SOME NORMALITY CRITERIA AND A COUNTEREXAMPLE TO THE CONVERSE OF BLOCH'S PRINCIPLE

KULDEEP SINGH CHARAK ${ }^{\boxtimes}$ and SHITTAL SHARMA

(Received 27 May 2016; accepted 24 August 2016; first published online 23 November 2016)

Abstract

In this paper, we prove some value distribution results which lead to normality criteria for a family of meromorphic functions involving the sharing of a holomorphic function by more general differential polynomials generated by members of the family, and improve some recent results. In particular, the main result of this paper leads to a counterexample to the converse of Bloch's principle.

2010 Mathematics subject classification: primary 30D35; secondary 30D30, 30D45.
Keywords and phrases: value distribution theory, normal families, meromorphic functions, differential polynomials, sharing.

1. Introduction and main results

A family \mathcal{F} of meromorphic functions in a complex domain D is said to be normal in D if every sequence in \mathcal{F} has a subsequence that converges uniformly on compact subsets of D with respect to the spherical metric. The concept of normality was introduced in 1907 by Montel [13]. Normal families play a central role in complex dynamics, and are of great interest in their own right. For normal families of meromorphic functions, we refer to Schiff's book [15], Zalcman's survey article [19] and Drasin's paper [7], out of a huge literature on the subject. Drasin [7] brought Nevanlinna value distribution theory [9] into the study of normal families of meromorphic functions and Schwick [16] introduced the concept of sharing of values. In this paper, which continues our earlier work [4], we prove a value distribution result leading to some interesting normality criteria, one of which leads to a counterexample to the converse of Bloch's principle. These normality criteria involve the sharing of holomorphic functions by a more general class of differential polynomials and generalise and improve recent results.

[^0]Let $f \in \mathcal{F}$ and let $h(z)$ be a holomorphic function on D. Let $k \geq 1, l_{0}, l_{1}, l_{2}, \ldots, l_{k}$, $m_{1}, m_{2}, \ldots, m_{k}$ be nonnegative integers with $l^{\prime}=\sum_{i=1}^{k} l_{i}$ and $m^{\prime}=\sum_{i=1}^{k} m_{i}$ and let

$$
P[f]=f^{l_{0}}\left(f^{l_{1}}\right)^{\left(m_{1}\right)}\left(f^{l_{2}}\right)^{\left(m_{2}\right)} \cdots\left(f^{l_{k}}\right)^{\left(m_{k}\right)}
$$

be a differential polynomial of f with degree $\gamma_{P}=l_{0}+l^{\prime}$. We assume that $l_{0}>0$ and $l_{i} \geq m_{i}$ for $1 \leq i \leq k$ with $l^{\prime}>m^{\prime}>0$. Further, we can see that

$$
\left(f^{l_{i}}\right)^{\left(m_{i}\right)}=\sum C_{n_{0} n_{1} n_{2} \ldots n_{m_{i}}} f^{n_{0}}\left(f^{\prime}\right)^{n_{1}}\left(f^{\prime \prime}\right)^{n_{2}} \cdots\left(f^{\left(m_{i}\right)}\right)^{n_{m_{i}}}
$$

is such that $\sum_{j=0}^{m_{i}} n_{j}=l_{i}$ and $\sum_{j=1}^{m_{i}} j n_{j}=m_{i}$. Thus, the weight

$$
w\left(\left(f^{l_{i}}\right)^{\left(m_{i}\right)}\right)=\max \left\{\sum_{j=0}^{m_{i}}(j+1) n_{j}\right\}=l_{i}+m_{i}
$$

and so

$$
w(P[f])=l_{0}+\sum_{i=1}^{k}\left(l_{i}+m_{i}\right)=l_{0}+l^{\prime}+m^{\prime}=\gamma_{P}+m^{\prime} .
$$

It is assumed that the reader is familiar with the standard notions of Nevanlinna value distribution theory such as $m(r, f), N(r, f), T(r, f), S(r, f)$ and so on (see [9]).

Defintition 1.1. Two meromorphic functions f and g in a domain D share the function $h \mathrm{IM}$ in D if $\bar{E}(h, f)=\bar{E}(h, g)$, where $\bar{E}(h, \phi)=\{z \in D: \phi(z)-h(z)=0\}$ is the set of zeros of $\phi-h$ in D ignoring multiplicities (IM). If $\bar{E}(h, f) \subseteq \bar{E}(h, g)$, then we say that f shares h partially with g on D.

Dethloff et al. proved the following Picard-type theorem.
Theorem 1.2 [6, Corollary 2, page 676]. Let a be a nonzero complex value, $l_{0} a$ nonnegative integer and $l_{1}, l_{2}, \ldots, l_{k}, m_{1}, m_{2}, \ldots, m_{k}$ positive integers. Let \mathcal{F} be a family of meromorphic functions in a complex domain D such that, for any $f \in \mathcal{F}$, $P[f]-a$ is nowhere vanishing on D. Assume that:
(a) $\quad l_{j} \geq m_{j}$ for $1 \leq j \leq k$;
(b) $l_{0}+l^{\prime} \geq 3+m^{\prime}$.

Then \mathcal{F} is normal in D.
Dutt and Kumar extended Theorem 1.2 as follows.
Theorem 1.3 [8, Theorem 1.4, page 2]. Let a be a nonzero complex value, $l_{0} a$ nonnegative integer and $l_{1}, l_{2}, \ldots, l_{k}, m_{1}, m_{2}, \ldots, m_{k}$ positive integers such that:
(a) $\quad l_{j} \geq m_{j}$ for $1 \leq j \leq k$;
(b) $l_{0}+l^{\prime} \geq 3+m^{\prime}$.

Let \mathcal{F} be a family of meromorphic functions in a domain D such that for every pair $f, g \in \mathcal{F}, P[f]$ and $P[g]$ share a IM on D. Then \mathcal{F} is normal in D.

It is natural to consider the following more general question.
Question 1.4. Is the family \mathcal{F} normal in D if for each pair of functions f and g in \mathcal{F} the differential polynomials $P[f]$ and $P[g]$ share a holomorphic function h IM?

We answer Question 1.4 as follows.
Theorem 1.5. Let \mathcal{F} be a family of nonconstant meromorphic functions on a domain D such that each $f \in \mathcal{F}$ has poles, if any, of multiplicity at least l_{0}. Let $h \not \equiv 0$ be a holomorphic function on D having only zeros of multiplicity at most $l_{0}-1$. If $P[f]$ and $P[g]$ share h IM on D for each pair $f, g \in \mathcal{F}$, then \mathcal{F} is normal in D.

Example 1.6. We show that the condition $h \not \equiv 0$ in Theorem 1.5 is essential. Let $D=\mathbb{D}$, the open unit disc. Consider the family of meromorphic functions on \mathbb{D} :

$$
\mathcal{F}=\left\{f_{n}: f_{n}(z)=e^{n z^{2}}, z \in \mathbb{D}\right\} .
$$

Let $P[f]=f\left(f^{2}\right)^{\prime}=2 f^{2} f^{\prime}$. Then $P\left[f_{n}\right](z)=2 f_{n}^{2}(z) f_{n}^{\prime}(z)=4 n z e^{3 n z^{2}}$. Therefore, for distinct m, n, we see that $P\left[f_{m}\right]$ and $P\left[f_{n}\right]$ share $h \equiv 0 \mathrm{IM}$. But the family \mathcal{F} fails to be normal at $z=0$ in \mathbb{D}, since $f_{n}(0)=1$ for all n and $f_{n}(z) \rightarrow \infty$ for all $z \neq 0$ in \mathbb{D}.

A direct consequence of Theorem 1.5 is the following important result, which, as we will see, leads to a counterexample to the converse of Bloch's principle.

Corollary 1.7. Let \mathcal{F} be a family of nonconstant meromorphic functions on a domain D. Let $h \not \equiv 0$ be a holomorphic function such that $h(z) \neq 0$ in D. If $P[f]-h$ has no zero in D for any $f \in \mathcal{F}$, then \mathcal{F} is normal in D.

Bloch's principle (see [1]) states that a family of holomorphic (meromorphic) functions satisfying a property \mathbf{P} in a domain D is likely to be normal if the property \mathbf{P} reduces every holomorphic (meromorphic) function on \mathbb{C} to a constant. Bloch's principle is not universally true (see, for example, [14]).

The converse of Bloch's principle states that if a family of meromorphic functions satisfying a property \mathbf{P} on an arbitrary domain D is normal, then every meromorphic function on \mathbb{C} with property \mathbf{P} reduces to a constant. Like Bloch's principle, the converse is not true. For counterexamples, see $[2,5,11,12,15,18]$ and [10].

Counterexample 1.8. Suppose $P[f]=f\left(f^{3}\right)^{\prime \prime}=f\left(3 f^{2} f^{\prime}\right)^{\prime}=3 f^{3} f^{\prime \prime}+6 f^{2} f^{2}$ and let $f(z)=e^{-z}$ be defined on \mathbb{C}. Then

$$
P[f](z)=3 e^{-3 z} e^{-z}+6 e^{-2 z} e^{-2 z}=9 e^{-4 z}
$$

Take $h(z)=e^{-4 z}$, so that $h \not \equiv 0$ and h is holomorphic in \mathbb{C} and hence in every domain $D \subseteq \mathbb{C}$, and also $h(z) \neq 0$ for $z \in D$. Then $(P[f]-h)(z)=8 e^{-4 z}$ has no zeros in \mathbb{C}. Note that f is nonconstant, which violates the statement of the converse of Bloch's principle in view of Corollary 1.7.

Next we discuss normality of \mathcal{F} when $P[f]-h$ has zeros under different scenarios.

Theorem 1.9. Let \mathcal{F} be a family of nonconstant meromorphic functions on a domain D. Let h be a holomorphic function on D such that $h(z) \neq 0$ in D. If, for each $f \in \mathcal{F}$, any one of the following three conditions holds:
(i) $(P[f]-h)(z)$ has at most one zero;
(ii) $(P[f]-h)(z)=0$ implies that $|f(z)| \geq M$ for some $M>0$;
(iii) $(P[f]-h)(z)=0$ implies that $\left|\left(f^{l_{i}}\right)^{\left(m_{i}\right)}(z)\right| \leq M$ for some positive M, l_{i} and m_{i},
then \mathcal{F} is normal in D.
Further, under the weaker hypothesis of partial sharing (see [3, 4]) of holomorphic functions, we can prove the following result.

Theorem 1.10. Let \mathcal{F} be a family of nonconstant meromorphic functions on a domain D. Let h be a holomorphic function on D such that $h(z) \neq 0$ in D. If, for every $f \in \mathcal{F}$, there exists $\tilde{f} \in \mathcal{F}$ such that $P[f]$ shares h partially with $P[\tilde{f}]$, then \mathcal{F} is normal in D, provided $h \not \equiv P[\tilde{f}]$ in D.

Remark 1.11. Theorem 1.5 improves and generalises Theorems 1.2 and 1.3. Theorem 1.10 is a direct generalisation of [4, Theorem 1.3].

2. Some value distribution results

To facilitate the proofs of our theorems, we prove some value distribution results.
Theorem 2.1. Let f be a transcendental meromorphic function. Then $P[f](z)-\omega(z)$ has infinitely many zeros for any small function $\omega(\not \equiv 0, \infty)$ of f.

Proof. Suppose on the contrary that $P[f](z)-\omega(z)$ has only finitely many zeros. Then, by the second fundamental theorem of Nevanlinna for three small functions [9 , Theorem 2.5, page 47],

$$
\begin{align*}
{[1+o(1)] T(r, P) } & \leq \bar{N}(r, P)+\bar{N}\left(r, \frac{1}{P}\right)+\bar{N}\left(r, \frac{1}{P-\omega}\right)+S(r, P) \\
& =\bar{N}(r, P)+\bar{N}\left(r, \frac{1}{P}\right)+S(r, P) . \tag{2.1}
\end{align*}
$$

Since the homogeneous differential polynomial

$$
P[f]=f^{l_{0}}\left(f^{l_{1}}\right)^{\left(m_{1}\right)}\left(f^{l_{2}}\right)^{\left(m_{2}\right)} \cdots\left(f^{l_{k}}\right)^{\left(m_{k}\right)} \quad(k \geq 1)
$$

is a product of monomials $f^{l_{0}},\left(f^{l_{1}}\right)^{\left(m_{1}\right)},\left(f^{l_{2}}\right)^{\left(m_{2}\right)}, \ldots,\left(f^{l_{k}}\right)^{\left(m_{k}\right)}$, where the exponents $l_{0}, l_{1}, \ldots, l_{k}$ of f are positive integers (since $l_{0}>0, l_{i} \geq m_{i}>0$, for $1 \leq i \leq k$), by [17, Theorem 1, page 792], f and $P[f]$ have the same order of growth and hence $T(r, \omega)=S(r, P)$ as $r \rightarrow \infty$. That is, ω is a small function of f if and only if ω is a small function of $P[f]$. Next,

$$
\begin{aligned}
\bar{N}\left(r, \frac{1}{P}\right) & =\bar{N}\left(r, \frac{1}{f^{l_{0}}\left(f^{l_{1}}\right)^{\left(m_{1}\right)} \cdots\left(f^{l_{k}}\right)^{\left(m_{k}\right)}}\right) \\
& \leq \bar{N}\left(r, \frac{1}{f}\right)+\sum_{i=1}^{k} \bar{N}_{0}\left(r, \frac{1}{\left(f^{l_{i}}\right)^{\left(m_{i}\right)}}\right) \leq \bar{N}\left(r, \frac{1}{f}\right)+\sum_{i=1}^{k} N_{0}\left(r, \frac{1}{\left(f^{l_{i}}\right)^{\left(m_{i}\right)}}\right),
\end{aligned}
$$

where $N_{0}\left(r, 1 /\left(f^{l_{i}}\right)^{\left(m_{i}\right)}\right)$ represents the count of those zeros of $\left(f^{l_{i}}\right)^{\left(m_{i}\right)}$ which are not the zeros of $f^{l_{i}}$ and hence not of f. Denote by $\bar{N}_{p)}(r, 1 / f)$ and $\bar{N}_{(p+1}(r, 1 / f)$ the counting functions ignoring multiplicities of those zeros of f whose multiplicity is at most p and at least $p+1$, respectively. Therefore,

$$
\begin{aligned}
\bar{N}\left(r, \frac{1}{P}\right) & \leq \bar{N}\left(r, \frac{1}{f}\right)+\sum_{i=1}^{k}\left[m_{i} \bar{N}(r, f)+N_{\left.m_{i}\right)}\left(r, \frac{1}{f}\right)+m_{i} \bar{N}_{\left(m_{i}+1\right.}\left(r, \frac{1}{f}\right)\right]+S(r, f) \\
& \leq \bar{N}\left(r, \frac{1}{f}\right)+\sum_{i=1}^{k} m_{i}\left[\bar{N}(r, f)+\bar{N}_{\left.m_{i}\right)}\left(r, \frac{1}{f}\right)+\bar{N}_{\left(m_{i}+1\right.}\left(r, \frac{1}{f}\right)\right]+S(r, f) \\
& =\bar{N}\left(r, \frac{1}{f}\right)+\sum_{i=1}^{k} m_{i}\left[\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)\right]+S(r, f) \\
& =\bar{N}\left(r, \frac{1}{f}\right)+m^{\prime}\left[\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)\right]+S(r, f) .
\end{aligned}
$$

That is,

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{P}\right) \leq m^{\prime} \bar{N}(r, f)+\left(1+m^{\prime}\right) \bar{N}\left(r, \frac{1}{f}\right)+S(r, f) \tag{2.2}
\end{equation*}
$$

Next, if z_{0} is a zero of f of order p with $2 \leq p \leq k$, then z_{0} is a zero of $P[f]$ of order $p l_{0}+p l^{\prime}-m^{\prime} \geq 2 l_{0}+2 l^{\prime}-m^{\prime} \geq 2 l_{0}+m^{\prime} \geq 2+m^{\prime}$. Similarly, for $p \geq k+1, z_{0}$ is a zero $P[f]$ of order $\geq(k+1)\left(l_{0}+l^{\prime}\right)-m^{\prime} \geq(k+1)+k m^{\prime}=k\left(1+m^{\prime}\right)+1$. Thus, we see that

$$
N\left(r, \frac{1}{P}\right)-\bar{N}\left(r, \frac{1}{P}\right) \geq\left(m^{\prime}+1\right) \bar{N}_{k)}\left(r, \frac{1}{f}\right)+k\left(m^{\prime}+1\right) \bar{N}_{(k+1}\left(r, \frac{1}{f}\right) .
$$

That is,

$$
\bar{N}_{k)}\left(r, \frac{1}{f}\right) \leq \frac{1}{m^{\prime}+1}\left[N\left(r, \frac{1}{P}\right)-\bar{N}\left(r, \frac{1}{P}\right)\right]-k \bar{N}_{(k+1}\left(r, \frac{1}{f}\right) .
$$

Since $(1-k)\left(1+m^{\prime}\right) \leq 0$ for $k \geq 1,(2.2)$ with the help of the last inequality gives

$$
\begin{aligned}
\bar{N}\left(r, \frac{1}{P}\right) & \leq m^{\prime} \bar{N}(r, f)+\left(1+m^{\prime}\right) \bar{N}_{k)}\left(r, \frac{1}{f}\right)+\left(1+m^{\prime}\right) \bar{N}_{(k+1}\left(r, \frac{1}{f}\right)+S(r, f) \\
& \leq m^{\prime} \bar{N}(r, f)+N\left(r, \frac{1}{P}\right)-\bar{N}\left(r, \frac{1}{P}\right)+(1-k)\left(1+m^{\prime}\right) \bar{N}_{(k+1}\left(r, \frac{1}{f}\right)+S(r, f) \\
& \leq m^{\prime} \bar{N}(r, f)+N\left(r, \frac{1}{P}\right)-\bar{N}\left(r, \frac{1}{P}\right)+S(r, f)
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{P}\right) \leq \frac{m^{\prime}}{2} \bar{N}(r, f)+\frac{1}{2} N\left(r, \frac{1}{P}\right)+S(r, f) . \tag{2.3}
\end{equation*}
$$

Putting (2.3) into (2.1) and noting that $\bar{N}(r, f)=\bar{N}(r, P)$ and $S(r, f)=S(r, P)$ gives

$$
\begin{equation*}
[1+o(1)] T(r, P) \leq\left[1+\frac{m^{\prime}}{2}\right] \bar{N}(r, f)+\frac{1}{2} N\left(r, \frac{1}{P}\right)+S(r, P) \tag{2.4}
\end{equation*}
$$

Also, a pole of f of order $p \geq 1$ is a pole of $P[f]$ of order

$$
p l_{0}+p l^{\prime}+m^{\prime} \geq l_{0}+l^{\prime}+m^{\prime} \geq 1+m^{\prime}+1+m^{\prime}=2+2 m^{\prime} .
$$

Therefore, $N(r, P) \geq\left(2+2 m^{\prime}\right) \bar{N}(r, f)$, which implies that

$$
\bar{N}(r, f) \leq \frac{1}{2+2 m^{\prime}} N(r, P)
$$

Hence, (2.4) yields

$$
[1+o(1)] T(r, P) \leq\left[\frac{1}{2}-\frac{m^{\prime}}{4\left(1+m^{\prime}\right)}\right] N(r, P)+\frac{1}{2} N\left(r, \frac{1}{P}\right)+S(r, P)
$$

which implies that

$$
\left[\frac{m^{\prime}}{4\left(1+m^{\prime}\right)}+o(1)\right] T(r, P) \leq S(r, P)
$$

But this gives $T(r, P) \leq S(r, P)$, which is a contradiction.
Theorem 2.2. Let $\omega(z) \not \equiv 0$ be a polynomial of degree $m<l_{0}$. Let f be a nonconstant rational function having poles, if any, of multiplicity at least l_{0}. Then $P[f]-\omega$ has at least two distinct zeros.

Remark 2.3. For $m=0$, Theorem 2.2 holds without any restriction on the multiplicity of poles of f.

Proof. The proof of Theorem 2.2 is based on ideas from [4] but with a number of modifications. Since the computations are a little involved, we give the proof in full.

Suppose on the contrary that $P[f]-\omega$ has at most one zero. We consider the following cases.
Case 1. If f is a nonconstant polynomial, then $P[f]$ is also a polynomial of degree at least $l_{0}+l^{\prime}-m^{\prime} \geq l_{0}+1$. Since $\omega(z)$ is a polynomial of degree $m<l_{0}, P[f](z)-\omega(z)$ is a polynomial of degree ≥ 1. By the fundamental theorem of algebra, $P[f]-\omega$ has exactly one zero. We can set

$$
\begin{equation*}
P[f](z)-\omega(z)=A\left(z-z_{0}\right)^{n} \tag{2.5}
\end{equation*}
$$

where A is a nonzero constant and $n>m+1$. Then

$$
\frac{d^{m+1} P[f]}{d z^{m+1}}(z)=P^{(m+1)}[f](z)=A n(n-1)(n-2) \cdots(n-m)\left(z-z_{0}\right)^{n-m-1}
$$

which implies that z_{0} is the only zero of $P^{(m+1)}[f](z)$. Since each zero of f is a zero of $P[f]$ of order at least $l_{0}+l^{\prime}-m^{\prime}>m+1$, it follows that z_{0} is a zero of $P[f]$ also. Thus, $P^{(m)}[f]\left(z_{0}\right)=0$. But (2.5) gives $P^{(m)}[f]\left(z_{0}\right)=\omega^{(m)}\left(z_{0}\right) \neq 0$, which is a contradiction.
Case 2. Suppose that f is a rational function but not a polynomial, say

$$
\begin{equation*}
f(z)=A \frac{\prod_{j=1}^{s}\left(z-\alpha_{j}\right)^{n_{j}}}{\prod_{j=1}^{t}\left(z-\beta_{j}\right)^{p_{j}}} \tag{2.6}
\end{equation*}
$$

where A is a nonzero constant, $n_{j} \geq 1(j=1,2, \ldots, s)$ and $p_{j} \geq l_{0}(j=1,2, \ldots, t)$. Put

$$
\begin{equation*}
\sum_{j=1}^{s} n_{j}=S \quad \text { and } \quad \sum_{j=1}^{t} p_{j}=T \tag{2.7}
\end{equation*}
$$

Thus, $S \geq s$ and $T \geq l_{0} t \geq t$. We see from (2.6) that

$$
\begin{equation*}
P=P[f](z)=\frac{\prod_{j=1}^{s}\left(z-\alpha_{j}\right)^{n_{j}\left(l_{0}+l^{\prime}\right)-m^{\prime}}}{\prod_{j=1}^{t}\left(z-\beta_{j}\right)^{p_{j}\left(l_{0}+l^{\prime}\right)+m^{\prime}}} g_{P}(z)=\frac{p(z)}{q(z)}, \quad \text { say } \tag{2.8}
\end{equation*}
$$

where $g_{P}(z)$ is a polynomial of degree at most $m^{\prime}(s+t-1)$. On differentiating (2.8),

$$
\begin{equation*}
P^{(m)}=\frac{\prod_{j=1}^{s}\left(z-\alpha_{j}\right)^{n_{j}\left(l_{0}+l^{\prime}\right)-\left(m^{\prime}+m\right)}}{\prod_{j=1}^{t}\left(z-\beta_{j}\right)^{p_{j}\left(l_{0}+l^{\prime}\right)+\left(m^{\prime}+m\right)}} \tilde{g}(z), \tag{2.9}
\end{equation*}
$$

where \tilde{g} is a polynomial of degree at most $\left(m^{\prime}+m\right)(s+t-1)$, and

$$
\begin{equation*}
P^{(m+1)}=\frac{\prod_{j=1}^{s}\left(z-\alpha_{j}\right)^{n_{j}\left(l_{0}+l^{\prime}\right)-\left(m^{\prime}+m+1\right)}}{\prod_{j=1}^{t}\left(z-\beta_{j}\right)^{p_{j}\left(l_{0}+l^{\prime}\right)+\left(m^{\prime}+m+1\right)}} \tilde{g}(z) \tag{2.10}
\end{equation*}
$$

where $\tilde{\tilde{g}}$ is a polynomial of degree at most $\left(m^{\prime}+m+1\right)(s+t-1)$.
Case 2.1. First assume that $P[f]-\omega$ has exactly one zero, say z_{0}. In view of (2.8),

$$
\begin{equation*}
P[f](z)=\omega(z)+\frac{B\left(z-z_{0}\right)^{l}}{\prod_{j=1}^{t}\left(z-\beta_{j}\right)^{p_{j}\left(l_{0}+l^{\prime}\right)+m^{\prime}}} \tag{2.11}
\end{equation*}
$$

where l is a positive integer and B is a nonzero constant. On differentiating (2.11),

$$
\begin{equation*}
P^{(m)}=C+\frac{\left(z-z_{0}\right)^{l-m} \hat{g}(z)}{\prod_{j=1}^{t}\left(z-\beta_{j}\right)^{p_{j}\left(l_{0}+l^{\prime}\right)+\left(m^{\prime}+m\right)}}, \tag{2.12}
\end{equation*}
$$

where \hat{g} is a polynomial with degree at most $m t$ and $C \neq 0$ is a constant, and

$$
\begin{equation*}
P^{(m+1)}=\frac{\left(z-z_{0}\right)^{l-(m+1)} \hat{\hat{g}}(z)}{\prod_{j=1}^{t}\left(z-\beta_{j}\right)^{p_{j}\left(l_{0}+l^{\prime}\right)+\left(m^{\prime}+m+1\right)}}, \tag{2.13}
\end{equation*}
$$

where $\hat{\hat{g}}$ is a polynomial of degree at most $(m+1) t \leq l_{0} t$. On comparing (2.9) and (2.12), we see that $z_{0} \neq \alpha_{j}(j=1,2, \ldots, s)$ (otherwise, for some j, z_{0} is a zero of $P^{(m)}[f]$ from (2.9) and then from (2.12), $P^{(m)}[f]\left(z_{0}\right)=0$, which implies that $C=0$, which is a contradiction).

Case 2.1.1. Suppose that $l \neq T\left(l_{0}+l^{\prime}\right)+t m^{\prime}+m$. Then from (2.11) and using (2.8), we see that $\operatorname{deg}(p) \geq \operatorname{deg}(q)$ and $T\left(l_{0}+l^{\prime}\right)+t m^{\prime} \leq S\left(l_{0}+l^{\prime}\right)-m^{\prime} s+\operatorname{deg}\left(g_{P}\right)$. This implies that

$$
T\left(l_{0}+l^{\prime}\right) \leq S\left(l_{0}+l^{\prime}\right)-m^{\prime}<S\left(l_{0}+l^{\prime}\right)
$$

whence $T<S$. Also, from (2.10) and (2.13),

$$
S\left(l_{0}+l^{\prime}\right)-\left(m^{\prime}+m+1\right) s \leq \operatorname{deg}(\hat{\hat{g}}) \leq l_{0} t \leq T
$$

which gives

$$
S\left(l_{0}+l^{\prime}\right) \leq\left(m^{\prime}+m+1\right) s+T \leq\left(m^{\prime}+l_{0}\right) S+T<\left(m^{\prime}+1+l_{0}\right) S \leq\left(l^{\prime}+l_{0}\right) S,
$$

that is, $S<S$, which is absurd.
Case 2.1.2. Suppose that $l=T\left(l_{0}+l^{\prime}\right)+t m^{\prime}+m$. Then we have two possibilities: either $S>T$ or $S \leq T$. For the case $S>T$, we can proceed exactly as in Case 2.1.1. Therefore, we need only consider the case $S \leq T$. From (2.10) and (2.13), $\left(z-z_{0}\right)^{l-m-1}$ divides $\tilde{\tilde{g}}(z)$ and so $l-m-1 \leq \operatorname{deg}(\tilde{\tilde{g}}) \leq\left(m^{\prime}+m+1\right)(s+t-1)$. This implies that

$$
\begin{aligned}
T\left(l_{0}+l^{\prime}\right)+t m^{\prime}+m-m-1 & \leq\left(m^{\prime}+m+1\right)(s+t-1) \\
& =m^{\prime}(s-1)+(m+1)(s+t-1)+t m^{\prime}
\end{aligned}
$$

and so

$$
\begin{aligned}
T\left(l_{0}+l^{\prime}\right) & \leq m^{\prime}(s-1)+(m+1)(s+t)-m \\
& \leq m^{\prime}(s-1)+(m+1)(s+t) \leq m^{\prime}(s-1)+l_{0}(s+t) \\
& <\left(m^{\prime}+l_{0}\right) S+T \leq\left(m^{\prime}+l_{0}+1\right) T \leq\left(l^{\prime}+l_{0}\right) T
\end{aligned}
$$

which is again absurd.
Case 2.2. Finally, we suppose that $P[f]-\omega$ has no zeros. Then $l=0$ in (2.11), giving

$$
P[f](z)=\omega(z)+\frac{B}{\prod_{j=1}^{t}\left(z-\beta_{j}\right)^{p_{j}\left(l_{0}+l^{\prime}\right)+m^{\prime}}},
$$

where $B \neq 0$ is a constant, and so

$$
P^{(m+1)}=B \frac{h(z)}{\prod_{j=1}^{t}\left(z-\beta_{j}\right)^{p_{j}\left(l_{0}+l^{\prime}\right)+m^{\prime}+m+1}},
$$

where $\operatorname{deg}(h) \leq(m+1) t-1<(m+1) t \leq l_{0} t$. Proceeding as in Case 2.1 leads to a contradiction.

3. Proofs of the main results

Since normality is a local property, we can assume that D is the open unit disc \mathbb{D}.
Proof of Theorem 1.5. Suppose on the contrary that \mathcal{F} is not normal at $z=0$. We consider the following cases.

Case 1. Let $h(0) \neq 0$. Then, by Zalcman's lemma [19, page 216], there are a sequence $\left\{f_{j}\right\}$ in \mathcal{F}, a sequence $\left\{z_{j}\right\}$ of complex numbers in \mathbb{D} with $z_{j} \rightarrow 0$ as $j \rightarrow \infty$ and a sequence $\left\{\rho_{j}\right\}$ of positive real numbers with $\rho_{j} \rightarrow 0$ as $j \rightarrow \infty$ such that the sequence $g_{j}(z):=\rho_{j}^{-\alpha} f_{j}\left(z_{j}+\rho_{j} z\right)$ converges locally uniformly with respect to the spherical metric to a nonconstant meromorphic function $g(z)$ having bounded spherical derivative on \mathbb{C}. Clearly, $\left(g_{j}^{l_{i}}\right)^{\left(m_{i}\right)} \rightarrow\left(g^{l_{i}}\right)^{\left(m_{i}\right)}$ and so $P\left[g_{j}\right] \rightarrow P[g]$ locally uniformly on \mathbb{C}.

Since g is nonconstant and $l_{i} \geq m_{i}$ for all $i=1,2, \ldots, k$, it follows that $P[g] \not \equiv 0$. We claim that $P[g]$ is nonconstant. For, suppose that

$$
\begin{equation*}
P[g] \equiv a, \quad a \in \mathbb{C} \backslash\{0\} \tag{3.1}
\end{equation*}
$$

Then, by definition of $P[g]$ with $l_{0}>0$ and $l_{i} \geq m_{i}$ for all i, we see that g is entire and nonvanishing. So, for some $c \neq 0, g(z)=e^{c z+d}$, whence

$$
P[g](z)=\prod_{i=1}^{k}\left(l_{i} c\right)^{m_{i}} e^{\left(l_{0}+l^{\prime}\right)(c z+d)}
$$

which is nonconstant, in contradiction to (3.1). Hence, the claim follows.
Taking $\alpha=m^{\prime} /\left(l_{0}+l^{\prime}\right)$, we find that $P\left[g_{j}\right](z)=P\left[f_{j}\right]\left(z_{j}+\rho_{j} z\right)$. Thus, on every compact subset of \mathbb{C} not containing poles of g,

$$
P\left[f_{j}\right]\left(z_{j}+\rho_{j} z\right)-h\left(z_{j}+\rho_{j} z\right)=P\left[g_{j}\right](z)-h\left(z_{j}+\rho_{j} z\right) \longrightarrow P[g](z)-h(0)=P[g](z)-h_{0},
$$

spherically uniformly, where $h_{0}=h(0) \neq 0$. In view of Theorems 2.1 and 2.2, let u_{0} and v_{0} be two distinct zeros of $P[g]-h_{0}$ in \mathbb{C}. Since zeros are isolated, we consider two nonintersecting neighbourhoods, $N\left(u_{0}\right)$ and $N\left(v_{0}\right)$, such that $N\left(u_{0}\right) \cup N\left(v_{0}\right)$ does not contain any other zero of $P[g]-h_{0}$. By Hurwitz's theorem, we find that for sufficiently large values of j, there exist points $u_{j} \in N\left(u_{0}\right)$ and $v_{j} \in N\left(v_{0}\right)$ such that

$$
P\left[f_{j}\right]\left(z_{j}+\rho_{j} u_{j}\right)-h\left(z_{j}+\rho_{j} u_{j}\right)=0 \quad \text { and } \quad P\left[f_{j}\right]\left(z_{j}+\rho_{j} v_{j}\right)-h\left(z_{j}+\rho_{j} v_{j}\right)=0 .
$$

Since $P[f]$ and $P[g]$ share $h \mathrm{IM}$ in \mathbb{D}, for each pair f, g of members of \mathcal{F}, for a fixed n and for all j,

$$
P\left[f_{n}\right]\left(z_{j}+\rho_{j} u_{j}\right)-h\left(z_{j}+\rho_{j} u_{j}\right)=0 \quad \text { and } \quad P\left[f_{n}\right]\left(z_{j}+\rho_{j} v_{j}\right)-h\left(z_{j}+\rho_{j} v_{j}\right)=0
$$

Taking $j \rightarrow \infty$ and noting that $z_{j}+\rho_{j} u_{j} \rightarrow 0$ and $z_{j}+\rho_{j} v_{j} \rightarrow 0$ as $j \rightarrow \infty$, we find that $P\left[f_{n}\right](0)-h(0)=0$, that is, $P\left[f_{n}\right](0)=h(0)=h_{0} \neq 0$. Since the zeros of $P\left[f_{n}\right]-h$ have no accumulation point, for sufficiently large $j, z_{j}+\rho_{j} u_{j}=0=z_{j}+\rho_{j} v_{j}$. But this means that $u_{j}=-z_{j} / \rho_{j}=v_{j}$ is a point in both of the neighbourhoods $N\left(u_{0}\right)$ and $N\left(v_{0}\right)$, which is a contradiction.

Case 2. Suppose that $h(0)=0$. Then we can write $h(z)=z^{m} h_{1}(z)$, where $m \in \mathbb{N}$ and $h_{1}(z)$ is a holomorphic function in \mathbb{D} such that $h_{1}(0) \neq 0$. We may take $h_{1}(0)=1$. Since $0<\left(m+m^{\prime}\right) /\left(l_{0}+l^{\prime}\right)<1$, as in Case 1, by Zalcman's lemma [19, page 216], we obtain a sequence of rescaled functions $g_{j}(z)=\rho_{j}^{-\left(m+m^{\prime}\right) /\left(l_{0}+l^{\prime}\right)} f_{j}\left(z_{j}+\rho_{j} z\right)$ which converges locally uniformly with respect to the spherical metric to a nonconstant meromorphic function $g(z)$ on \mathbb{C} having bounded spherical derivatives.

We now consider the following two subcases of Case 2.
Case 2.1. Suppose that there exists a subsequence of z_{j} / ρ_{j}, which for convenience we take to be z_{j} / ρ_{j} itself, such that $z_{j} / \rho_{j} \rightarrow \infty$ as $j \rightarrow \infty$. Consider the family

$$
\mathcal{G}:=\left\{G_{j}(z)=z_{j}^{-\left(m+m^{\prime}\right) /\left(l_{0}+l^{\prime}\right)} f_{j}\left(z_{j}+z_{j} z\right): f_{j} \in \mathcal{F}\right\}
$$

defined on \mathbb{D}, for which

$$
\begin{aligned}
P\left[G_{j}\right](z) & =G_{j}^{l_{0}}\left(G_{j}^{l_{1}}\right)^{\left(m_{1}\right)} \cdots\left(G_{j}^{l_{k}}\right)^{\left(m_{k}\right)}(z) \\
& =z_{j}^{-\left(m+m^{\prime} / l_{0}+l^{\prime}\right)\left(l_{0}+l^{\prime}\right)+m^{\prime}} P\left[f_{j}\right]\left(z_{j}+z_{j} z\right)=z_{j}^{-m} P\left[f_{j}\right]\left(z_{j}+z_{j} z\right),
\end{aligned}
$$

that is, $P\left[f_{j}\right]\left(z_{j}+z_{j} z\right)=z_{j}^{m} P\left[G_{j}\right](z)$. Now, by hypothesis, for $f_{a}, f_{b} \in \mathcal{F}$,

$$
\begin{aligned}
& \left(P\left[f_{a}\right]-h\right)\left(z_{j}+z_{j} z\right)=0 \Leftrightarrow\left(P\left[f_{b}\right]-h\right)\left(z_{j}+z_{j} z\right)=0 \\
& \quad \Rightarrow z_{j}^{m} P\left[G_{a}\right](z)=z_{j}^{m}(1+z)^{m} h_{1}\left(z_{j}+z_{j} z\right) \Leftrightarrow z_{j}^{m} P\left[G_{b}\right](z)=z_{j}^{m}(1+z)^{m} h_{1}\left(z_{j}+z_{j} z\right) \\
& \quad \Rightarrow P\left[G_{a}\right](z)=(1+z)^{m} h_{1}\left(z_{j}+z_{j} z\right) \Leftrightarrow P\left[G_{b}\right](z)=(1+z)^{m} h_{1}\left(z_{j}+z_{j} z\right) .
\end{aligned}
$$

Since $(1+z)^{m} h_{1}\left(z_{j}+z_{j} z\right) \neq 0$ at the origin, it follows from Case 1 that \mathcal{G} is normal in \mathbb{D} and hence there exists a subsequence of $\left\{G_{j}\right\}$ in \mathcal{G}, which we may take to be $\left\{G_{j}\right\}$ itself, such that $G_{j} \rightarrow G$, locally uniformly on \mathbb{D} with respect to the spherical metric.

If $G(0) \neq 0$, then we see that

$$
\begin{aligned}
g_{j}(z) & =\rho_{j}^{-\left(m+m^{\prime}\right) /\left(l_{0}+l^{\prime}\right)} f_{j}\left(z_{j}+\rho_{j} z\right)=\left(\frac{z_{j}}{\rho_{j}}\right)^{\left(m+m^{\prime}\right) /\left(l_{0}+l^{\prime}\right)} z_{j}^{-\left(m+m^{\prime}\right) /\left(l_{0}+l^{\prime}\right)} f_{j}\left(z_{j}+\rho_{j} z\right) \\
& =\left(\frac{z_{j}}{\rho_{j}}\right)^{\left(m+m^{\prime}\right) /\left(l_{0}+l^{\prime}\right)} G_{j}\left(\frac{\rho_{j}}{z_{j}} z\right),
\end{aligned}
$$

which converges locally uniformly with respect to the spherical metric to ∞ on \mathbb{C}. This implies that $g(z) \equiv \infty$, which is a contradiction. Thus, we must have $G(0)=0$, which implies that $G^{\prime}(0) \neq \infty$. Next, for each $z \in \mathbb{C}$,

$$
g_{j}^{\prime}(z)=\rho_{j}^{-\left(m+m^{\prime}\right) /\left(l_{0}+l^{\prime}\right)+1} f_{j}^{\prime}\left(z_{j}+\rho_{j} z\right)=\left(\frac{\rho_{j}}{z_{j}}\right)^{-\left(m+m^{\prime}\right) /\left(l_{0}+l^{\prime}\right)+1} G_{j}^{\prime}\left(\frac{\rho_{j}}{z_{j}} z\right)
$$

and $\left(m+m^{\prime}\right) /\left(l_{0}+l^{\prime}\right)<1$. Therefore, $g_{j}^{\prime}(z) \rightarrow 0$ spherically uniformly as $j \rightarrow \infty$. But this implies that g is constant, which is a contradiction.
Case 2.2. Suppose that there exists a subsequence of z_{j} / ρ_{j}, which, for simplicity, we take to be z_{j} / ρ_{j} itself, such that $z_{j} / \rho_{j} \rightarrow c$ as $j \rightarrow \infty$, where c is a finite number. Then

$$
H_{j}(z)=\rho_{j}^{-\left(m+m^{\prime}\right) /\left(l_{0}+l^{\prime}\right)} f_{j}\left(\rho_{j} z\right)=g_{j}\left(z-\frac{z_{j}}{\rho_{j}}\right) \xrightarrow{\chi} g(z-c):=H(z)
$$

on \mathbb{C}. Note that $P\left[H_{j}\right](z)=\rho_{j}^{-m} P\left[f_{j}\right]\left(\rho_{j} z\right)$. For each f_{a} and f_{b} in $\mathcal{F}, P\left[f_{a}\right]$ and $P\left[f_{b}\right]$ share h IM, so

$$
\begin{equation*}
P\left[f_{a}\right]\left(\rho_{j} z\right)=h\left(\rho_{j} z\right) \Leftrightarrow P\left[f_{b}\right]\left(\rho_{j} z\right)=h\left(\rho_{j} z\right) . \tag{3.2}
\end{equation*}
$$

That is,

$$
\begin{equation*}
P\left[H_{a}\right](z)=z^{m} h_{1}\left(\rho_{j} z\right) \Leftrightarrow P\left[H_{b}\right](z)=z^{m} h_{1}\left(\rho_{j} z\right) \tag{3.3}
\end{equation*}
$$

We claim that $P[H](z) \not \equiv z^{m}$. If, on the contrary, $P[H] \equiv z^{m}$, then $z=0$ is the only possible zero of H. If H is transcendental, then $H(z)=z^{\alpha} e^{Q(z)}$ for some nonnegative integer α and a polynomial Q. Thus, $\left(H^{l_{i}}\right)^{\left(m_{i}\right)}(z)=p(z) e^{l_{i} Q(z)}$, where $p(z)(\not \equiv 0)$ is a rational function. It follows that $P[H]$ is also transcendental, which is not the case.

On the other hand, if H is rational and $z=0$ is a zero of H, then H is a polynomial. Clearly, $\operatorname{deg}(P[H]) \geq l_{0}+1>m$, which is again a contradiction.

On compact subsets of \mathbb{C}, not containing poles of H, we see that

$$
P\left[H_{j}\right](z)-z^{m} h_{1}\left(\rho_{j} z\right) \longrightarrow P[H](z)-z^{m}
$$

spherically uniformly. Since $P[H](z) \not \equiv z^{m}$, by Theorems 2.1 and $2.2, P[H](z)-z^{m}$ has at least two distinct zeros in \mathbb{C}. By proceeding in the same way as in Case 1, we arrive at a contradiction.

Putting all the cases together, it follows that \mathcal{F} must be normal in \mathbb{D}.
Proof of Theorem 1.9. Irrespective of any of the conditions (i), (ii) and (iii), the ideas used in Case 1 of the proof of Theorem 1.5 lead us to the conclusion that $P[g](z) \not \equiv h(0)=h_{0}$ in \mathbb{C}.

If condition (i) holds, then we claim that $P[g](z)-h_{0}$ has at most one zero in \mathbb{C}, in violation of the conclusions of Theorems 2.1 and 2.2 , thereby proving the normality of \mathcal{F}. Suppose, on the contrary, that $P[g](z)-h_{0}$ has at least two distinct zeros, say ζ_{0} and ζ_{0}^{*}. By Hurwitz's theorem, there exist points $\zeta_{j} \rightarrow \zeta_{0}$ and $\zeta_{j}^{*} \rightarrow \zeta_{0}^{*}$ such that

$$
P\left[f_{j}\right]\left(z_{j}+\rho_{j} \zeta_{j}\right)-h\left(z_{j}+\rho_{j} \zeta_{j}\right)=0 \quad \text { and } \quad P\left[f_{j}\right]\left(z_{j}+\rho_{j} \zeta_{j}^{*}\right)-h\left(z_{j}+\rho_{j} \zeta_{j}^{*}\right)=0
$$

for sufficiently large j. Since $P\left[f_{j}\right]\left(z_{j}+\rho_{j} z\right)-h\left(z_{j}+\rho_{j} z\right)$ has at most one zero, this contradicts the fact that ζ_{0} and ζ_{0}^{*} are distinct. Hence, the claim follows.

Next we prove the normality of \mathcal{F} when condition (ii) holds. By Theorems 2.1 and 2.2, $P[g](z)-h_{0}$ must have a zero, say ζ_{0}, and hence $g\left(\zeta_{0}\right) \neq \infty$. Further, by Hurwitz's theorem, for sufficiently large j, there exists a sequence $\left\{\zeta_{j}\right\}$ converging to ζ_{0} such that

$$
P\left[f_{j}\right]\left(z_{j}+\rho_{j} \zeta_{j}\right)-h\left(z_{j}+\rho_{j} \zeta_{j}\right)=0
$$

By hypothesis,

$$
\left|g_{j}\left(\zeta_{j}\right)\right|=\rho_{j}^{-m^{\prime} /\left(l_{0}+l^{\prime}\right)}\left|f_{j}\left(z_{j}+\rho_{j} \zeta_{j}\right)\right| \geq \rho_{j}^{-m^{\prime}\left(l_{0}+l^{\prime}\right)} M
$$

Since $g\left(\zeta_{0}\right) \neq \infty$ in some neighbourhood N of ζ_{0}, it follows that for sufficiently large $j, g_{j}(z)$ converges uniformly to $g(z)$ in N. Thus, for given $\epsilon>0$ and for every $z \in N$,

$$
\left|g_{j}(z)-g(z)\right|<\epsilon
$$

for sufficiently large j. Therefore, for sufficiently large values of j,

$$
\left|g\left(\zeta_{j}\right)\right| \geq\left|g_{j}\left(\zeta_{j}\right)\right|-\left|g\left(\zeta_{j}\right)-g_{j}\left(\zeta_{j}\right)\right|>\rho_{j}^{-m^{\prime} /\left(l_{0}+l^{\prime}\right)} M-\epsilon
$$

which implies that g has a pole at ζ_{0}, which is not the case.
Finally, we prove the normality of \mathcal{F} when condition (iii) holds. As in the preceding discussion,

$$
P\left[f_{j}\right]\left(z_{j}+\rho_{j} \zeta_{j}\right)-h\left(z_{j}+\rho_{j} \zeta_{j}\right)=0
$$

Since $\alpha=m^{\prime} /\left(l_{0}+l^{\prime}\right)$ for some positive l_{i} and m_{i},

$$
\left|\left(g_{j}^{l_{i}}\right)^{\left(m_{i}\right)}\left(\zeta_{j}\right)\right|=\rho_{j}^{m_{i}-\alpha l_{i}}\left|\left(f_{j}^{l_{i}}\right)^{\left(m_{i}\right)}\left(z_{j}+\rho_{j} \zeta_{j}\right)\right| \leq M \rho_{j}^{m_{i}-\left(m^{\prime} l_{i} / l_{0}+l^{\prime}\right)} \rightarrow 0 \quad \text { as } j \rightarrow \infty .
$$

Thus, $\left(g^{l_{i}}\right)^{\left(m_{i}\right)}\left(\zeta_{0}\right)=\lim _{j \rightarrow \infty}\left(g_{j}^{l_{i}}\right)^{\left(m_{i}\right)}\left(\zeta_{j}\right)=0$, which implies that $P[g]\left(\zeta_{0}\right)=0 \neq h_{0}$. This is a contradiction.

References

[1] W. Bergweiler, 'Bloch's principle', Comput. Methods Funct. Theory 6 (2006), 77-108.
[2] K. S. Charak and J. Rieppo, 'Two normality criteria and converse of the Bloch principle', J. Math. Anal. Appl. 353 (2009), 43-48.
[3] K. S. Charak and S. Sharma, 'Value distribution and normality of meromorphic functions involving partial sharing of small functions', Turkish J. Math., to appear.
[4] K. S. Charak and S. Sharma, 'A value distribution result leading to normality criteria', Southeast Asian Bull. Math., to appear.
[5] K. S. Charak and V. Singh, 'Two normality criteria and counterexamples to the converse of Bloch's principle', Kodai Math. J. 38 (2015), 672-686.
[6] G. Dethloff, T. V. Tan and N. V. Thin, 'Normal criteria for families of meromorphic functions', J. Math. Anal. Appl. 411 (2014), 675-683.
[7] D. Drasin, 'Normal families and Nevanlinna theory', Acta Math. 122 (1969), 231-263.
[8] G. Dutt and S. Kumar, 'Some normality criteria', Turkish J. Math., to appear.
[9] W. K. Hayman, Meromorphic Functions (Clarendon Press, Oxford, 1964).
[10] Y. Jiang and Z. Gao, 'Normal families of meromorphic functions sharing a holomorphic function and the converse of the Bloch principle', Acta Math. Sci. 32B (2012), 1503-1512.
[11] I. Lahiri, 'A simple normality criterion leading to a counter example to the converse of the Bloch principle', New Zealand J. Math. 34 (2005), 61-65.
[12] B. Q. Li, 'On the Bloch heuristic principle, normality and totally ramified values', Arch. Math. 87 (2006), 417-426.
[13] P. Montel, 'Sur les suites infinies de fonctions’, Ann. Sci. Éc. Norm. Supér. 24 (1907), 233-334.
[14] L. A. Rubel, 'Four counterexamples to Bloch's principle', Proc. Amer. Math. Soc. 98 (1986), 257-260.
[15] J. L. Schiff, Normal Families (Springer, Berlin, 1993).
[16] W. Schwick, 'Sharing values and normality', Arch. Math. 59 (1992), 50-54.
[17] A. P. Singh, 'On order of homogeneous differential polynomials', Indian J. Pure Appl. Math. 16 (1985), 791-795.
[18] J. Xu and W. Cao, 'Some normality criteria of meromorphic functions', J. Inequal. Appl. 2010 (2010), 926302, 10 pages.
[19] L. Zalcman, 'Normal families: new perspectives', Bull. Amer. Math. Soc. 35 (1998), 215-230.

KULDEEP SINGH CHARAK, Department of Mathematics, University of Jammu, Jammu-180 006, India
 e-mail: kscharak7@rediffmail.com

SHITTAL SHARMA, Department of Mathematics, University of Jammu, Jammu-180 006, India e-mail: shittalsharma_mat07@rediffmail.com

[^0]: The work of the second author is supported by University Grants Commission (UGC), India (No. F.17-77/08(SA-1)).
 (C) 2016 Australian Mathematical Publishing Association Inc. 0004-9727/2016 \$16.00

