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1 Description of the Flow

The most complete mathematical formulation for the dynamics of a Newtonian 
fluid is unquestionably the Navier– Stokes equations, which account for all pos-
sible effects, i.e., compressibility, viscosity, and vorticity. Indeed, the Navier– Stokes 
equations are the most complete tool for describing the flow, and a vast literature exists 
dealing with and employing them in fluid mechanics, while several emblematic per-
sonalities dedicated their careers to this task (e.g., Batchelor, 1967). Navier– Stokes 
equations can be simplified under certain assumptions; i.e., neglecting viscosity, 
we arrive at the Euler equations. Further, eliminating terms that govern vorticity, a 
flow pattern governed by the celebrated Laplace domain may be obtained, in par-
ticular by the Laplace equation that assumes the flow of an ideal fluid, which in 
addition allows the engagement of the potential flow theory. A question that should 
be answered regarding the employment of the Laplace domain in marine hydrody-
namics is, simply: Why potential flow theory? The answer is similarly simple: we 
do not need to complicate things when the flow field can indeed be described by 
the dynamics of an ideal fluid such as in the open ocean, where the liquid can be 
accurately assumed to be incompressible and inviscid and the flow irrotational. In 
addition, the Laplace equation is a relatively simple formula while potential flow 
theory is the most robust tool for formulating the dynamics of the free surface. 
Admittedly, when using more mathematically complete formulations one faces 
enormous difficulties in attempting to describe accurately the behavior of the free 
surface. That eventually impacts the way the free surface is formulated (by panels 
in boundary element methods, or by finite volumes in Navier– Stokes solvers) and 
accordingly the time required for computations.

The final goal of the text flow in this chapter is to derive the generic forms of 
most common boundary value problems in hydrodynamics, which are actually 
fluid– structure interaction problems. In other words, we are seeking the mathe-
matical system that fully describes the flow field assuming a solid within it. The 
basic three- dimensional hydrodynamic problem, which differentiates it from similar 
problems in fluid mechanics, should account for given facts, i.e., the existence of the 
free surface, the existence of the impermeable bottom in shallow water cases, the 
behavior of the flow at infinity, and apparently the existence of the solid(s).

Toward the final goal one should start from the very beginning, namely from 
the very basic and complete mathematical formulation. To this end, the Eulerian 
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approach is followed to derive the Navier– Stokes and Euler equations, which are 
accordingly simplified, and under the assumptions of an ideal fluid and potential 
flow theory the Laplace domain is established. The basic three- dimensional hydro-
dynamic boundary value problem is accordingly defined and elaborated by the 
Stokes perturbations and Taylor expansion for the kinematics and the dynamics of 
the free surface. The main task in hydrodynamics is the calculation of the forces and 
the motions of the solid that exists within the reference volume of liquid. Motions 
are not an issue of concern here but the hydrodynamic parameters that affect them, 
added mass and hydrodynamic damping coefficients, are indeed considered. The 
same holds for the loading components. In this chapter only the general formulae 
are provided, which are accordingly used in the following chapters for more ana-
lytic elaboration. Potential flow problems are typically governed by the Green’s 
functions. To this end the last section of this chapter is dedicated to the famous 
Green’s theorem.

1.1 The Laplace Domain

The Laplace equation is derived from the equation of continuity provided that 
(1)  the fluid is incompressible and (2)  inviscid, and (3)  the flow is irrotational. 
Incompressibility refers to the property of the fluid to maintain its density constant 
within an infinitesimal volume that moves with flow velocity. An inviscid fluid, on 
the other hand, is a fluid with zero viscosity, namely the term (property) of the 
fluid that quantifies the resistance of the fluid to its gradual deformation by shear 
stresses. Finally, irrotational flow assumes that individual parcels of infinitesimal 
volume of an incompressible fluid cannot be caused to rotate. In other words, the 
fluid is assumed to be frictionless with no shear stresses applied on the mutual 
surfaces of adjacent parcels of the fluid.

Properties (1)– (3) are precisely the assumptions taken to formulate large- scale 
flows of liquid, namely water flows in vast volumes, just like in the open ocean, 
or in other words, in a marine environment. The Laplace domain has numerous 
applications in various disciplines of modern science, such as electromagnetics, 
acoustics, optics, electrostatics, imaging, hydrodynamics, and others. In hydrody-
namics, however, the situation is complicated to a major extent by the existence of 
the free surface and subsequently by the associated boundary conditions that must 
be satisfied. In fact, the free surface, namely the boundary surface where the water 
meets the air, is what makes hydrodynamics difficult and challenging, but at the 
same time, a fascinating discipline.

The Laplace equation in hydrodynamics is associated with the so- called velocity 
potential, a scalar function, the gradient of which provides the velocity field as well 
as the pressure at any point of the volume of reference. Having defined the velocity 
field by the gradient of the velocity potential, the Laplace equation immediately 
follows from the mass conservation law (or the equation of continuity). Knowing 
the velocity potential, one may derive all dynamic parameters associated with the 
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concerned hydrodynamic problem, namely, velocities, pressures, and accordingly 
hydrodynamic loads. All these, however, require the solution of relevant boundary 
value problems in which the boundary conditions on the free surface are of para-
mount importance for free- surface flows.

Describing the flow of a fluid through the Laplace equation is admittedly a  
simplification that leads inevitably to the assumption of an ideal fluid. This sim-
plification, however, is a valid approach for large- scale flows in a marine environ-
ment, as has been proven beyond any doubt over the past decades. The reason is 
simple: in the open ocean the fluid (liquid) is water, and water is practically incom-
pressible, nearly inviscid, while with a large degree of accuracy the flow is irrota-
tional. In addition, use of potential theory (even nonlinear potential theory) allows 
the employment of analytical approaches that accordingly enable the derivation of 
robust analytical (or semianalytical) closed- form solutions. That advantage is pro-
vided by the separable solutions of the Laplace equation using the method of the 
separation of variables in various coordinate systems (Moon and Spencer, 1971), 
yielding expressions in the form of eigenfunction expansions.

It should be acknowledged, however, that all Newtonian fluids, such as water, 
are literally viscous. Therefore, for the completeness of the presentation, we derive 
in the following sections the more general formulations of the flow for Newtonian 
fluids, namely the Euler and the Navier– Stokes equations and eventually we focus 
on the flow of the ideal fluid. The analysis starts with the transport theorem, which 
is discussed in the section immediately following.

1.2 The Transport Theorem

We consider the following volume integral:

 I t f t dV
V t

( ) = ( )∫
( )

,x  (1.1)

where f tx,( )  is an arbitrary differentiable scalar function of position x  and time t .  
The integral is taken over the given volume V t( ) , which changes with time. The 
surface S  that contains V t( )  is also a function of time and we assume that it has 
a normal velocity equal to Un . Let us further take the same volume integral at the 
time instant t t+ ∆ .  The change in integral ∆I  is thus written as

 ∆ ∆ ∆
∆

I I t t I t f t t dV f t dV
V t t V t

= +( ) − ( ) = +( ) − ( )
+( ) ( )
∫ ∫x, ,x  (1.2)

Also, we expand f t tx, +( )∆  in a Taylor series in t to obtain

 f t t f t t
f t

t
t

f t

t
x x

x x
, ,

, ,
+( ) = ( ) +

∂ ( )
∂

+ ( ) ∂ ( )
∂

+…∆ ∆ ∆
1
2

2
2

2
 (1.3)
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In the following, the function f tx,( )  is denoted simply by f . Retaining terms up 

to O t∆( )





2
, (1.2) becomes

 ∆ ∆
∆

I f t
f
t

dV f dV
V t t V t

= +
∂
∂







−
+( ) ( )
∫ ∫  (1.4)

In order to simplify further the change of the volume integral ∆I , we assume 
that V t t+( )∆  is composed of the volume V t( ) and an infinitesimal volume 
∆V  that is contained between the adjacent surfaces S t t+( )∆  and S t( ), i.e., 
V t t V t V t+( ) = ( ) +∆ ∆ ( ). Hence, (1.4) is expanded in the following manner:

 ∆ ∆ ∆
∆ ∆

I f t
f
t

dV f dV f dV t
V t V t V t V t V t

= +
∂
∂







− = +
∂

( )+ ( ) ( ) ( )
∫ ∫ ∫ ∫

( )

ff
t

dV O t
∂

+ ( )



∆ 2
 (1.5)

and it is understood that the O t∆( )





2
 terms also contain terms of O t V t∆ ∆ ( )[ ].

To evaluate the integral over ∆V t( ) we need to consider the infinitesimal distance 
between S t t+( )∆  and S t( ) that is equal to the thickness of the small region ∆V t( ). 
This thickness is the normal component of the distance traveled by S t( ) in time ∆t,  
and is equal to the product U tn∆ . Hence, it is immediately deduced that the first 
integral in (1.5) is proportional to ∆t. In addition, given the infinitesimal thickness 
of volume ∆V t( ), we may assume that the integrand f  is constant across that thin 
region in the direction normal to S t( ). Integrating in this direction only, we obtain

 ∆ ∆ ∆ ∆I U t f dS t
f
t

dV O t
S t

n

V t

= ( ) +
∂
∂

+ ( )



∫ ∫

( )( )

2
 (1.6)

Taking the limit of ∆ ∆I t/  as ∆t → 0 yields the differential form of the transport 
theorem, namely

 
dI
dt

fU dS
f
t

dV
S t

n

V t

= +
∂
∂∫ ∫

( )( )

 (1.7)

The surface integral in (1.7) represents the transport of the quantity f  out of the 
volume V t( ) as a result of the motion of the boundary.

1.3 Shear Stresses in Fluid Particles: The Eulerian Approach

Let us now assume a flow field in which the velocity of the fluid particles is defined 
by the velocity vector U = ( ) = ( )u v w u u u, , , ,1 2 3 , where u, v, and w  (or u u u1 2 3, , , respec-
tively) are the velocity components in the three directions of the Cartesian frame 
of reference x y z x x x, , ( , , )( ) = 1 2 3 . The density of the fluid is assumed to be constant 
and equal to ρ, while the fluid particles are subjected to the external force vector F 
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that is composed of the gravitational force and the surface stresses, or force per unit 
area, which act on adjacent surfaces of the fluid (Figure 1.1).

We note that each surface stress should be defined by both its direction and the 
orientation of the surface of the fluid particle on which it is acting. For the cubical 
parcel of Figure 1.1 in particular, a total of 3 3 9× =  stress components must be 
defined. The origin of the Cartesian system was chosen to coincide with one of 
the corners of the cube only for display purposes. The reasoning behind the tensor 
notation is that τij acts in the direction i  and is applied on the surface of constant j ,  
with i j x y z, , , .=  Clearly, τij, i j≠  denote actual shear stresses while τii are normal 
stresses (often denoted by σi).

The definition of the stress components based on the cubical configuration of 
the fluid particles is in fact too restrictive. A more general configuration arises by 
assuming an infinitesimal volume of fluid (a fluid particle) in the shape of a tetrahe-
dron with three orthogonal faces normal to the Cartesian coordinates as shown in 
Figure 1.2. The fourth face of the tetrahedron has an arbitrary oblique orientation. 
It is assumed the tetrahedron is sufficiently small and that the stresses are effectively 
constant along each face, and since the volume will be negligible compared with 
the surface area, the surface forces will dominate the body forces. To achieve an 
equilibrium state, the forces exerted on the four faces of the tetrahedron, which are 
induced by the surface stresses, must balance. By analogy with the stress theory in 
structural mechanics, the equilibrium state is secured by Cauchy’s law according to 
which there exists a Cauchy stress tensor τ  that maps the normal to a surface to the 

traction vector acting on that surface. In particular, if  n = ( ) = ( )n n n n n nx y z, , , ,
T T

1 2 3  

denotes the unit normal vector on the oblique face (see Figure 1.2), Cauchy’s law 

implies that

 T n= ⋅τ  (1.8)

or, in Cartesian representation,

 T n n nx xx x xy y xz z= + +τ τ τ  (1.9)

 T n n ny yx x yy y yz z= + +τ τ τ  

 T n n nz zx x zy y zz z= + +τ τ τ  

Figure 1.1 Stresses acting on a cubical fluid particle.
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The stress tensor τ, which is also denoted by τij, is written as

 τ
τ τ τ
τ τ τ
τ τ τ

τ τ τ
τ τ τij

xx xy xz

yx yy yz

zx zy zz

=
















=
11 12 13

21 22 223

31 32 33

1 12 13

21 2 23

31 32 3τ τ τ

σ τ τ
τ σ τ
τ τ σ

















=















 (1.10)

Accordingly, the stress component in the ith direction, on a surface element with 

unit normal n, is given by τij j
j

n
=∑ 1

3
, which for convenience will be denoted by the 

repeating indices productτij jn i, , , .= 1 2 3
The stress tensor τij is symmetric, i.e., τ τij ji= . To demonstrate that statement, we 

assume that the cube shown in Figure 1.1 is infinitesimal, which allows assuming 
that the surface moments dominate the body moments. In addition, changes in  
the magnitude of the stresses may be neglected across the cube and a positive value 
of τzx (Figure 1.1) will cause a counterclockwise moment about the centroid. The 
moment on the opposite face will have the same sign, since the normal vector has 
the opposite sense and hence a positive τzx acts downward. Accordingly, the coun-
terclockwise moment is balanced by a clockwise moment that is developed only 
by the stress τxz that acts in the x- direction on the top and the bottom faces of the 
cube. Hence, it follows that τ τzx xz=  and accordingly τ τxy yx=  and τ τyz zy= .

1.4 Mass Conservation and Momentum Conservation

Let us now assume that V t( ), defined originally in Section 1.2, is a material volume 
of fluid that is assembled by a group of material fluid particles. Accordingly, the 
total mass of the fluid in V t( ) is given by the volume integral of density ρ  in V t( ), 

Figure 1.2 Stresses acting on the surfaces of a volume element in the shape of a tetrahedron with three 
orthogonal faces.
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while the mass conservation law requires that the total mass must be constant and 
independent of time t. Hence

 
d
dt

dV
V t( )
∫ =ρ 0 (1.11)

Further, the momentum conservation law is written as

 
d
dt

u dV n dS F dV
V t

i

S t

ij j

V t

i

( ) ( ) ( )
∫ ∫ ∫= +ρ τ  (1.12)

which implies that the sum of all forces exerted on a volume of fluid must be equal 
to the rate of change of its momentum with respect to the Newtonian frame of ref-
erence. The momentum rate of change on the left- hand side of (1.12) refers to the 
ith component of the velocity, the surface integral on the right- hand side denotes 
the sum of the stress forces in the ith direction, while the last term is the total 
external force exerted on the concerned volume of fluid, again in the ith direction. 
Clearly, Fi is the ith component of the aforementioned vector F.

The momentum conservation law can be effectively transformed in order to be 
expressed by volume integrals only. This can be achieved using the Gauss theorem 
(also known as the divergence theorem). In particular, for a vector W that is contin-
uous and differentiable in the volume V t( ) and the unit normal n that is fixed on the 
surface S surrounding V t( ) and pointing to the exterior of V t( ), the Gauss theorem 
reads in vectorial and tensorial forms:

 
V t S t V t

i

i S t

i idV dS
x

dV n dS
( ) ( ) ( ) ( )

,∫ ∫ ∫ ∫∇⋅ = ⋅
∂
∂

=W W n
W

W  (1.13)

Hence, using (1.13) the momentum conservation law (1.12) becomes

 
d
dt

u dV
x

F dV
V t

i

V t

ij

j
i

( ) ( )
∫ ∫=

∂
∂

+






ρ

τ
 (1.14)

1.5 The Equation of Continuity

Let us now consider the special case in which V t( ) is a material volume always 
composed of the same fluid particles, while the surface S t( ) in which the volume 
is contained moves with the same normal velocity as the fluid and U u nn i i= ⋅ =U n . 
Accordingly, using (1.1), (1.7), and the Gauss theorem (1.13) it follows that

 
d
dt

f dV
f
t

dV fu n dV
f
t

fu

x
V t V t S t

i i

V t

i

i( )
∫ ∫ ∫ ∫=

∂
∂

+ =
∂
∂

+
∂( )

∂


( ) ( ) ( )





 dV  (1.15)
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Returning to the mass conservation (1.11), (1.15) for f = ρ yields

 
d
dt

dV
t

u

x
dV

V t V t

i

i( )
∫ ∫=

∂
∂

+
∂( )

∂








 =

( )
ρ ρ ρ

0 (1.16)

Clearly, (1.16) should hold for an arbitrary group of fluid particles and for any 
instant of time t. Therefore the integrant itself  should be zero, resulting in

 
∂
∂

+
∂( )

∂
=

ρ ρ
t

u

x
i

i

0 (1.17)

Hence for an incompressible fluid and constant density, (1.17) yields readily the so- 
called equation of continuity, which reads

 
∂
∂

= ∇⋅ =
u
x

i

i

0 0, U  (1.18)

1.6 Euler Equations

If  the transport theorem (1.7) is applied to the momentum conservation law (1.12), 
namely using ρui instead of ρ, it follows that

 
V t

i i j

j V t

ij

j
i

u

t

u u

x
dV

x
F d

( )
∫ ∫

∂( )
∂

+
∂( )

∂













=
∂
∂

+






ρ ρ τ

( )

VV  (1.19)

or

 
V t

i i j

j

ij

j
i

u

t

u u

x x
F dV

( )
∫

∂( )
∂

+
∂( )

∂
−

∂
∂

−












=
ρ ρ τ

0 (1.20)

Again, for an arbitrary group of fluid particles and for any instant of time, (1.20) is 
satisfied if  the integrand is zero. Thus

 
∂( )

∂
+

∂( )
∂

=
∂
∂

+
ρ ρ τu

t

u u

x x
Fi i j

j

ij

j
i (1.21)

Finally, for a constant density ρ  and using the equation of continuity (1.18), (1.21) 
yields the Euler equations, i.e.,

 
∂
∂

+
∂
∂

=
∂
∂

+
u
t

u
u
x x

Fi
j

i

j

ij

j
i

1 1
ρ

τ
ρ

 (1.22)
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1.7 Stress Relations in a Newtonian Fluid

Inevitably, the stress tensor and the kinematical properties of the fluid are tightly 
correlated. Analogous correlations hold for the stress– strain relations in solid 
mechanics. Assuming that the fluid is at rest, then no shear stresses are developed 
between the fluid particles and only a normal pressure component (pressure stress) 
will exist within the fluid. With reference to Figure 1.2, it is deduced that in order 
to balance the forces acting across a small tetrahedron, the normal pressure must 
be isotropic. Given that no viscous shear was considered, the stress tensor will be 
composed only of the pressure stress, i.e.,

 τ δij ijp= −  (1.23)

By hypothesis, there are no viscous forces if  the fluid moves as a rigid mass without 
deformation, or with the velocity field

 U A B r= + ×  (1.24)

where A and B are constant vectors equal to the translational and rotational veloc-
ities and r is the position vector from the origin of the rotation. Viscous stresses 
will occur when the fluid velocity differs from (1.24) with relative motion between 
adjacent fluid particles. The simplest example is a uniform shear flow. Here, and for 
more general velocity fields, the fundamental assumption of a Newtonian fluid is 
that the stress tensor is a linear function of the nine gradients ∂ ∂u xk l/ . This ensures 
vanishing of the viscous stress components for uniform translation of the fluid. 
The rotational term in (1.24) will be stress- free provided the gradients occur only in 
the form of sums ∂ ∂ + ∂ ∂u x u xk l l k/ / . For an isotropic fluid, the values of the stress 
components must be independent of the choice of coordinates, and for flow in one 
plane there can be no shear stress in the direction normal to this plane. The most 
general linear function of the velocity gradients, consistent with these conditions 
and the requirement that τij is symmetric, is of the form

 τ µij
i

j

j

i

u
x

u

x
i j=

∂
∂

+
∂
∂







≠,  (1.25)

where µ is the viscous shear coefficient, also known as the coefficient of viscosity.
In order for τij be a tensor, the only possible addition to (1.25) for i j=  is a second 

constant times the divergence ∂ ∂u xi i/ , which vanishes for an incompressible fluid. 
Thus, the total stress tensor for an incompressible fluid is given by

 τ δ µij ij
i

j

j

i

p
u
x

u

x
= − +

∂
∂

+
∂
∂







 (1.26)

or in Cartesian representation
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∂

∂
∂
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∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂





















2

2






 (1.27)

The diagonal of the first matrix in (1.27) is occupied by the normal pressure stress. 
The second matrix is the viscous stress tensor and is proportional to the viscous shear 
coefficient µ. The diagonal elements of the second matrix are associated with the  
elongations of fluid elements. The off- diagonal elements are associated with shear 
deformations.

1.8 The Navier– Stokes Equations

Having derived the Euler equations and expressed the stress– strain relations via 
(1.25) the Navier– Stokes equations are obtained by direct substitution of (1.25) 
into (1.22). The Navier– Stokes equations express the conservation of momentum 
of a Newtonian fluid. Given that the equation of continuity requires that 

∂
∂ ∂

=
∂

∂
∂
∂

=
2

0
u

x x x

u

x
j

j j i

j

j

, the derivatives of the stress tensor will read

 
∂
∂

= −
∂
∂

+
∂

∂
∂
∂

+
∂
∂







= −

∂
∂

+
∂

∂ ∂
τ

µ µij

j i j

i

j

j

i i

i

j jx
p
x x

u
x

u

x
p
x

u
x x

2

 (1.28)

Hence, the Navier– Stokes equations are written as

 
∂
∂

+
∂
∂

= −
∂
∂

+
∂

∂ ∂
+

u
t

u
u
x

p
x

u
x x

Fi
j

i

j i

i

j j
i

1 12

ρ
ν

ρ
 (1.29)

where ν µ ρ= /  is the coefficient of the kinematic viscosity. The Navier– Stokes 
equations are often written in a vectorial form according to

 
∂
∂

+ ⋅∇( ) = − ∇ + ∇ +
U

U U U F
t

p
1 12

ρ
ν

ρ
 (1.30)

Finally, the Cartesian representation of the Navier– Stokes equations is

 
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

= −
∂
∂

+ ∇ +
u
t

u
u
x

v
u
y

w
u
z

p
x

u Fx
1 12

ρ
ν

ρ
 (1.31)

 
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

= −
∂
∂

+ ∇ +
v
t

u
v
x

v
v
y

w
v
z

p
y

v Fy
1 12

ρ
ν

ρ
 (1.32)
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∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

= −
∂
∂

+ ∇ +
w
t

u
w
x

v
w
y

w
w
z

p
z

w Fz
1 12

ρ
ν

ρ
 (1.33)

The motion of a viscous fluid with constant density and a Newtonian stress– strain 
relation is fully described by the system of partial differential equations (1.31)– 
(1.33) and the equation of continuity (1.18). Most common fluids, including water 
and air, appear to comply with the requirement of a Newtonian stress– strain rela-
tion. Exceptions occur for nonisotropic fluids, in which case the stress– strain rela-
tion is said to be “non- Newtonian.” Even in the former case, however, the solution 
of the Navier– Stokes equations raises major difficulties. Major challenges originate 
from the fact that those equations literally form a coupled nonlinear system that 
has been solved analytically only for some very simple geometrical configurations, 
principally those in which the nonlinear convective acceleration terms U U⋅∇( )  can 
be assumed to vanish (Newman, 1977).

1.9 Inviscid, Incompressible Fluid and Irrotational Flow: The Velocity 
Potential

1.9.1 Inviscid, Incompressible

Those assumptions lead to the concept of an ideal fluid and eventually to potential 
flow. Incompressibility is secured by the constant density of the fluid ρ = const. In 
addition, for a nonviscous fluid, the Navier– Stokes equations are reduced to

 
∂
∂

+
∂
∂

= −
∂
∂

+
u
t

u
u
x

p
x

Fi
j

i

j i
i

1 1
ρ ρ

 (1.34)

Further, we assume that the external force Fi is represented by only the gravitational 
force ρg (g  is the gravitational acceleration), which is directed vertically down-
ward along the z x≡ 3 coordinate. Letting the z x≡ 3 coordinate pointing upward, it 
follows that F gi = −( )0 0, , ρ . Hence (1.34) may be rewritten as

 
∂
∂

+
∂
∂

= −
∂

∂
+( )u

t
u

u
x x

p gxi
j

i

j i

1
3ρ

ρ  (1.35)

1.9.2 Irrotational Flow: The Velocity Potential

The correlation of the velocity potential with the flow field is realized through its gra-
dient, which provides the velocity vector of the fluid particles. The gain from using 
the velocity potential is that instead of three components (namely the velocities in 
all directions of the three- dimensional space) only one is needed, which apparently 
depends on the three spatial coordinates and the time. Further, although the veloc-
ities have an obvious physical meaning, the potential is somehow a vague term that 
is materialized physically through its correlation with the velocities. Nevertheless, it 
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can be proved that the potential is indeed an effective representation of the velocity 
field. To this end, only the assumption of the irrotational flow is required.

In particular let us consider the definite integral

 Φ x
x

x

,t u dxi i( ) = ∫
0

 (1.36)

where the lower limit is some arbitrary constant position x0 and the upper limit 
is the point x = ( , , )x x x1 2 3 . This integral is independent of the particular path of 
integration between the points x0 and x, since the difference in value of any two 
integrals, between the same two points, is equal to circulation around a closed path 
from x0 to x, along one path and back to x0 along the other path, which is equal 
to zero if  the fluid motion is irrotational. Thus, the integration in (1.36) can be 
performed along any desired path. If  we choose a path that approaches the point  
x, along a straight line parallel to the x1- axis, then along the final portion of the 
path of integration u dx u dxi i = 1 1, so that

 
∂
∂

=
∂

∂
=∫Φ

x x
u dx u

1 1
1 1 1

0x

x

 (1.37)

The remaining portion of the integral being a constant, does not contribute to the 
derivative. Applying a similar argument for the other two coordinates, we have in 
general that

 u
xi

i

=
∂
∂

= ∇
Φ

Φ, U  (1.38)

The existence of the velocity potential therefore is univocally justified by the 
assumption of an irrotational flow.

Substituting (1.38) into the equation of continuity (1.18) immediately yields

 
∂

∂ ∂
= ∇ =

∂
∂

+
∂
∂

+
∂
∂

=
2

2
2

2

2

2

2

2
0 0

Φ
Φ

Φ Φ Φ
x x x y zi i

,  (1.39)

Equation (1.39) is the Laplace equation given in tensorial and Cartesian 
representations and ∇ = ∂ ∂ + ∂ ∂ + ∂ ∂2 2 2 2 2 2 2/ / /x y z  is the Laplace operator.

1.9.3 The Unsteady Bernoulli Equation

The Laplace equation is the governing equation of the flow field under the basic 
assumptions made in this section. It will also be referred to as the field equation, 
which we recall is the outcome of the equation of continuity. To complete the 
problem’s setup within the realm of potential theory we must exploit (1.35), which 
eventually provides the pressure field that can be also univocally obtained by 
the potential function only. We are particularly interested for the unsteady case, 
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including the time derivative term of (1.35). The steady case is a special case in 
which this term is absent. Using (1.38), (1.35) yields

 
∂
∂

∂
∂

+
∂
∂

∂
∂

∂
∂

= −
∂

∂
+( )

t x x x x x
p gx

i j j i i

Φ Φ Φ 1
3ρ

ρ  (1.40)

It can be easily shown that

 
1
2

∂
∂

∂
∂

∂
∂

=
∂
∂

∂
∂

∂
∂x x x x x xi j j j j i

Φ Φ Φ Φ
 (1.41)

Substituting (1.41) into (1.40) and rearranging terms yields

 
∂

∂
∂
∂

+
∂
∂

∂
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+ +( )











=
x t x x

p gx
i j j

Φ Φ Φ1
2

1
03ρ

ρ  (1.42)

Finally, integrating with respect to xi for i = 1 2 3, ,  one gets

 
∂
∂

+
∂
∂

∂
∂

= − +( ) +
Φ Φ Φ
t x x

p gx C t
j j

1
2

1
3ρ

ρ ( ) (1.43)

The integration with respect to xi, i = 1 2 3, ,  will produce an integration factor that 
is a function of time C t( ). This can be incorporated into the velocity potential, 
writing

 ′ = − ( )∫Φ Φ
0

t

C dξ ξ  (1.44)

Finally, using (1.44) into (1.43) yields the celebrated unsteady Bernoulli equation

 
∂ ′
∂

+
∂ ′
∂

∂ ′
∂

= − +( )Φ Φ Φ
t x x

p gx
j j

1
2

1
3ρ

ρ  (1.45)

The prime will be dropped in the sequel. In the Cartesian frame of reference, (1.45) 
is written as

 
∂
∂

+ ∇ + + =
Φ

Φ
t

p
gz

1
2

0
2

ρ
 (1.46)

Hence, the flow field for incompressible and inviscid fluid and irrotational flow is 
fully described by potential flow theory via the Laplace equation (1.39) and the 
unsteady Bernoulli equation (1.46). Those equations describe explicitly the flow in 
a boundless medium. Practical hydrodynamic problems, however, involve always 
boundary conditions that are represented by mathematical constraints, i.e., differ-
ential or algebraic equations that must be satisfied together with the Laplace and the 
Bernoulli equations. Even the conditions at infinity can be regarded as boundary 
conditions. Thus, in hydrodynamics we are invited to consider boundary value 
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problems formed by several equations accompanying the fundamental equations 
(1.39) and (1.46).

1.10 Free- Surface Flow in the Laplace Domain

The hydrodynamical applications associated with the marine environment are in 
most of the cases fluid– structure interaction problems. In relevant situations, the 
factor that makes the difference is the existence of the free surface, i.e., the mutual 
surface that separates water and air. The effect of the free surface is of paramount 
importance in wave– structure interaction problems and also in hydrodynamical 
problems without incident waves. As an example, which will be analyzed exten-
sively in Chapter 5, we refer to the case of a solid moving under an undisturbed free 
surface with no waves, namely without periodic or nonperiodic deformation of the 
free surface. This is the so- called “wave resistance” problem. Clearly, the motion 
of the solid affects the kinematical condition of the liquid up to the free surface 
especially in cases where the solid is in close proximity with the free surface. It is 
evident therefore that the free surface will affect the flow field, i.e., the velocities of 
the liquid particles and the pressure field exerted on the solid.

There are two main challenges associated with the existence of the free sur-
face: (1) it imposes constraints, or in other words boundary conditions, which are 
in fact nonlinear and (2) the boundary where those conditions should be satisfied 
is time dependent and is one of the unknowns to be determined. Both issues are 
discussed in the present section.

In marine hydrodynamics the fluid is liquid. The domain of interest is the mate-
rial volume of liquid below the free surface and the alterations of its kinematical 
condition(s) due to the kinematics of both the liquid (e.g., water waves, current) and 
the body(ies) that exist within the liquid. We start the analysis with the most typical 
hydrodynamical problem of a body with arbitrary geometry that floats on the free 
surface of a liquid field that extends to infinity both in x and y directions as shown 
in Figure 1.3 (in several cases it is most convenient to assume that the surface at 
infinity S∞ is a cylindrical one, situated at r → ∞, where r denotes the radial coor-
dinate of a polar frame of reference). The free surface itself  is a function of time 
and apparently of the horizontal plane coordinates ( , )x y . Therefore a fixed and 
explicitly defined plane of reference is required to define the free- surface elevation 
H as a function of ( , , )x y t . Given the fact that in the general case the topography of 
the bottom, which is also a fixed surface, can be arbitrary, the only alternative is to 
assume as a plane of reference the undisturbed free surface and define it on z = 0.  
It is evident that the schematic in Figure 1.3 assumes a plane horizontal bottom 
that is located at a distance h below the undisturbed free surface. The depth h can 
be finite or infinite.

The control volume Ω in Figure 1.3 is bounded from above by the free surface, 
coined FS , represented by the function H( , , )x y t , from below by the bottom surface, 
coined SBT , and by the impermeable surface of the body S0. The basic condition is to 
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assume infinite extend for ( , ) ( , )x y ∈ −∞ +∞ , while one can add more complications, 
e.g., by restricting the extent of the control volume, which is achieved by intro-
ducing additional boundary conditions, or putting more solids into the liquid field, 
floating, fully immersed or bottom seated.

According to the Laplace domain approach, namely inviscid, incompressible 
liquid and irrotational flow, the velocity field, described by the velocity components 
of the liquid particles ( , , )u v w , in the three directions ( , , )x y z  respectively, is expressed 
in terms of the scalar velocity potential Φ x y z t, , ,( ) as

 u v w x y z t
u
x

i
v
y

j
w
z

k, , , , ,( ) = ∇ ( ) =
∂
∂

+
∂
∂

+
∂
∂

Φ
 



 (1.47)

where 
 



i j k, ,( ) are the unit vectors in ( , , )x y z .

The basic hydrodynamic boundary value problem is thus defined by the following 
set of equations:

 ∇ =
∂
∂

+
∂
∂

+
∂
∂

= ∈2
2

2

2

2

2

2
0Φ

Φ Φ Φ
Ω

x y z
x y z, ( , , )  (1.48)

 ∇ ⋅ = ⋅ + ⋅ ×( ) ∈Φ n v n x nω , ( , , )x y z S0 (1.49)

 ∇ ⋅ = ( ) ∈Φ n 0, , ,x y z SBT  (1.50)
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∂
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+ ∇ ⋅∇ ∇ ⋅∇( ) = =
2
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1
2

0
Φ Φ

Φ
Φ

Φ Φ Φ Η
t

g
z t

z x y t, ( , , ) (1.51)

 Η
Φ

Φ Φ Η= −
∂
∂

+ ∇ ⋅∇





=
1 1

2g t
z x y t, ( , , ) (1.52)

Figure 1.3 A solid that floats in a liquid field of infinite extent.
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Equation (1.48) is the Laplace equation, (1.49) is the boundary condition that must 
be satisfied on the surface of the solid, (1.50) is the kinematic boundary condi-
tion on the bottom, (1.51) denotes the combined dynamic and kinematic boundary 
condition of the free surface, and finally (1.52) provides the exact position of the 
free surface. In (1.50) x is the position vector of a point on S0 measured from the 
center of rotation, while v = ( , , )v v v1 2 3  and ω = ( , , )v v v4 5 6  are the translational and 
rotational vectors of the solid in surge, sway, heave, roll, pitch, and yaw respectively. 
Clearly n represents the unit normal vector upon the associated impermeable sur-
face that is pointing out of the fluid domain.

More detailed discussion is required for the free- surface condition (1.51). The 
above boundary value problem should be completed by an appropriate radiation 
condition at infinity, i.e., as r x y= + → ∞2 2 .

1.11 Free- Surface Kinematics

The conditions associated with the presence of the free surface are the so- called 
dynamic and kinematic boundary conditions. Omitting the effect of the surface 
tension, the former condition implies that the pressure on the free surface should 
be continuous. The pressure at any point in the liquid is obtained through the 
Bernoulli equation (1.46) in which p will denote the pressure of the liquid, relative 
to the atmospheric pressure. As the density of the air is very small compared to the 
density of the liquid, the motion of the air can be neglected, implying no dynamic 
fluctuations of the pressure on the free surface. Therefore, p can be taken equal 
to zero and accordingly the dynamic condition on the free surface, evaluated on 
z x y t= H( , , ), becomes

 
∂
∂

+ ∇ + = =
Φ

Φ Η Η
t

g z x y t
1
2

0
2

, ( , , )  (1.53)

Also, continuity of the interface (the surface between the air and the liquid) requires 
that the liquid particles on the interface remain on it during the motion of the free 
surface. That is expressed mathematically by

 
D z

Dt t z
z x y t

( )
, , ( , , )

Η Η
Φ Η

Φ
Η

−
=

∂
∂

+ ∇ ⋅∇ =
∂
∂

=0  (1.54)

where D Dt/  denotes the material derivative. Next, we take the gradient and the 
time derivative of (1.53) to yield

 ∇
∂
∂







+ ∇⋅ ∇ ⋅∇( ) + ∇ = =
Φ

Φ Φ
t

g z x y t
1
2

0H H, ( , , ) (1.55)

and
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∂

+ ∇ ⋅∇
∂
∂







+
∂
∂

= =
2

2
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Φ
Φ

Φ
t t

g
t

z x y t
H

H, ( , , ) (1.56)
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Substituting ∇H from (1.55) into (1.54) and the resulting expression into (1.56) 
establishes (1.51). The exact position of the free surface is obtained directly from 
(1.53), which yields (1.52). Equation (1.51) is the fundamental, combined dynamic 
and kinematic free surface boundary condition. The fact that it has been expressed 
solely in terms of the velocity potential allows some simplification of the intended 
hydrodynamic problems, which that way, could be considered only in terms of the 
potential.

1.12 The Taylor Expansion of the Free Surface

The main problem associated with the free surface is that its conditions should 
be valid in a time- varying boundary, namely on z x y t= H( , , ). To overcome this 
difficulty, Stokes suggested the expansion of the boundary conditions (assuming 
small displacements of the free surface) around a mean position that coincides with 
the undisturbed free surface at z = 0. Therefore, any function f z( ) evaluated on 
z x y t= H( , , ) is written as

 f z f z
f z

z
f z
z

O
z z

z z

( ) ( )
( ) ( )

= =
= =

= +
∂

∂
+

∂
∂

+ ( )H
H H H

0
0

2
2

2
0

31
2

 (1.57)

Accordingly, (1.52) gives for the free surface
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while the boundary condition (1.51) becomes
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(1.59)

Both (1.58) and (1.59) have been expressed on the known boundary of the undis-
turbed free surface on z = 0.
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1.13 Expansion in Perturbations

Although the Taylor series expansion tackles the problem of the time- varying 
boundary in which the free- surface conditions should apply, it is unable to simplify 
these conditions, which remain strongly nonlinear. Admittedly, processing of non-
linear systems is a very challenging task. Consideration of (1.59) in its complete form 
is feasible only in the time domain. The frequency domain approximation requires 
further simplifications, which in hydrodynamics (and other scientific disciplines) 
are employed using expansions in series of perturbations (e.g., Kevorkian and 
Cole, 1981). The expansion of the velocity potential (and the other hydrodynamic 
components) in perturbation series was first employed by Stokes and accordingly 
the perturbation scheme is widely refereed as Stokes perturbations corresponding to 
the sequence of Stokes waves. Use of expansions in perturbations requires a small 
parameter (the scaling factor) that is the problem’s property and preferentially 
known. In free- surface hydrodynamics, this role is assumed by the wave steepness 
 = k A0 1 , where k0 denotes the wavenumber (being equal to 2π λ/ ) of the regular 
waves propagating in a liquid field of specified water depth (λ is the wave length) 
and A denotes the linear amplitude of the regular waves. Thus, using the scaling 
factor  , the velocity potential is expressed as an infinite sum according to

 Φ Φ( , , , ) ( , , , )( )x y z t x y z t
n

n n=
=

∞

∑
1

  (1.60)

There is a direct correlation between the wavenumber k0 and the (circular) 
frequency ω of  the propagating waves expressed through the so- called “disper-
sion” relation, which will be discussed in the sequel. This correlation involves the 
water depth as well, which modifies the wave length for the same wave frequency. 
More details will be given in the sequel. Therefore, the actual reasoning behind 
the expansion (1.60) in terms of  the wave steepness is that the total velocity poten-
tial involves terms (powers of   ) depending on the pairs ( , )A ω , ( ,A2 2ω), ( , )A3 3ω ,  
and so on.

Further, assuming that at the leading (first- ) order, the potential varies periodi-
cally with circular frequency ω, we can write

 Φ( ) ( , , , ) , ,1 1x y z t x y z e i t= ( ) 
( ) −Re φ ω  (1.61)

where Re denotes the real part of a complex argument. The nonlinear products 
of the inhomogeneous term in (1.59) suggest taking the following forms for the 
second-  and the third- order potentials (phenomena higher than third- order will not 
be considered):

  2 2 2 2 2Φ( ) ( , , , ) ( , , ) , ,x y z t x y z x y z e i t= + ( ) 
( ) ( ) −φ φ ωRe  (1.62)

  3 3 3 3 3Φ( ) ( , , , ) , , , ,x y z t x y z e x y z ei t i t= ( )  + ( )( ) − ( ) −Re Reφ φω ω  (1.63)
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Working the same way, the free- surface elevation is expanded in a series of 
perturbations according to

 
H Hx y t x y t x y e x y

n

n n i t, , , , , ,( ) = ( ) = ( )  + ( )
=

∞
( ) ( ) − ( )∑

1

1 2 Re η ηω

++ ( )  + ( )  + ( )( ) − ( ) − ( ) −Re Re Reη ηηω ω2 2 3 3x y e x y e x y ei t i t, , , 33 4i t Oω  + ( )
 

(1.64)

Clearly, the second- order (double frequency) problem involves a steady component, 
while the third- order problem embraces also a term that varies with the leading 
order frequency ω.

The next step is to introduce (1.61)– (1.63) into the free- surface boundary condi-
tion (1.59), and (1.64) into the free- surface elevation (1.58). Doing so and equating 
like powers of   (up to  3) will result in the following boundary conditions and free 
surface elevations at the various orders.

Leading (first- ) order problem O( )
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Second- order problem O  2( )
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K
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* * (1.69)

where the asterisk denotes the equivalent complex conjugate (cc) of the associate 
component.

Third- order problem O  3( )
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(1.70)
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where K g= ω2 / . Higher- order problems are governed by associated relations of 
the form

 − +
∂
∂

=( )
( )

−( )n K
z

n
n

n2 1φ φ
 , (1.73)

 η ω φn n nni
g

( ) ( ) −= +( )1  

where  n−( )1  and ( )n−1  denote expressions that involve terms up to ( )n −1  order.
Equations (1.65), (1.67), and (1.70) are boundary conditions that should hold on 

z = 0, while (1.66), (1.68), (1.69), (1.71), and (1.72) should be evaluated on z = 0.
We recall that all potentials, at various orders, must satisfy the Laplace equation 

and appropriate far- field radiation conditions. Finally, the total velocity potentials 
should account for the boundary conditions on the fixed boundaries of the liquid 
field (1.49) and (1.50).

1.14 Diffraction and Radiation Potentials at the Leading Order

In the realm of the linear theory it is common to decompose the total velocity 
potential at the leading order into three components:  the incident wave compo-
nent, the diffraction component, and finally the radiation component. These are 
denoted by ΦI , ΦD and ΦR, respectively. The sum Φ Φ Φs D R= +  is usually called the 
Scattered velocity potential. The suggested decomposition has the meaning that 
any structure that is subjected to incident propagating waves causes the scattering 
phenomenon, which is realized by waves diffracted and radiated to infinity.

The physical acceptation of the decomposition is justified by the sequence of 
events that originate from the interaction of waves with the solid that exists in the 
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wave field. Let us assume a regular wave train that is generated far away from the 
body, say at −∞, after some time interacts with it and accordingly propagates far 
away from to the body, say to +∞. The interaction of the regular waves with the 
body causes the distortion of the wave field and rationally thinking the disturbance 
of the flow is more profound in the vicinity of the body. Note that the surface of 
the body is considered rigid and non- deformable. The details of the disturbance 
depend on the volume of the body, its geometry and shape. The disturbance caused 
by slender bodies, for example, is practically negligible.

The physical intuition is that any disturbance caused by the interaction should 
vanish far away from the body and accordingly the velocity field and the flow should 
be identical in ±∞. The interaction of  the waves with the solid, which is assumed 
to move freely, will induce oscillatory motions in all six degrees of  freedom. Those 
motions will produce additional disturbances that are superposed to those gen-
erated by the impact of  waves on the solid. All disturbances should disappear far 
away from the body. Therefore, the complete phenomenon can be decomposed 
into three subphenomena: (1) the regular wave train, represented by the incident 
wave potential; (2) the waves (disturbance) generated assuming that the solid is 
fixed and immovable (diffracted waves); and (3) the disturbance caused only by 
the oscillatory motions of  the rigid body (radiated waves). By the linear super-
position principle, the complete phenomenon is composed by a superposition of 
the three discrete phenomena (1), (2), and (3). As a result, mathematical syn-
thesis requires the linear superposition (simple summation) of  the factors that 
describe the discrete flow fields, namely the individual velocity potentials. Hence, 
we may write

 Φ Φ Φ Φ= + + = ( ) + ( ) + ( )− − −
I D R I

i t
D

i t
R

i te e eRe Re Reφ φ φω ω ω  (1.74)

It has been assumed that the diffracted waves are generated assuming that the struc-
ture is fixed while the radiated waves originate due to the motions of the struc-
ture in the six degrees of freedom. Hence the body condition (1.49) is accordingly 
decomposed into

 
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

= ( ) ∈
Φ ΦI D I D

n n n n
x y z S0 0 0, , , ,

φ φ
 (1.75)

 
∂
∂

= ∈
ΦR

nn
V x y z S, ( , , ) 0 (1.76)

where

 
∂
∂

= ∇ ⋅
Φ

Φ
n

n (1.77)

 Vn = ⋅ + ⋅ ×( )v n x nω  (1.78)

Here S0 denotes the submerged surface of the solid below the undisturbed free sur-
face, assumed on z = 0. Further we let
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 V v nn

j

j j=
=

∑
1

6

 (1.79)

where nj  j = …1 2 6, , ,  are the surge, sway, heave, roll, pitch, and yaw components of 
the unit normal. For harmonic oscillations one may assume that

 v U ej j
i t= ( )−Re ω  (1.80)

while the radiation potential can be decomposed in terms associated with the six 
degrees of freedom, i.e.,

 φ φR

j

j jU=
=

∑
1

6

 (1.81)

Finally, on combining together (1.76) and (1.79)– (1.81) immediately yields the 
boundary conditions of the six radiation (Kirchhoff) potentials in the six modes 
of motion, as

 
∂
∂

= ( ) ∈ = …
φ j

jn
n x y z S j, , , , , , ,0 1 2 6 (1.82)

1.15 The Incident Wave Potential

1.15.1 Leading Order Problem

The incident wave potential constitutes the major ambient, time- varying excitation 
in hydrodynamical free- surface flows. The associated velocity potential at leading 
order φ φI I≡ ( )1  has the following properties:

 1. It satisfies the Laplace equation.
 2. It is regular (periodic) with circular frequency ω in the entire liquid domain 

(should be an entire function of r x y= +2 2 ).
 3. It satisfies the kinematic condition on the bottom.
 4. It satisfies the linearized (combined kinematic and dynamic) boundary condi-

tion on the free surface (1.65).
 5. When the water depth is infinite, the velocity potential should be zero for z → ±∞; 

the plus or minus sign depends on the orientation of the z- axis, which is assumed 
fixed on the undisturbed free surface.

At the leading order the incident wave potential for infinite water depth is given by 
(z is assumed pointing upward)

 φ
ω ω

β β θ β
I

Kz iK x y Kz iKri
gA

e e i
gA

e e= − = −+( ) −cos sin cos( ) (1.83)

where β is the angle of propagation with respect to the horizontal x- axis while 
x r= cosθ and y r= sinθ. In the general case of finite water depth h, we can derive 
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an analytic expression if  the bottom is assumed flat and horizontal in the entire 
control volume. The bottom boundary condition for the incident wave potential 
thus becomes ∂ ∂ =φI z/ 0 on z h= − . The potential φI  is expressed as

 φ
ω ω

β β
I

ik x yi
gA k z h

k h
e i

gA k z
= −

+
= −

++( )cosh ( )
cosh

cosh (0

0

00 cos sin hh
k h

eik r)
cosh

cos( )

0

0 θ β−  (1.84)

where the wavenumber k0 is given by the celebrated dispersion relation

 k k h K g0 0
2tanh /( ) = = ω  (1.85)

the derivation of which will be discussed in Chapter 2.

1.15.2 Second- Order Problem

The double- frequency incident wave component φI
( )2  should comply with the afore-

mentioned properties (1) and (3). Also, it should be regular with circular frequency 
2ω in the entire fluid domain and finally should satisfy the free- surface boundary 
condition at second order (1.67). The right- hand- side term of (1.67) is constructed 
by terms involving products of incident φI  and diffraction potentials φD  at the 
leading order. The inhomogeneous (right- hand side) term that is considered for 
determining φI

( )2  should involve products of φI  only. This term, denoted by QI
( )2  and 

expressed in polar ( , )r θ  coordinates, is given by (Mei, 1983; Malenica and Molin, 
1995; Malenica et al., 1999)

 Q r
i

g
K k

i
g

i KA
k h

eI I I
2 2

0
2 2

0
2

2

2
0

2

2
3

3
2

( ) ( ) = −( )( ) + ∇( ) =,
sinh

θ ω φ ω φ ω iik r z0 0cos( ) ,θ β− =
 

(1.86)

Equation (1.86) utilizes the plane gradient convention ∇ = ∂ ∂ ∂ ∂( )0 1 0/ , / / ,r r θ .
This yields the following form for the double- frequency incident wave component:

 φ ω θ β
I

ik ri
A k z h

k h
e( ) cos( )cosh ( )

sinh
2

2
0

4
0

23
8

2
0= −

+ −  (1.87)

1.15.3 Third- Order Problem

In a similar manner, the triple- frequency incident wave component should sat-
isfy conditions (1) and (3) of Section 1.15.1 and should be an entire function of 
r x y= +2 2  in the entire fluid domain with circular frequency 3ω . The free- surface 
boundary condition associated with the third- order problem has been given in 
(1.70). For the incident wave problem the inhomogeneous term of (1.70) will be 
constructed by products of φI  and φI

( )2  only. Hence assuming finite water depth and 
introducing (1.84) and (1.87) into the right- hand- side term of (1.70) yields the inho-
mogeneous term of the free- surface boundary condition for the triple frequency 
incident wave potential. This is (Malenica and Molin, 1995)
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 Q r
i k A

k h
k h e zI

ik r3 0
2 3

4
0

0
33

8
11 2 2 0( ) −( ) = −( ),

sinh
cosh ,cos( )θ ω θ β == 0 (1.88)

while the solution for the component φI
( )3  is

 φ ω
I

ik ri
k A

k h
k z h

k h
e( ) coscosh

cosh ( )
sinh

3 0
3

0
0

7
0

3

64
11 2 2

3
0= − −( ) + (( )θ β−  (1.89)

1.16 The Far- Field Radiation Condition

Also referred as the Sommerfeld radiation condition (Sommerfeld, 1949) is the con-
dition that must be satisfied by the diffraction and the radiation components of the 
potential, φD, φR. The scattered wave field φ φs D= +  φR must decay at infinity, so 
that the flow in the far field is described only by the incident wave component. The 
far- field condition applies directly only to the first- order terms and is valid uncon-
ditionally for arbitrary geometries. In two dimensions, with the horizontal x- axis 
extending to infinity is expressed by

 lim
kx x

ik G
→±∞

∂
∂







= 0 (1.90)

where G  denotes either φD or φR and k  is the wavenumber, which is equal to either 
k0 or K  depending on the water depth. In three dimensions the associated radiation 
condition is

 lim /

kr
r

r
ik G

→∞

∂
∂

−





=1 2 0 (1.91)

The radiation conditions (1.90) and (1.91) require the waves at infinity to be 
progressing outwards and imposes a uniqueness that otherwise would not be pre-
sent. Equation (1.91) describes circular waves of decreasing amplitude as r → ∞ 
while the factor r1 2/  is required by energy conservation arguments.

The radiation condition for the second- order problem (diffraction potential in 
particular) has long been a controversial issue (Malenica and Molin, 1995). In fact, 
there is no generally accepted asymptotic formula although there have been studies 
that propose explicit formulations of (1.91) for the double- frequency diffraction 
problem (Liu and Miao, 1991). Instead, the existing theory focuses on the asymp-
totic behavior of the double- frequency diffraction component, here coined φD

( )2 . In 
Molin’s original analysis (Molin, 1979) it was tentatively shown that the second- 
order diffraction potential, to the leading order O A r2 1 2/ /( ) , consists of two 
components: waves “locked” to the first- order wave field (also known as the “locked” 
wave component, or the particular solution), and “free” waves (also known as the 
“free” wave component or homogeneous solution) traveling in the radial direction 
with wavenumber k2 obtained by the second- order dispersion relation

https://doi.org/10.1017/9781316838983.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781316838983.003


Description of the Flow 25

25

 k k h K g2 2
24 4tanh /( ) = = ω  (1.92)

Even though the asymptotic behaviors of the particular and the homogeneous 
solutions were not established on purely rigorous mathematical foundations, they 
have now been accepted as being correct (Kim and Yue, 1989). The corresponding 
far- field asymptotic behaviors of the homogeneous and the particular solutions are

 φH
ik rr e O r r~ ,/ /− −+ ( )1 2 3 22 1  (1.93)

 φ θ θ
P

ik rr P z e O r r~ ( , ) ,/ ( cos )− + −+ ( )1 2 1 10 1  (1.94)

where

 P z p k z h O rθ θ θ, cosh cos ( )
/

/( ) = ( ) +( )  +{ } + ( )−
0

1 2
1 22 1  (1.95)

Equations (1.93) and (1.94) assume that the field equation and the condition on 
the flat horizontal bottom have been satisfied. Analogous expressions have also 
been found for the third- order diffraction component and its constituent terms (see 
Malenica and Molin, 1995). A detailed analysis regarding the decomposition of 
the second- order diffraction potential into “locked” and “free” wave components is 
provided in Chapter 3.

1.17 Hydrodynamic Loading

The hydrodynamic loading on the structure is taken by integrating the hydrody-
namic pressure distribution over the wetted surface. The pressure is expressed 
through the Bernoulli equation given in (1.46). Exciting forces and moments 
require that the structure is considered to be fixed. Integration of  pressure over 
the surface S0 yields

 F pn dSj

S

j= ∫
0

 (1.96)

where, as usual, j = …1 2 6, , ,  denotes the generalized direction being considered. In 
order to collect the terms at the different orders of wave steepness  , the integral on 
the wetted surface is decomposed according to

 
S S S S CB B B0 0 0 0 0
∫ ∫ ∫ ∫ ∫ ∫= + = +

∆

H

 (1.97)

where SB0 is the mean wetted surface and CB0 the mean waterline. In (1.97), S0, SB0,  
and ∆S  denote surface integrals while CB0 denotes a line integral. Equation (1.97) 
has the meaning that the pressure is integrated over the mean wetted surface plus 
an additional part to account for the free- surface elevation above the undisturbed 
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free surface. The expansion in perturbations (1.60) and (1.64) suggests taking the 
following series expansion for the hydrodynamic loading as well:

 
F F F F O Re e Rej j j j j

i t
j j= + + + ( ) = { } + +−ε ε ε ε( ) ( ) ( ) ( ) ( ) (1 2 2 3 3 4 1 2F F Fω 22 2

3 3 3 4

)

( ) ( )

e

Re e Re e O

i t

j
i t

j
i t

−

− −

{ }
+ { } + { } + ( )

ω

ω ωF F ε
 

(1.98)

Hence the following expressions for the time varying hydrodynamic loading up to 
the first three orders are derived:

 O i n dSj

S

j

B

ε( ) = ∫F ( ) ( )1 1

0

ωρφ  (1.99)

 O i n dS gj

S
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ε 2 2 2 1 1
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4

1
4

( ) = − ∇ ⋅∇





+∫ ∫F ( ) ( ) ( ) ( )ωρφ ρ φ φ ρ η 11 1( ) ( )η n dCj  (1.100)
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1 2 1 1ρ η η η ηg K n dC
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 (1.101)

1.18 Added Mass and Hydrodynamic Damping Coefficients

The component of the hydrodynamic loading that arises from the pressure 
integration associated with the forced oscillations with frequency ω and the radi-
ation component can be written as (see also Newman, 1977, Section 6.17; Linton 
and McIver, 2001, Section 1.3.4)

 f i n dSij

S

i j

B

= ∫ωρ φ
0

 (1.102)

The factor fij , being by default a complex number, is convenient to be decomposed 
into a real and an imaginary part as

 f i iij ij
ij= +







ω µ
λ
ω

 (1.103)

yielding

 µij

S

i j
iji n dS

B

+ = ∫
λ
ω

ρ φ
0

 (1.104)

The term µij  is known as the added mass coefficient given that it represents a 
force that is proportional to acceleration. In contrast, λij  represents a force that 
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is proportional to the velocity of the body and thus it is called the hydrodynamic 
damping coefficient. In fact they represent the associated hydrodynamic parameter 
in direction i  due to the oscillatory motion of the body with frequency ω and small 
amplitude in the direction  j .

From the physical point of view the added mass is a virtual mass that depends on 
the geometry and the volume of the body, and apparently the density of the liquid, 
and expresses the added inertia introduced into the oscillatory system because of 
the volume of liquid that is displaced as the body is accelerating. In other words, in 
order for the body to move inside the liquid must first accelerate some volume of it. 
In the same manner, the hydrodynamic damping coefficient expresses a quantity of 
added damping introduced into the system. The hydrodynamic damping is defined 
in the form of a linear component and is directly proportional to the velocity.

1.19 The Green’s Theorem

The Green’s theorem follows from Green’s second identity that is derived in the 
following manner. Let φ and G be continuously differentiable functions in a region 
Ω bounded by a surface S. Both φ and G have continuous partial derivatives of 
the second order in Ω. Then the pair of functions φ and G satisfy the following 
(Kellogg, 1967; p. 212)

 
Ω Ω
∫ ∫ ∫∇ + ∇ ⋅∇( ) =

∂
∂

φ φ φ2G dV G dV
G
n

dS
S

 (1.105)

If  we interchange φ and G and the resulting equation is subtracted from (1.105) the 
result is Green’s second identity, namely

 
Ω
∫ ∫∇ − ∇( ) =

∂
∂

−
∂
∂







φ φ φ φ2 2G G dV
G
n

G
n

dS
S

 (1.106)

where n is a coordinate directed in the outward normal direction to the surface S. If  
φ and G are both solutions of the Laplace or Helmholtz equation, the latter being 
given by

 ∇ + = =2 2 0U k U U G, ,φ  (1.107)

in the region Ω, for an arbitrary k  [for k = 0, (1.107) yields the Laplace equation] 
then (1.106) is reduced to

 
S

G
n

G
n

dS∫ ∂
∂

−
∂
∂







=φ φ
0 (1.108)

which is widely referred as the Green’s theorem.
Let us next consider the two- dimensional problem of the function φ at a partic-

ular point P ∈Ω, φ( )P , so that the domain Ω is some surface bounded by the closed 
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curve S, as shown in Figure  1.4. We use capital letters to denote points within 
Ω and lowercase letters to denote points on the boundary S of  Ω. The distance 
between P and an arbitrary point Q within Ω is denoted by RPQ, while the Green’s 
function is now denoted by G P Q( , ). The Green’s function must be singular at Q, 
i.e., for RPQ → 0.

Our goal is to calculate the value of the function φ at point Q, φ( )Q  and therefore 
we consider a point upon S, coined p. Given that G p Q( , ) is singular as RpQ → 0, 
the point Q must be excluded from region Ω. Therefore, we define a small circle S ′  
embracing Q, with radius n→ 0. Further, use is made of the Green’s theorem to φ 
and G over the region between S and S ′ . Thus the line of integration is S S∪ ′  and 
we write

 

S S p p

S

p
G p Q

n
G p Q

p

n
dS

p
G p Q

∪ ′
∫

∫

( ) ∂ ( )
∂

− ( ) ∂ ( )
∂













= ( ) ∂ ( )
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φ
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,
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− ( ) ∂ ( )
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φ

φ
n 0

,, )Q
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=
φ
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(1.109)

Here, np denotes the outward normal to the surface S located on the point p. 
Elaborating further (1.109) we obtain

 S p p
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n
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∫
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φ
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(1.110)

The second term in the left member of (1.110) results in the value −φ( )Q  if  G p Q( , ) 
behaves in such a way that

 lim ,






n n
n

→ =
( )  =

0
0G p Q

RpQ
 (1.111)

and

 lim
,







n
n

n
→

=

∂ ( )
∂













≠
0

0
G p Q

RpQ RpQ

 (1.112)

and yet is finite. In particular (1.112) should give 2π, while it is recalled that G p Q,( ) 
must be singular for RpQ → 0. All these requirements are satisfied by taking

 G P Q RPQ, ln( ) =
1

2π
 (1.113)
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which implies a logarithmic singularity at RpQ → 0. Finally, (1.110) yields the 
following integral representation for φ( )Q :

 φ φ
φ

Q p
G p Q

n
G p Q

p

n
dS Q

S p p

( ) = ( ) ∂ ( )
∂

− ( ) ∂ ( )
∂













∈∫
,

, , Ω  (1.114)

If  Q is taken outside Ω, then it holds that

 
S p p

p
G p Q

n
G p Q

p

n
dS∫ ( ) ∂ ( )

∂
− ( ) ∂ ( )

∂












=φ
φ,

, 0 (1.115)

Further, we discuss some properties of the integral representation (1.114). In hydro-
dynamics, the velocity potential typically satisfies Neumann or Dirichlet boundary 
conditions on a line contour S that bounds a region Ω, in the form ∂ ( ) ∂ =φ p np/ 0 
or φ p( ) = 0, respectively, for all p S∈ . Note the linear free- surface boundary con-
dition (1.65) is of Robin type. In relevant cases, (1.114) is reduced to single- term 
integration. Further, if  φ p( ) is known on S and G p Q,( ) can be constructed in such 
a way so that G p Q,( ) = 0 for all p S∈ , then φ Q( ) is obtained explicitly. Accordingly 
if  ∂ ( ) ∂φ p np/  is known on S and ∂ ( ) ∂ =G p Q np, / 0 for all p S∈ , then, again, φ Q( ) 
is obtained explicitly. If  the point (say point q) in which we want to calculate φ lies 
on the contour line S (see Figure 1.4), then to apply the Green’s theorem we must 
exclude that point and we must assume that it is enclosed by a semicircle instead of 
a circle. Therefore, application of the Green’s theorem over the domain Ω and the 
semicircle in S will yield the following integral representation for φ q( ):

 
1
2

φ φ
φ

q p
G p q

n
G p q

p

n
dS q S

S p p

( ) = ( ) ∂ ( )
∂

− ( ) ∂ ( )
∂













∈∫
,

, ,  (1.116)

An integral equation for the boundary values of φ (points lying on S) arises from 
(1.115) if  ∂ ( ) ∂ =φ p np/ 0 is known for all p S∈ .

Equation (1.116) allows some simplifications if  the Green’s function can be 
constructed in such a way that satisfies the same boundary conditions as φ on a 

Figure 1.4 Definitions for integral representations using the Green’s function.
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subinterval S S0 ⊂ . Provided that G satisfies Neumann or Dirichlet conditions on 
S0, the contribution of the integral over S0 vanishes.

Equation (1.116) is used to calculate φ on all points lying on S. The next step, 
after solving the integral equation, is to employ (1.114) to calculate φ on all points 
inside the region Ω.

In particular problems the Green’s function may be symmetrical, i.e., 
G P Q G Q P, ,( ) = ( ). Hence from (1.114) and (1.116) we have

 φ φ
φ

P q
G P q

n
G P q

q

n
dS P

S q q

( ) = ( ) ∂ ( )
∂

− ( ) ∂ ( )
∂













∈∫
,

, , Ω (1.117)

 
1
2

φ φ
φ

p q
G p q

n
G p q

q

n
dS p S

S q q

( ) = ( ) ∂ ( )
∂

− ( ) ∂ ( )
∂













∈∫
,

, ,  (1.118)

Integral equations (1.117)– (1.118) may now be interpreted in terms of distributions 
of sources and dipoles over the boundary surface S.

The same approach can be taken for the three- dimensional problem where Ω 
is a volume bounded by the surface S. The analysis and the equations for the 
three- dimensional problem are explicitly the same with those presented previously 
that referred to the two- dimensional space, provided that the integrals over S are 
regarded as surface integrals. To exclude the point Q from surface Ω, we should 
assume a sphere containing Q, while when the point lies on the surface S (denoted 
by q) it should be bounded by a hemisphere. The Green’s function in the three- 
dimensional case will read

 G P Q
RPQ

,( ) = −
1

4π
 (1.119)

which is evidently singular for RPQ → 0.
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