:I"— C** is called a cocycle if y, 5 = x4 + M(A)ys for
A,Bel. A cocycle y:I'— C"! ig called a coboundary if there exists
Ve ! guch that y, =V — M(A)V for any y,e C*',AecI. Then the
first cohomology group H'(I', C*~ !, M) is the space of cocycles factored
by the space of coboundaries.

A holomorphic function ¢ on 4 is called an automorphic form of
weight (—2¢9) on 4 for I',qg = 1, if #(A2)A’(»)? = ¢(2) for all Ael'. For
q = 2, an automorphic form of weight (—2¢) on 4 is called integrable
if

”M A=) p(2)| dady < oo .

We denote by 4,(4, ") the Banach space of integrable automorphic forms
on 4. The form ¢ is called bounded if

sup {2(&)7?|g(2)]|z € 4} < oo .

The Banach space of bounded automorphic form on 4 is denoted by
B,(4,I"). For ¢eA,4,I") and e By4,I"), we define Petersson inner
product by

@ ¥) = jj/ A gV @Ddedy,  ¢=2.
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For q = 1, we shall interpret A,(4,I") and B,(4,I") as the Hilbert space
of square integrable automorphic forms of weight (—2) with inner product
defined by

(@9 = ”/ $@V@ddy .

A holomorphic function E on 4, is called a holomorphic Eichler
integral of order (1 — @) on 4, if E(A2)A'(2)'"* — E(») € Il,,_, on 4,, for
all Ael', where II,, , is the vector space of polynomials of degree at
most 29 — 2 and 4, = U, er A(4). We define a period of E for Ae I by
setting

pd, E(®) = E(A2)A'(z)"* — E(?) , zed, .

We shall say that Eichler integral F of order (1 — ¢) is bounded if
¢ = D**'E ¢ B,(4,,I"), where D means differentiation with respect to z.
E _,(4,, ") denotes the space of bounded Eichler integrals modulo I7,,_,.

Let fekE, _,4,,I") and E a representative of f and set D 'F = ¢.

We set
Ju-y(2) = ,i_‘b (—=D*G /(G — k) D *D**"*E(2)
and set
fo(z)
Ji(2)
f&=1 -
Ja(2)

We call §(z) a column function vector of length n 4 1 associated with F
(or ). Then we have

B = (1/n!)tf(z>1;+l(i)”, zed,  (Sato [8]) .
For each A ¢ " we define X, by

X4 = 1(42) — M(A)i(2)

and denote it by pd,(f). We call X, period of { for AeI'. The map-
ping A — X, satisfies X 5 = X, + M(A)X; for any A,Bec [, as is easily
seen. Then a cohomology class is defined, which depends only on f and
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not E. We denote by E,_,(4,,I", M) the space of all {(z) modulo C%
By the obvious way we may define a mapping «: E,_,(4,, ", M) —» H'([",
cu 1, M) as follows. Let feE,_,4,I',M). We define a« by setting
a(f(2) = X, for Ael.

If a,,a, --,0,_, are distinct points in 4, and + € B,(4, 1), then we
call

(Z—a) - (2—ay,) J‘J‘ AQ W (QdE N dE ,
2r1 2 —2)C—a)--- (€ — Qq_1)

zeC, q = 2, a potential for +, and denote it by Pot(y). For Aelr,
we define a period of Pot () by setting

pd, Pot (¥)(2) = Pot (y)(42)A"(2)'""? — Pot (\)(2) , zeC.
It is easily seen that Pot (y) |2 — 4,€ E,_((2 — 4,,I") for + € B,(4,,I').
We set
Gn-3(2) = i (=D G/ (G — k) D2/"*D*~*7% Pot (y)(2) , zel —4,.
k=0

We set

94(2)

9,(2)
g(z) = .

92(2)
We call g(») a column function vector of length n + 1 associated with
Pot () (or ). Then
Pot (@) = (U/nDg@Lin( 1), ze@—4  (Sato [8D.
We denote by L.(4,,I',M) the space of all g modulo C*¥'. For each
Ael, we define Y, by setting
Y, =g(A2) — M(A)(2), zeQ— 4,

and denote it by pd, (g). The mapping A — Y, satisfies Y, z3=Y, +
M(A)Y,, for any A,Bel, as easily seen. Then a cohomology class is
defined, which depends only on 4. The definition Y, applies to the case
Q2 — 4, % ¢. Noting the Remark after Lemma 4 in [8], this function for
the remaining case be defined. We define a mapping g*: L.(4,,I", M) —
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H\I',Cc* ', M) as follows. Let geL.(4,,I",M). We define g* by setting
Bi@) =Y, for Ae['.*¥**

Let G be a Fuchsian group of the first kind which is generated by
{A, By, ---, A, B} with a relation [[%.,Bj'A;'B;A; = 1. Set S;,=
B;j'A;'B;A;j=1,---,9. We denote by HyG,C*', M) the subspace of
HY(G,C* ', M) whose elements are all cohomology classes Z such that
Zs,=0,7=1,--.,9, that is Z;, are cohomologous to zero. For any
Z ¢ HY(G, C* ', M),

Z = o) + @,

for feE_,(U,G,M) and geL,(U,G,M) by Kra [6]. We denote by
HYG, Cc**', M) the subspace of HYG,C*',M) whose elements are all
cohomology classes Z such that «,(f(z) = p%(g(?)), for every A G and
zeU. We denote by E! ,(U,G,M) and L%(U,G,M) the subspaces of
E_,U,G,M) and L.(U,G,M) formed by all { and all g which satisfy
as(H=0and g§(g=0,7=1,.--,9, respectively. We define E* (U, G, M)
and E?”,(U,G, M) by setting

EM(U,G,M) ={{cE_U,G,M)|Reas () =0, =1,---,9}
and
E2(U,G,M) ={{eE_U,GM|Imasg () =0,7=1,---,9},
respectively. Similarly we define E* (U, G) and E”,(U, G) by setting
E'(U,G) ={EcE, U, &|Reas() =0,7=1,---,9}
and
EX WU, ={EcE_ U, G| Imes() =0, =1,---,9},

respectively, where | is a column function vector associated with E.
We define BMU, G) and B*U, G) as follows.

BMU,G) = {$eB,(U,D|Re i) =0,i=1,---,0}
and

BXU,G) = {$eB,(U,® | Im B =0,=1,---,9}
where g is a column function vector associated with ¢.

#%% In the case where I' contains parabolic elements, we may similarly define i, g,
- as above (see Sato [8]).
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By a similar method as above we define a meromorphic Eichler
integral, M,_,(4,,I") the space of meromorphic Eichler integrals modulo
II,,_,, the space M, ,(4,,I",M) and a mapping «: M,_,(4,,I", M) — H\T,
cx-1 M).

2. The main results.

In this section we state Theorems. Throughout this section let G
be a Fuchsian group of the first kind which is generated by {4,,B,, - - -,
A,,B,} with a relation [[%_, Bj'A;'B;A; =1. Set S; = Bj'A;'B;A; and
T;,=8;---8,G=1,---,9). We denote by ‘M(A) transposed matrix of
M(A),AeG. At first we write the main results in the previous paper
[8] in the case of Fuchsian groups. Let X,Y ¢ H(G,C*%',M). We de-
fine 0,(X,Y), 9,(X,Y) and 9,(X,Y) by setting

g ~ ~
2,(X,Y) = ]}; (CXagily Y5, — ' Xl Y 4)

g ~ ~
@z(X’ Y) = Z t(XA, - XB;I)I;+1M(AJ')YT,-_1

Jj=1

and

g ~ ~
0,X,Y) = Zl W Xay1 — Xp ) M(B)Y
=
respectively. We define 9,X,Y),0,X,Y) and 0,X,Y),7=1,2,8, by
the same way as above. We set @ = @, + @, + @,.

THEOREM A. (Corollary 1to Theorem 2 in [8]). Let f,, f, e E,_(U, G),
p=1 and E,, E, arbitrary representatives of f, and f,, respectively. Set
XP =pd,f, and XP =pd,f, for every A e G, where {; are column func-
tion vectors associated with E; (j = 1,2). Then

i @,-(X“’,X(Z’) =0.
Jj=1
THEOREM B. (Corollary 2 to Theorem 1 in [8]). Let feE,_,U,®,
q=1 and E a representative of f and let | be a column function vector
associated with E. Set pd,f = X, for Ae G and set D¥'E = ¢. Then

3 0,(%, X) = 26~ D g

THEOREM C. (Kra [6], Sato [8]). Let Xea(E _,(U,G,M). If X,
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ts real for every Ac @G, then X, = 0.

Now we state our theorems. According to Kra [6]
dim¢ «(E,_,(U, G, M) = dim¢ f*(L..(U,G,M)) = 2¢ — D(g —- 1), az2,
where dimg, H denotes the dimension of H over C.

THEOREM 1. Let G be a Fuchsion group of the first kind which is
generated by {A, B, ---,A, B,} with a relation [[4.,B;'A;'B;A; = 1.
Then

(1) dimg HY(G, C4Y, M) = {;2‘9«1 — @ -1, Z % ?

@) dimg H(G,C ', M) = (2q — (g - 1), ¢ = 2.

Remark. Let G be a Fuchsian group of the first kind which is
generated by {4,B,, .--,4,,B,C,---,C,,D,,---,D,} with relations D,
-+ DC, - C ]9 Bj’A7'"BjA; =1 and C¥ =1 (j=1,---,p). Then by
the same method as in the proof of Theorem 1 (1) in §4, we have that

¢ —-D@—-1 + 232[11 —~(9/epl + 2v(¢ - 1),

dim¢g Hy(G, C* ', M) = q=2

2g s q = 1 )
where the bracket [ ] denotes the Gaussian symbol.

THEOREM 2. Let G be the same group as in Theorem 1. Then for
any Z ¢ H(G, C%"', M),

NZ,72) =0
and v —=10(Z, Z) is a real number. Especially if Z ¢ H(G, C*™', M), then
0Z,2)=9Z,72)=0.

THEOREM 3. Let G be the same group as in Theorem 1 and let E
be o meromorphic Eichler integral such that as(f) =0,7=1,.--,9 and

set a(f) = Z, where | is a column function vector associated with E.
Then

eY) 6Z~A7112+1ZB, — zZ~B}‘II;z+1ZAj =0,7=1,---,9.
(2) The quantity

v _I(LZ:AfII;L+1ZBI - tiB;II:H-IZAI ’ =149
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are real numbers. Furthermore they may be positive, negative and zero.

We consider relations among the subspaces of HYG, C*¢~*, M) defined
in §1. We easily see that

E' (U,G,M) = E*(U,G,M) N E® (U, G, M)
and
V—-1E: (U,G,M) = E2(U,G, M) .

According to Kra [6], «(E,_,(U, G, M)) N g*(L.(U, G, M)) = {0}. Further-
more it is easily seen by Theorem C that

HYG, C% ', M) N «(E,_(U, G, M)) = {0}
and

Hi(G, C**', M) N pX(L.(U, G, M) = {0} .

THEOREM 4. Let G be the same group as in Theorem 1. Then
1) dimg (HYG,C**', M) N Hi(G,C* ', M)) =29 — D9 —D,q=2
(@) dimg E2(U,G,M) = (29 — D(g — 1)
3 dimg E2(U,G, M) = 2¢ — 1)(g — 1),

where dimp H means the dimension of H over R.

THEOREM 5. Let G be the same group as in Theorem 1. Then
1) D¥'EX,(U,G)=BXMU,G)
2) D" 'E2 (U,G) = BXU,G).

3. Lemmas.

In this section we state some lemmas which are necessary to prove

the theorems in §2. Especially Lemmas 1 and 3 play essential roles in
the proof of Theorems 1,2 and 3. For each A = (g’ Z) e G, we denote

by A(z) = (az + b)/(cz + d). We set n =2q — 2, ¢ =1 being an integer,
once and for all.

LEMMA 1. (see Sato [8]). For AeQG,

M(A) = IACM@A) T, .

LEMMA 2. The determinant of matriz (M(A) — I,,,) ts zero, that is
det (M(A) — I,,,,) = 0 for any A.
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Proof. At first we remark the following. Let B be a Mobius trans-
formation. Set C = BAB~'. Then det (M(A4) — I,,,,) = det (M(C) — I,,).
Hence it suffices to show the lemma in the following special cases.

(1) Let A be hypabolic. We set 4 = (g{ KO_I), K >1. Then

Kn
Kne 0

M(A) =

K-J
Thus det (M(4) — I,,,,) = 0.
zi/m
(2) Let A be elliptic. We set A = (60 e_(,?i,,,,)), m = 2 being an
integer. Then by the same way as above, we easily see that det (M(4)
- In+l) = 0.
(3) Let A be parabolic. We set A = ((1) i) Then all elements in

the first column of the matrix (M(A) — I,,,) are zero. Hence det (M(A)
—I,,) = 0. Our proof is now complete.

LEMMA 3. Let B — (g 2) od—1 =1, a,b%0,decR Set M®B)
= (bij)i,j=1,..-,n+1- Then bqq x 1.

Proof. Since b,, — 1 is the coefficient of 277! in the expression
(az + D)0z + )7 — 217,

bqq - 1 = mCO'm.Cm(ad)m + mCImCm—l(a/d)m_lbz + o0+ mCm—1mCl(a/d)(b2)m—-1
+ mCmmC()(bz)m - ]- ’

where m = q — 1. Since ad = b* + 1,

bgg — 1 = ,C0* + D™ + ,CHD* + )™ + - + ,C%_ (B + Db2m—V
+ LC20*™ — 1.,

Now we set b? =« > 0. Then the quantity b,, — 1 is positive whenever
x is positive. Hence there is no b = 0 such that b, —1 = 0. Our proof
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is now complete.

Let A=(Ig KO_I),K>1 andB:(g Z),ad—bzzl,a,bﬂpo,deR.

We denote M(B) by M(B) = (bi)i,j-1,.c..n1-  We set
qu — (blq e bq_lqbqnq e bn+lq) ’
By = (bgy « -+ bgg_1bgqir *** bgnin)

and

[bu e blq—l b1q+1 cee bm+1

.................

B = bq—u e bq—lq—l bq-1q+1 bq—1n+1

=
<
+
)
=
S
n
+
-
(=]
i
L
(o)

g+ig+l "t bq+1n+1

.................

bn+n vt bn+1q-1 bn+1q+1 tre bn+1n+1J

We define n X n matrices M’(A) and M'(B) by setting

K" 0
Kr-?

M) = K? -1,

and
M'(B) = B, — I,
respectively. We set

Bz = (1/(bqq - 1))tquBq1 ’
B, = M'(B) — B,

and
B=B,+1, (=B, —B).

Let Ze H(G,C* ', M). If we set Z, = ay, @, ---,0a,) and Zz = (b, b,,
-+, by), then we denote Z, and Z; as Z/ = (g, Gy, +++, Qq_yy Qgy * 5 Bn)

and Z% = by, by, - -+, bgsy by, - -+, by), Tespectively, where A = (Ig Ig'l)
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andB:(g 3),K>1, ad — b =1, a, b0, deR. We define n X n

matrix D by setting
D = tﬁsl;, - ”E‘W)"li,’& ’

LEMMA 4. Let G be the same group as in Theorem 1 and let E be
a meromorphic Eichler integral such that pds,(f) =0, =1,.-.,9, where
f is a column function vector assoctated with E. Set a(f) = Z. Suppose

that A1:A=(I§ KO_I),K>1andBl=B=(g 2) ad —b*=1,a,b %0,

deR. Then
D MA) — 1)z, = MB) — 1,024, =1,---,9.
@) Zp = M'(A)'BZ,.
® A TMAT =1
4 D +'‘D="'BI! + I/B, + 'B,I!B,
(5) B\ I/B, = (—1)7,C,_beeBy
(6) Equ;/tqu = (=D"Cqoy — 2Cy_1b3y).
Proof. (1) By the assumption, Zs,=0,7=1,.--,9. We have that

Zs, = Zprrupima, = Zuys + M(B7YZa;s + M(Bj'A7)Z5, + M(B*A7'B)Z,,
= M(B;HYM(A;") — 1.,1)Zp, + M(B;'A;)YM(B)) — I,.,,)Z,, ,
so that
(M(Bj) - Iﬂ+l)ZAj = (M(A./) - Iﬂ+1)ZBj .

(2) We will show that M'(A)Z; = B,Z,. Since (M(4) — I,,,)Z5 =
MB) — I1,.)Z, by the above (1), the (q, 1)-elements of the left and right
hand sides are equal to zero and

Z bq,k+1a'lc + (bqq - 1)aq-1 ’
ko1

respectively. Hence by b,, % 1 (Lemma 3),
(i) Qg = _(ll(bqq — 1) s bq,k+1a/k .
1

k&g

The (j,1)-element (5 = q) of MB) — I,,,)Z, is
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(ii) kZO bjx10x + (bjj - l)aj—l .

kij-1

Substituting (i) into (ii), the (j,1)-element (§ = q) of (M(B) — I,,)Z, is
equal to
21 bprate + (b5 — Da;_y — (byg/(bgg — D) 35 by rais
Ic#;c-=1?q—1 ki;?-l

that is

{(bjl’ ] bj,j—l’ bj! - 1’ bj,j+1, ) bj,q-z’ qu’ Tty bj.n+1)
— 1/ (bgg — )b By} 2 -
Hence M'(A)Z, = (M'(B) — B)Z), = B.Z..
(3) We will show that I”M/(A-Y) = I A"
M(A™Y) — SAL
= I'M'(A™Y) — A (Lemma 4(2))
= M(A — WAL = (M(A™) — AN, .

Since

M/(A-Y) = I'(A) = K?—1 ,

K* — 1)
we have the desired result.
4 D+'D
~ ~ N ~
= 'B,I;) — 'B!M'(A)~'I)/B, + I,)B; — 'B,I;/M’'(A)™'B,
= BI/ + I/B, — ‘B ITA)"I! — I/M'(A)™)B,
= 'BI” + I/B, — '‘B,I/(M'(A~)~' — M'(A)™")B, (Lemma 4(3)).

After a slight computation we have
MAHY? —MA) = —I,.
Hence D + D = ‘B + 1B, + ‘B,I/B,.
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(5) By Lemma 1, ‘M(B)L,,,M(B) = I,,. The (q,j)-elements (j % q)
of the left and right hand sides are equal to >3, (—1)*,Cibn,1-2,qDks1.s
and 0, respectively. Hence

kZ}o (—l)knckbnn-k,qbkn.j = (_‘1)qncq—1bquqj ’

kiq-1

(j=11"”q_"‘ 1,Q+ 1,"',’ﬂ+ 1)
The left hand side is the (1, j)-element of B, I”/B, and the right hand side
is the (1, 7)-element of (—1)?,C,_,b,,B:.

(6) By Lemma 1, ‘Z%)I;HM(B) =1I,,,. The (g, ¢)-elements of the
right and left hand sides are equal to (—1)*',C,_, and

,;E)(—l)knckbnﬂ-lc,qbkﬂ,q = B?'qu;/tqu +‘ (_1)q_lncq-1b§q ’

respectively. Thus we have the desired result. Our proof is now com-
plete.

LEMMA 5. (1) Let Ze HyG,C*',M). Let I' ={CAC'|AeG, C:
Mobius transformation}. If Z% = M(C)Z,4 A, = CAC™, for all Ac@G,
then Z* ¢ HY(I", C*', M).

() For A, = CAC™ and B, = CAC™},

Tl B, — Dl B, = gD Dy — gl 2
and

Gkl T, — Dl 2, = Dyl Zy — Bpll B -

Proof. (1) is easily seen by the simple computation.
(2) We only show the first identity.

25l (IE, — D%l 2,
= tZ?A—xc—llﬁza,xZch-z - tZgB—IC—II;+1ZgAC—1
= 12, O, M(C) 2 — 25t MO, M(C)Z 4
=LA Zy— L, 2, (Lemma 1).

Our proof is now complete.

Let EcE,_U,®). Set D“'E = ¢eB,(U,QR), Pot(¢)() = E\(2) €E,_,
(L,G) and E,(?) = E\(®),2¢U. We set D 'E, = ¢, and D*'E, = ¢,
Then we have
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LEMMA 6. (Bers [3], see Kra [6]).
¢ () = ¢(2) and c,E,—Ecll,,,
where ¢, = (—1)77'(2q — 2) 1.

4. Proof of Theorems.

Proof of Theorem 1. (1) At first let ¢ = 2. Let Z ¢ HY(G, C¥, M).
By Lemma 4(1), (M(B,)) — In,)Z4, = MA) — I,,)Zs, (G=1,--+,9). By
Lemma 5(1), we may normalize that A; = (I({) KO_1>, K>1and B; =

(% Z) ad— b =1,0a,b%0,deR, foreach j=1,---,9. Set Z,, = ar,

@y, -5 0p) and Zp, = by, by, - -+, by), n = 29 — 2. We show that if we give
(2¢ — 1) complex numbers @y, @, -+ -, Gg_sy Gy * * +, Oy bg_;, then we uniquely
determine by, by, - -+, b4 3, bgy <+, Dnyaq_;.  We see that

(K* — 1 0 3
Km?* —1

MA)—-1I,.,=

{ 0 K — 1)

Set M(By) — Inyi = (0ie,jo1eensr — Inyr. Since (M(By) —In,)Z 4, = (M(A))
—I.,))Z5, and by, = 1, we can uniquely determine a,_; by aya,, <+, 05,

Oy *++»0y. Then by, by, ---,b4.5,bg, - -+, b, are also uniquely determined.
Especially, we consider about Z,, and Zp. Set Z,, = “(ag, -, ag)
and Zp, = “(bg, -, bgn). From coboundary property, we normalize that

Qgos ** * 5 Og,qozs Qgqs * * *» Gg,n @NA b, ., are all zero. Then by a similar way
as above we conclude that by, -+, b,,4-2 05,45 - = *» Dy ons @y, are all zero.
Hence Z,, = Z5, = 0. Thus we conclude that

dime Hy(G,C*, M) = 2¢ - D(g — 1) .

Next let ¢ = 1. Then for any Z < HY(G,C,M), we easily see that
Zs,=0,j=1,---,9. Hence HYG,C,M) = HyG,C,M). Thus dim;H}
(G,C, M) = 2g.

(2) We will show that Hi(G,C*', M) is isomorphic to B,(U,G).
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Let ¢ B(U,G). We will show that there uniquely exists { e E,_,(U, G, M)
such that «,(f(z)) = p%(R@)), 2e U and D" 'E = ¢, where E(z) = (1/n!)
.tf(z)I;,,l(i)n, ze U, and g is a column function vector associated with c,¢.
Set Pot (§)(z) = E\(2), ze L. We set E,(2) = E\(z),2e¢ U and set E() =
¢ (?),2e€ U. Then by Lemma 6, D**"'E(2) = ¢(z). Furthermore we see
that

pds E(z) = pd, ¢, Fy(2) = pd4 cE\(Z) = pd, ¢y Pot (9)(@) , zelU.

Let § and g be column function vectors associated with the above E and
c,$, respectively. Thus we obtain that «,(j(2)) = B%(g(®) for AecG and
zeU. If we set Z = a(f) + p*(g), then we have Ze HYG, C* ', M) by
the above construction. Thus we have a. mapping from ¢e B (U, G) to
Z ¢ H(G,C*"', M) by the above way.

It is trivial that the mapping is injective and surjective. Our proof
is now complete.

Proof of Theorem 2. By Kra’s decomposition theorem (Kra [6]),
Z = a(f) + p*(g) with fe E,_(U,G,M) and ge L.(U, G, M). We set a(f) =X
and p*(@) =Y. Then geE,_,(L,G,M). We set () = g(®),2¢U. Then
* e E_(U,G,M) and X% = Y,, A e G, where X% = a,(j*()). We define ¢
and ¢* by setting

Dw~l(1/n!)tf(z)lzﬂ(i)"qs(z)
and
qu-*(l/n!)tf*(z)lzﬂ(i)" = $*(2) ,

respectively. Then

Z,2) =0X +Y,X+Y)=0X,X) + 0X,Y) + 0¥, X) + 0(,7)
= 0(X,X) 4+ 0(X, X*) 4+ 0(X*,X) + O(X*, X*) .

Since #(X, X) = #(X*,X*) = 0 (Theorem A) and O(X*, X) = —d(X, X*)
=24/ —1(—=1)2"Y (¢, ¢*) (Corollary 2 to Theorem 1 in [8]), we have &(Z, Z) = 0.
By Theorem B,

0Z,2) =0 X+ Y,X+7Y)=0X,X) + 0X,Y) + 0(7,X) + &Y,Y)
= 0(X, X) + 0(X, X*) + O(X*, X) + 0(X*, X*)
= 2/ =1(=D¥ g} — 2/ =T(=D)7" || g*| .
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Hence v —10(Z, Z) is a real number.

Next let Ze¢ H(U,G,M). Then Y, = X,,AcG. Hence X% =X,
A eG, so that ¢ = ¢*. Hence we have the desired result. Our proof is
now complete.

Proof of Theorem 3. (1) In the case of ¢ = 1, it is trivial, so that

we only show the case of ¢ = 2. We may normalize that A; = (I({) KO_I),

K>1and B, = (g S) ad —b'=1,0,b%0,decR For the sake of
brevity we consider A and B instead of A; and B,, respectively. Set
Z4 =y, -+ ,0,) and Zg= by, by, ---,b,). Let M(A), M(B), M'(A),
M'(B) and I} be the same as defined in §2. Set Z, = “(ay, + -+, Gg_s Qs
<oy y) and Z4 = by, 53 b4 0 bgy 05 D).

At first we show that if tZ,I/M/(A-YZ, = *Z,I'M'(A)Z}, then
7yl Ty =750, Z,. For, since

MA) — I,,)Zp = M(B) — 1,,)Z,,
we have that

—t G iy By + Ly, Dy
=70, MA)Zy — 7,1, MBZ, (by Lemma 1)
= 2y M@, 24 — 2,1, MB)Z,
=7l MANZ, —tZ,I,, MB)Z, (by Lemma 1)
Zoly MANZ, — gl 7y — Ll M(A)D g + 2yl 2y
= Zpl (MA™) — 1,024 — 2yl (M(A) — I,,)Z5 .

I

N+ 1

Since the elements of the ¢-th rows and the ¢-th column of the matrices
M@AY —1,,,) and (M(A) — I,,,) are all zero, we obtain that if ‘Z~§,I;,’M’
(A2, = tZ,LI'M'(A)Z}, then

2ol (MA™ — 1,024 = 2,1, (MQA) — 1,,)Z; .

Let B, B,,, By, B,, B; and B be the same as defined in §2. Then since
M) - I,,)Zp = (MB) — I,,)Z,, by Lemma 4(2)

Zy = M'(A)'B,Z", .

If we substitute 7, = M’(A)"'B,Z/, in ‘Z~;;I;’M’(A"1)Zf4 — 701" M'(A)ZY, then
we have by using Lemma 4(8) that
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ZB{ITTA) I M (A — HITA) I M(A)M(A) "B} Z,
= Z Bl — WA I/BYZ, .
If we set
D = ‘BJ; — ‘B ITA) /B, ,
then
‘D = I/B, — ‘B,J"M'(A)"'B, .
By Lemma 4(4),
D + D =B/ + I/B, + ‘BB, .

If D+ D =0,,, then ‘Z;I;’M'(A‘I)Zg = ‘Zgl;’M'(A)Zg, where 0, , is
a 7 X n matrix whose elements are all zero. For

Zol!M(AZ!, — Zel M (A)Z,
= t7,DZ, = 'Z!DZ, = (1/2)0'Z(D + D)Z, =0 .
Now we will show that D + ‘D = 0,,,. Since
‘BI'B — I} = ('B; + I)I)(B, + I,) — I/
='BI} + I''B, + 'BI/B; = D + D ,
it suffices to show that ‘BI”B = I”. Since ‘A%)I;HM(B) = I, (Lemma
D),
‘BI'B, + (—1)*,C, ‘BB, = I .
On the other hand, !BI/B = I’ is equivalent to
‘BI'B, — 'B,I'B, — ‘BI/B, + ‘B,I/B, = I/ .
Hence if we show that
‘B,I”B, + ‘BI'B, = ‘B,I'B, — (—1)*"%,C,_'B,.B,, ,
we have 'BI/B = I.
By Lemma 4(5),
B, B, = (—1)%,C,_,byyBy »
so that

tB‘xI;”qu = (—1)qn0q-1bqqt§q1 .
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Thus

‘B,I/B, + ‘B.I/B, = (1/(bgg — V)(By.B\I//B, + ‘B.I'B\By)
= 2("‘l)anq—lbqqtéqlBln/(bqq - 1) .

On the other hand

lEZI;,Bz - (—1)q_1’an-—ll§qqul
= (1/(bgq — VBB, !B, By — (—1)*,Cy_,'By,By,
= (=D (—=,Cy_1b%, + 1Cy_)'ByByi [ (byg — 1)
— (=1 ,C,_'B,B, (Lemma 4(6)) .

Hence

‘B,I!/B, — (—1)*7,C,_'B,,B,,
(=D (—2Cyibly + 1Caod) = (=D 'Cqrlbgg — V* 15
q1Dq1
(bqq - 1)2
= 2(_1)anq—1bqthq1Bql/(bqll - 1) .

Hence we obtain that
‘B,I'B, + 'BI/B, = 'B,I'B, — ,C,_'B,B,, .
(2) Let q =2. By the same method as in the above proof, we have
D + t'h =0,, From this we will show that v—1(Z syl Zs, —
‘Z:BJ_J; nZy4) are real numbers, that is, that Jl_l(‘ZzgfI;’M’(A;‘)Zg, —_

tZ sl M'(AZ5) are real numbers. We consider A and B instead of A4;
and B;, respectively. Set

D = (dij)i,j=1,...,'n .
By the same method as in the above proof, we have that
ol M(ANZ, — ol M(A)Z,

o~ qg—2 q—2 n
= Zp7, =5 an_k<jZ:odk+1,j+1aj +3 d“l,jaj)
= = J=q

+
[Ms

q—-2 n
an_k(kz e gy + 25 dkja’l)
=0 i=q

)
|
[
P
o
PR

l

g—2 n
dlc+1,j+1a'ja/n—k + kZ Z dk+1.1a1an—k
=qj=q

b
[

o

.
i

j=0

=
|
X

n

n
i, 11000y + kZ 25 Qg0 B
=qJ=q

+
M=

E
il
Q
<,
I

o
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-2

Q
1)
»Q

Il

g-2q-
dlc+1j+1a'jan k ZZ n—k,n—j0n_j0g
%=07=0

'
[

0

2 n n
+ (1/2>(ZO; a1 10 s ; Qo b )

+ (1/2)(2 z Qagilin s + | z d,,_k,,,_man_,ak)

.|
[
o

&M]

3

k=q j= j=q

g-2q— g—2q-2

Z=: Z=: k1, 1@ 0n_x + Z Z d,_ Jon—k0n_x @
q=—2 n -2 n

/2)(2 Z: dk+1 ja/jan k + Z Z n— j+1,n-kan—kaj)

k=0 j=¢q k=0 j=¢q
n gq-2 q=-2 n

+ (1/2)<Z= ZJ %, d+1000n Z Z gtk kaj)

q-2q-2 q-2q-2

= Qieit,101038n v — 23 20 eyt g 110n 285

k=07=0 k=07=0
q=2 n q-2 n

+ WD 3 et s — 5 3 dunsn oty)
k=07=q k=07=¢
n g—-2 n q—=2

+ (1/2)(2 dk j+1a’jan k Z dk,j+1dja/n-k)
k=q j=0 k=q j=0
-2q q-2 n

=2/ - { OZO Q1,501 IM(@80_) + kZ.:)Z Aiir,5 1M (0,00 _1)

7 =0j=q

+

k

n g-2
:L: i, 541 Im (0@, k)}
= =
Hence we have the desired result for the case of ¢ = 2.
Let ¢ =1. Then
Zaily By — Z il T = — 24T+ ZuZs =2/ —11Im (Z,Z,) .

Next we show some examples. Let ¢ =2. Let

A= (Ig K_1>,K>landB (Z Z>,ad—b2:1,a,bﬂ;0,deR. Set

ay b,
Z, = (al) and Zz= (bl) .
a, b,

Then since Ze HYG,C®, M), we have that a, = —(1/2b)(aa, + da,), b, =

—(1/(K* — )a, + a,) and b, = (K*/(K* — 1))(a, + @,). By these identi-
ties,

0 (AR
= ((K* + D/(K* — 1)@, — @, + (@/b)@b, — b,ay)
+ (d/b)@;b, — bya,) .
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Set ay =1,>0,b, = e and a,=1r, > 0, 7,7, > 0, 7,0 e R. Then
V=ACZ Ly — 17
= 2r{(a/b)r, + (d/D)r,} siné .

If ab > 0, then
~ = >0 @ =r/2)
N=10Z , JZ y — tZ 5 I\Z
(A 3B B 3A)<0 (0:_7):/2)

If ab < 0, then

>0 (= —n/2

N=1C¢Z L7, — ' 717
( a-lzlip B3A) <0 (0=7r/2).

Let 6 = 0. Then
v _1(t§A—lI;ZB - ':Z:B—II;HAZA) =0.

We remark that by the proof of Theorem 1(1), we may choose 7,
7,7, and @ arbitrary real numbers. Our proof is now complete.

Remark. By the above theorem, we see that even if Z, are real for
all AeG, we cannot conclude that Z, = 0. In this case Theorem C
does not hold.

Proof of Theorem 4. (1) We give (29 — 1)(g — 1) real numbers
Gjos * 3 Opgmm Bigs ** =3 Qyns Og gy (G=1,---,9 —1). Then we will show
that there uniquely exists {e E™ (U, G, M) such that
xAj = z(aj(ly cery (g Ky Qjgy 00y a’jn)
and
Xp, = By ooy %,y bj,q—u*v ceey k),

where a,(f) =X, =2, + v—1y, for AecG. Since (M(A,) — I,,)%3, =
(M(Bj) — I,,)x4; we uniquely determine x,,%z, - -,%4,_,, %5, Dy the
same method as in the proof of Theorem 1(1). By coboundary property
and xg, = 0, we may set x,, = 23, = 0,,,. By Theorem C, there uniquely
exists fe E* (U, G, M) such that Re a,(f) = x, for AeG.

We set E(z) = (l/n!)‘f(z)I;H(;)n, 2eU. Then EcE"(U,G). Set

D*7'E(z) = ¢(z) € B,(U, G) and Pot (c,4)(2) = E\(2), 2z L. Set E(2) = K\(2),
2e U. Then by Lemma 6, we have that ¥ — E,e Il,,_,. Noting that
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pd, B@) = (1/n !)ta’i&(’z))mm)-v:m(i ) . zeU

and

pd, Pot ()@ = (U/n VEEGEMA Ln(2) ) zeL,

we have that «,(f(2)) = p%(@®)) for AeG and ze U, where g(2) is a
column function vector associated with c,4, We set Z = a(f) + p*(g).
Then by the above thing, Z e HX{G,C* ', M). Noting that Z, = 2z, for
A e @, by the above construction, we easily see that Z ¢ HY(G, C*!, M).
Hence Z ¢ HY(G, C*', M) N HXG, C* ', M).

(2) and (3) are proved by a similar method as in the first half -of
the above proof. Our proof is now complete.

Proof of Theorem 5. (1) At first we remark the following. Let
EcE_, (U,G) and ¢ B,(U,G). Let { and g be column function vectors
associated with E and ¢, respectively. Then pds, f =0 if and only if
pds, £ = 0 and pdgs,g = 0 if and only if pds, Pot (¢) = 0.

Let E e E®((U,G) and let { be a column function vector associated
with E such that Reas() =0,7=1,-.-,9. Set ¢ = D*"'EeB(U,G).
We will show that ¢eBJU,G). Set E.(2) = Pot(¢)(),zeL. Then
E. ¢E _(L,G). Set Ef(?) =E,(2),2¢U. Then E,cE,_,(U,G). Then by
Lemma 6, cEy(2) — E(2)€ [[y-2 2€U. Since Reas(f(2)) =0, zeU,
Re p%(a(2)) = Re ¢;'as,(f(®) = Re ¢;'as(f(2)) = 0, z € L, where g is a column
function vector associated with ¢. Hence ¢ BI*(U,G). Thus D 'E,
-(U,® < B, Q).

Conversely, we assume that ¢ € B*(U, G) and g be a column function
vector associated with ¢. Then there exists feE,_,(U,G) such that
Du-'f = ¢. We will show that E ¢ E* (U, G), where E is a representa-
tive of f. We construct E, and E, from ¢ as above, and define E(z) by
setting F(z) = ¢, F,(2), 2€¢ U. Then by Lemma 6, D*'E(2) = ¢(z). Since
Rep#,(a(2)) = 0, ze L, Re s (1(2)) = Re ¢,6%,(3() = Re ¢,8f,(3(®) =0, ze U,
where { is a column function vector associated with E. Hence
D 'E™ (U,G) D B (U,®). Thus D*'EX (U, G) = B*M(U, G).

(2) is similarly proved as above. OQur proof is now complete.

Appendix. We will represent by means of matrices the period rela-
tion and inequalities obtained by Sato [8]. At first we introduce some
notations. Let I” be a finitely generated Kleinian group and 4 be a
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simply connected component of the region of discontinuity of I. Let
e =dim¢E,_,(4,,I") and let K, ---,E, a basis of E,_,(4,,I"), where 4, =
Waer Ad). Set pdy,§; = X%, and pdp,f; = X}, where f; are column func-
tion vectors associated with E; i =1,.--,¢). We define Q[4,,---,4,,
B,,---,B,1,% and M(A,,---,A,,B,,---,B,) as follows.

..........

f

Q[Aly . "Ag,Bv ° "’Bg]

..........

""I;z+1 1
0 | 1,
_I;z+1 0
Yo = —I;Hl 0
e ) 1
0 I;l:+1 e
0
I, o
- J lH ,
and
(M(A)
' 0
M(Al’ ""AO’BU ""Bg) = M(Aq) M(B)
1
0 M(B,)]

Let G be a Fuchsian group of the first kind generated by {A,, B,
-++,A,, B} with a relation [[9.,Bj;'A;'B;A; =1, Let f,,---,f, be a
basis of E,_,(U,G) and E,, -.-,FE, representatives of f,,---,f., respec-
tively. Let {; be column function vectors associated with £/, ( =1, .- -, e).
Set D**'E; = ¢;e B,(U,G) and pd;{; =X, AeG(GF=1,.---,e). Then we
have the following.
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THEOREM A’. Let G be as in Theorem A. Then
QAT - AL B, -+ By g RlA,, -+, Ay, By, - -+, B,]
+ QA - Ay B -, B e M(Ay, -+ A AL AY)
QITy -y Tyoyy Ty -+ Tyoi]
+ tQLADY, - AL By, -, Bly.M@B,, -+ +,B,,B,, -+, B,)
elr, .-+, T, T,y -+, T,]

- 0n+1.n+\ .

THEOREM B’. Let G be as in Theorem B. Then

P = {(—1)¢/2}{¢Q[A;, - -, A7, B, -+« By QA,, - -+, A, By, - -+, B,
+ QA -, Ay B - By M(Ay, - -+, Ay, Ay, - )
ATy, -+ Tysy Toy -5 Tys]
+ t0[A, e A;4, B, -, By MB,, ---,B,, By, -+, B,)
Ty, -+, Tyy Ty, - -+, Tol}

s positive definite, that is, this means if we set P;; = (—1)771/24/—1)
'@(Xi, Xj), then Zi:f CiP,;jCj g 0.

Let I, be a subgroup of I' which leaves 4 invariant and which is
generated by {4,, ---,A4,,B,, - - -, B;} with a relation [[9., B;j'A;'B;A4; = 1.

THEOREM D (Theorem 1 in [8]). Let I' and I', be as defined above.
Let feE _,4,1), and E o representative of f and let { be a column
function vector associated with E. Set D 'E =¢,q=2 and pd,|= X,
Ael,. Let yveB,4,I'). Let g be a column function vector associated

with ¥ and set ©) = I, 8%). Set pd,® = Q,, AcTI',. Then

¢ g
21 Q4 [XA,—ls;lA,Tj~1 — Xy, 1+ ZII‘QBfl[XB,AjT/_I — XA;‘BIA,T,-_I]
=

=1

=2 !(g,V) .

By using Lemma 1, we can rewrite the above identity as follows.
g Y]
]_Zzl[tQA,XB, — Qp,X 4] + jg;lt(QAj_l — Qp)MMANX,, ,
+ Z‘-’;lt(QA, ~ Qa;)MB)X,, = 2in! (4, ) .
=

Now fy, - -+, f. be a basis of E,_,(4,,I") and E,, - .-, E, representatives
of f,---,f. respectively. Let {; be column function vectors associated
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with E,(j=1,---,e) and set pd,f, = X4,Ael', and D*'E; = ¢,. Let
Yy, + -y, be a basis of B,(4,I'), where b = dim¢ B,(4,I"). Let g; be
column function vectors associated with v;(j =1, ---,b), and set ©,(2)

—I,,,5,). Set pd,®, = Q% AeTI'. Then we have the following

THEOREM D’.

tQ*[Ay, -+, Ay By, -+, BJy*QlA,, -+, Agy By, - -+, B,
+ QA - AL By, -, B M(A,, - Ay Ay -, AY)
QT -+, Ty, Top -+ Ty_i]
+ 4*[A,, -+, Ay By, -+, By ly*M(B,, -+, By, By, - - -, By)
AT, -+, T,y Ty -+, Tyl
(G5 V) (Bas V)« -+ (Ges V1)
(B1s V) (Pos V) =+ (es V)

..............

(¢1’ \!’b)(¢2a \!’b) A (¢e’ \I’b)

=21in!

’

where
o 0 )
o
In+1
R I N A——
I, 0
0
_In+1§
0
and
(OL N2 b )
L@ - QY
* 2 Q% - Q4
Q[Al,...’Ag,Bl,...,Bq]z 40t da ba
BB, " By
Q3,03 - -+ Q%)

https://doi.org/10.1017/50027763000016512 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016512

26 HIROKI SATO

REFERENCES

[1] L. V. Ahlfors, Finitely generated Kleinian groups, Amer. J. Math., 86 (1964),
413-429 and 87 (1965), 7569. MR 29 #4890; MR 31 #4906.

[2] ——, The structure of a finitely generated Kleinian group, Acta Math., 122
(1969), 1-17. MR 38 #6063.

[ 3] L. Bers, Inequalities for finitely generated Kleinian groups, J. Anal. Math., 18
(1967), 23-41. MR 37 #5358.

[ 4] ——, Eichler integrals with singularities. Acta Math., 127 (1971), 11-22, MR
42 #6224,

[ 5] M. Eichler, Eine Verallgemeinerung der Abelschen Integrale, Math. Z., 67 (1957),
267-298. MR 19, 740.

[6] I. Kra, On cohomology of Kleinian groups, Ann. of Math., 89 (1969), 533-556.
MR 41 #8656a.

[7] ——, On cohomology of Kleinian groups, II, Ann. of Math., 90 (1969), 575-589.
MR 41 #8656b.

[ 8] H. Sato, The periods of Eichler integrals for Kleinian groups, Trans. Amer. Math.
Soc., 184 (1973), 439-456.

[ 91 G. Shimura, Sur les intégrales attachées aux formes automorphes, Jour. Math.
Soec. of Japan, 11 (1959), 291-311. MR 22 #11126.

Department of Mathematics
Shizuoka University

https://doi.org/10.1017/50027763000016512 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016512



