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Abstract. Let p be a rational prime number. We refine Brauer’s elementary diagonalisation argument
to show that any system ofr homogeneous polynomials of degreed, with rational coefficients,
possesses a non-trivialp-adic solution provided only that the number of variables in this system

exceeds(rd2)2d�1
. This conclusion improves on earlier results of Leep and Schmidt, and of Schmidt.

The methods extend to provide analogous conclusions in field extensions ofQp , and in purely
imaginary extensions ofQ. We also discuss lower bounds for the number of variables required to
guarantee local solubility.
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1. Introduction

A basic problem in the study of diophantine equations is that of determining condi-
tions which ensure the local solubility of a given system of equations. While the real
or complex aspect of this problem is a straightforward issue for algebraic geome-
try, whether or not there exist non-trivialp-adic zeros is in general a problem of
considerable complexity. Given a field for which diagonal equations in sufficient-
ly many variables are soluble, such as thep-adic fields, an elementary inductive
argument of Brauer [8] shows that a system of homogeneous polynomials has a
non-trivial zero, provided only that the system has sufficiently many variables in
terms of the number and degrees of the polynomials. For many years it was thought
that the number of variables required in Brauer’s method would necessarily be
astronomical, but Leep and Schmidt [19] have devised refinements which yield
bounds of terrestrial magnitude. Their methods rest in part on the weighty body of
work on simultaneous additive equations due to Davenport and Lewis [12–14], and
indeed Schmidt [30] has obtained further improvements by introducing substantial
extensions to this corpus. In this paper we provide a refinement of Brauer’s method
which leads to sizeable improvements on the bounds of Leep and Schmidt [19], and
of Schmidt [30], and which, moreover, makes use only of the rather easier theory
of single additive equations (see [11]). In addition to providing upper bounds for
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the number of variables required to guarantee the local solubility of a system of
forms, we are also able to make progress on lower bounds, building modestly on
work described in [2, 9, 22].

In order to describe our new results we require some notation, which we adapt
from [19]. Given anr-tuple of polynomialsF = (F1; : : : ; Fr) with coefficients in
a fieldk, denote by�(F) the number of variables appearing explicitly inF. Define
Hd;r(k) to be the set ofr-tuples of homogeneous polynomials of degreed, with
coefficients ink, which possess no non-trivial zeros overk, and defineDd;r(k) to
be the corresponding set of diagonal homogeneous polynomials. Write

vd;r(k) = sup
g2Hd;r(k)

�(g) and �d;r(k) = sup
f2Dd;r(k)

�(f):

For brevity we writevd(k) for vd;1(k) and�d(k) for �d;1(k). Note that whenever
s > vd;r(k), any system ofr homogeneous polynomial equations of degreed,
with coefficients ink, and possessings variables, has a non-trivial solution over
k. Similarly, whenevers > �d(k), andai 2 k (1 6 i 6 s), then the equation
a1x

d
1 + � � �+ asx

d
s = 0 has a non-trivial solution overk.

The refinement of Brauer’s method described in Sect. 2 leads to bounds on the
number of variables required to obtain solution sets containing linear subspaces of
specified dimension. These results being of somewhat technical interest, we defer
such considerations to Sect. 2, and for the moment announce only the simpler
bounds recorded in Theorem 1 below.

THEOREM 1. Letd be a positive integer, and suppose thatk is a field satisfying
the property that�i(k) <1 (2 6 i 6 d). Then

vd;r(k) 6 2r2d�1
�2d�2

d

d�1Y
i=2

(�i + 1)2i�2
:

For comparison, Leep and Schmidt [19, Thm. 1] have obtained a bound of the
shape

vd;r(k) 6 v2v
2
3 : : : v

2d�2

d r2d�1
(21�2d�1

+O(r�1
)): (1.1)

For most fields of interest, the available upper bounds forvh are considerably
weaker, in practice, than upper bounds for�h, and so the bound forvd;r(k) provided
by Theorem 1 is a substantial sharpening of (1.1).

We discuss several corollaries to Theorem 1 in Sect. 3. Whenk = Qp , for
example, one can employ the bound�d(Qp) 6 d2 due to Davenport and Lewis [11]
together with Theorem 1 to deduce the following corollary.

COROLLARY 1.1.For each rational prime numberp, one hasvd;r(Qp) 6 (rd2)2d�1
,

and in particular,vd(Qp) 6 d2d .
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We note that previous work of Leep and Schmidt [19, Thm. 3] had shown that
for each positive number", one hasvd(Qp) �" e

(d!)2(1+")d , this bound having
been improved by Schmidt [30, Thm. 3] tovd(Qp) = o(e2dd!). The superiority of
our new estimate is self evident.

It transpires that our conclusions remain strong in number fields. Thus ifK is
a finite extension ofQp , one may combine an estimate of Skinner [34] for�h(K)

in combination with Theorem 1 to obtain Corollary 1.2 below.

COROLLARY 1.2.Let d be an integer withd > 2, let p be a prime number, and
letK be a finite extension ofQp . Thenvd;r(K) 6 r2d�1

e2d+2(logd)2
.

We are also able to obtain an explicit version of a theorem of Peck [25].

COROLLARY 1.3.Letd be an integer withd > 2, and letL be a purely imaginary
field extension ofQ. Thenvd;r(L) 6 r2d�1

e2dd.

Brauer’s interest in the local solubility problem for systems of forms seems to
have stemmed in part from investigations concerning Hilbert’s resolvant problem
(see [8, 31]). A problem which naturally arises in this context is that of bounding
vd;r(Q

rad), whereQrad denotes the radical closure ofQ, which is to say the maximal
algebraic field extension ofQ with the property that each finite degree subfield is a
solvable extension ofQ. In Sect. 4 we briefly investigate upper and lower bounds
for vd;r(Qrad), which we record in Theorem 2 below.

THEOREM 2. Let d be an integer withd > 2. Thenvd;r(Qrad) 6 (2r2)2d�2
.

Moreover, for infinitely many integersd one hasvd(Qrad) > d
log 2
log 5 .

In Sect. 5 we address the problem of obtaining lower bounds forvd;r(Qp),
pursuing a line of enquiry originating in a conjecture of Artin [4, p.x] which
purports that for every prime numberp, and integersd; r, one hasvd;r(Qp) = rd2.
For some time the available evidence seemed to support Artin’s Conjecture. The
caser = 1, d = 2 of the conjecture was proved in the last century, and the case
r = 1, d = 3 was established by Demyanov [15] and Lewis [20] around 1950.
Furthermore, Ax and Kochen [5] were able to show that for eachr andd, there
exists a numberp0(r; d) such that wheneverp > p0(r; d), one hasvd;r(Qp) = rd2.
However, Terjanian [35] exhibited an example establishing thatv4(Q2) > 18, thus
disproving Artin’s Conjecture, and indeed later he was able to improve this lower
bound tov4(Q2) > 20 (see [36]). The work of Arkhipov and Karatsuba [2, 3],
Lewis and Montgomery [22], and Brownawell [9] (see also Alemu [1] for an
analogous conclusion in field extensions ofQp), exhibits formsF (x) for which
Artin’s Conjecture fails very badly. In order to be precise, we define

 (d; ") = exp
�

d

(logd)(log logd)1+"

�
:
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Then [22, Thm. 1], for example, establishes that for each prime numberp and
positive number", there are infinitely manyd such that some formF (x) 2
Z[x1; : : : ; xn] of degreed with n >  (d; ") has only the trivial zero overQp ,
whencevd(Qp) >  (d; "). By taking r copies of the formF (x) with disjoint
variables, one readily deduces that for each prime numberp and positive number
", there are infinitely manyd such thatvd;r(Qp) > r (d; "). However, in common
with the examples generated by the argument of the above-mentioned authors, the
degreesd corresponding to near-extremal examples belong to an exponentially thin
set. By incorporating rather modest modifications into the argument of Lewis and
Montgomery, we are able to both sharpen the latter lower bound onvd;r(Qp), and
establish such bounds for all larged which are divisible byp � 1 (for oddp). In
other words, bad failures of Artin’s Conjecture are essentially ubiquitous, and in
particular occur for all large even degrees.

THEOREM 3. Let p be a prime number, and defineq = q(p) to be 6 when
p = 2, and to bep � 1 whenp > 2. Further, let�p = (logp)=(6q). Then there
exist positive numbersd0(") andr0(d; ") with the property that for each positive
number", wheneverd is an integer divisible byq with d > d0("), andr > r0(d; "),
one hasvd;r(Qp) > re(�p�")d.

While it is notoriously difficult to obtain explicit upper bounds on the number
p0(r; d) arising in the work of Ax and Kochen [5] alluded to above, our methods
provide a cheap lower bound which may be of interest.

THEOREM 4. One has

lim
D!1

sup
16d6D
r2N

p0(r; d)

d
>

1
30
:

We note that while the strength of the lower bound recorded in Theorem 4
can doubtless be improved by using more sophisticated methods, it is difficult
to imagine any approach which could replace the number 1=30 occurring in its
statement by a number exceeding 1.

2. The reduction argument

In this section we launch our proof of Theorem 1 by establishing the reduction pro-
cedure at the heart of our argument. Before describing the details of this argument,
we must record some rather general notation. LetK be a field. We are interested
in the existence of solution sets, overK , of systems of homogeneous polynomial
equations with coefficients inK . When such a solution set contains a linear sub-
space of the ambient space, we define its dimension to be that when considered as
a projective space. We note that this convention differs from that adopted by Leep
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and Schmidt [19]. We denote byG(m)
d (rd; : : : ; r1) the set of(rd+ rd�1+ � � �+ r1)-

tuples of homogeneous polynomials, of whichri have degreei for 1 6 i 6 d,
with coefficients inK , which possess no non-trivial linear space of solutions of
dimensionm overK . We then defineV (m)

d (r) = V
(m)
d (rd; : : : ; r1; K ) by

V
(m)
d (rd; : : : ; r1; K ) = sup

h2G(m)

d
(rd;:::;r1)

�(h):

We observe for future reference thatV
(m)
d (rd; : : : ; r1; K ) is an increasing function

of the argumentsm andri. For the sake of convenience, we abbreviateV
(0)
d (r ; K )

to Vd(r ; K ). Note thatvd;r(K ) = Vd(r;0; : : : ;0;K ).
The proof of the following lemma is motivated by the arguments of [19] leading

to [19, equation (2.13)] and [19, equation (3.1)].

LEMMA 2.1. Let d andri (1 6 i 6 d) be non-negative integers withd > 2 and
rd > 0. Then on writing� for �d(K ), whenever� <1 one has

Vd(rd; rd�1; : : : ; r1; K ) 6 �+ Vd(r
0
d; r

0
d�1; : : : ; r

0
1; K );

wherer0d = rd � 1, and

r0j =
dX
i=j

ri

 
�+ i� j � 1

i� j

!
(1 6 j < d):

Proof. Before embarking on the proof proper, we first set the stage. TakeN to
be any integer withN > � + Vd(r 0; K ). Also, for the sake of convenience, define
the integers~ri by

~ri =

(
rd � 1; wheni = d;

ri; otherwise:

Consider a formF of degreed, and formsGij of degreei (1 6 j 6 ~ri; 1 6 i 6 d),
all havingN variables. We claim that when 16 k 6 �+ 1, there existk linearly
independent vectorsx1; : : : ; xk with the property thatF(t1x1 + � � � + tkxk) is a
diagonal form int1; : : : ; tk, and such thatGij(t1x1+� � �+tkxk) vanishes identically
for 1 6 j 6 ~ri and 16 i 6 d. Since the lemma follows immediately from the case
k = �+ 1 of this claim, the proof of the latter will suffice to establish the former.

We prove the claim by induction, starting with the observation that sinceN >

Vd(r 0; K ), the claim holds trivially whenk = 1. Next, when 16 k 6 �, we
suppose thatx1; : : : ; xk have the claimed property, and seek a vectorxk+1 such
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that x1; : : : ; xk+1 also have the claimed property. We define the polynomialsFu
(0 6 u 6 d) through the expansion

F(y + tx) =
dX

u=0

Fu(y; x)tu; (2.1)

valid for eachx; y 2 KN . Notice thatFu is a form of degreeu in x, and of degree
d� u in y. When 06 v 6 i, 16 j 6 ~ri and 16 i 6 d, we define the polynomials
Gijv similarly through the expansion

Gij(y + tx) =
iX

v=0

Gijv(y; x)tv; (2.2)

and note thatGijv is a form of degreev in x, and of degreei� v in y. LetT be the
subspace ofKN spanned byx1; : : : ; xk, and letS be any subspace ofKN such that
S � T = KN . Thus, sincek 6 �, one has

dim(S) = N � k > Vd(r
0; K ): (2.3)

We aim to choosex 2 S so that for eachy 2 T , one has

Fu(y; x) = 0 (1 6 u 6 d� 1) (2.4)

and

Gijv(y; x) = 0 (0 6 v 6 i; 1 6 j 6 ~ri; 1 6 i 6 d): (2.5)

Having found such anx, on substitutingy = t1x1 + � � � + tkxk into (2.1) and
(2.2), we discover that, by the inductive hypothesis, the formF(y + tx) becomes
a diagonal form int1; : : : ; tk andt, and the formsGij(y + tx) vanish identically.
Thus the inductive hypothesis follows withk + 1 in place ofk.

We now establish the existence of the desired elementx 2 S. Consider an
arbitrary element ofT , sayy = s1x1 + � � � + skxk, and substitute this expression
into (2.4) and (2.5). We find thatFu(y; x) becomes a form of degreed � u in
s1; : : : ; sk, whose coefficients are forms of degreeu in x. Thus, following a simple
counting argument, one finds that the number of such coefficients of degreeu is 

d� u+ k � 1

d� u

!
6

 
�+ d� u� 1

d� u

!
:

Similarly,Gijv(y; x)becomes a form of degreei�v in s1; : : : ; sk, whose coefficients
are forms of degreev in x. The number of such coefficients of degreev is 

i� v + k � 1

i� v

!
6

 
�+ i� v � 1

i� v

!
:
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Moreover for eachi and j one hasGij0(y; x) = Gij(y) = 0. Consequently the
system of equations (2.4) and (2.5) can be satisfied so long as we can findx 2 S
satisfying a system of equations withr0i of degreei for 1 6 i 6 d. But in view of
(2.3), one has dim(S) > Vd(r 0; K ), whence the latter system of equations possesses
a non-trivial solution overK . Recalling the concluding remarks of the preceding
paragraph, we have completed the induction, and hence also the proof of the lemma.

The following corollary provides a convenient simplification of Lemma 2.1.

COROLLARY. With the same notation and hypotheses as in the statement of
Lemma2:1, one has

Vd(rd; rd�1; : : : ; r1; K ) 6 �+ Vd(r
�
d; r

�
d�1; : : : ; r

�
1; K );

wherer�d = rd � 1, and

r�j =

dX
i=j

ri�
i�j (1 6 j < d):

Repeated application of Lemma 2.1, or its corollary, ultimately yields a bound
for Vd(r ; K ) in terms ofVd�1(r 0; K ), for suitabler 0. In the next lemma we make
this observation precise, making use of an argument strikingly similar to that used
in the proof of [19, Lemma 1].

LEMMA 2.2. With the same notation and hypotheses as in the statement of Lemma
2:1, one has

Vd(rd; : : : ; r1; K ) 6 rd�+ Vd�1(sd�1; : : : ; s1; K );

where

sj =
dX
i=j

ri(rd�)
i�j (1 6 j 6 d� 1): (2.6)

Proof. When 16 k 6 d, define the integersr(0)k by takingr(0)k = rk. Further,

when 16 j 6 rd, define the integersr(j)k inductively by

r
(j)
d = r

(j�1)
d � 1 (2.7)

and

r
(j)
k =

dX
i=k

r
(j�1)
i �i�k (1 6 k < d): (2.8)
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Then by applying the corollary to Lemma 2.1 repeatedly, we deduce that when
1 6 j 6 rd, one has

Vd(rd; : : : ; r1; K ) 6 j�+ Vd(r
(j)
d ; : : : ; r

(j)
1 ; K ):

Notice that by (2.7) we have

r
(j)
d = rd � j; (2.9)

and hence, in order to complete the proof of the lemma, it remains only to show
that

r
(rd)
k 6 sk (1 6 k 6 d� 1): (2.10)

We establish (2.10) by proving that when 16 k 6 d � 1 and 16 j 6 rd, one
has

r
(j)
k 6

dX
i=k

ri(j�)
i�k; (2.11)

the special casej = rd of which supplies the desired inequality (2.10). This more
general bound we prove by induction. First observe that by (2.8) we have

r
(1)
k =

dX
i=k

ri�
i�k (1 6 k < d);

whence the inductive hypothesis (2.11) holds whenj = 1. Suppose next that
1 < J 6 rd, and that (2.11) holds for eachj with 1 6 j < J when 16 k < d.
Then by (2.8) and (2.11) one has for eachk with 1 6 k < d,

r
(J)
k 6

dX
i=k

�i�k
dX
l=i

rl
�
(J � 1)�

�l�i
=

dX
l=k

rl�
l�k

lX
i=k

(J � 1)l�i:

Consequently the inductive hypothesis (2.11) holds withj = J . This completes
the induction, and hence also the proof of the lemma.

A comparison of the statement of Lemma 2.2 with [19, Lemma 1] reveals that
the term�d(K ) in the former replacesvd(K ) in the latter. This observation provides
some indication of the nature of our improvements, since the bounds currently
available forvd(K ) are substantially weaker than those for�d(K ).

We will prove below a theorem somewhat more general than Theorem 1, in that
it provides an upper bound forv(m)

d;r (K ), which we define by

v
(m)
d;r (K ) = V

(m)
d (r;0; : : : ;0;K ):

In preparation for the proof of this theorem we require a result due to Leep and
Schmidt [19].
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LEMMA 2.3. Whenm is a positive integer, one has

V
(m)
d (rd; : : : ; r1; K ) 6m+ Vd(td; : : : ; t1; K );

where

tj =
dX
i=j

rim
i�j (1 6 j 6 d):

Proof. Bearing in mind the definitions used by Leep and Schmidt, this lemma
is nothing other than [19, Eqn (3.1)].

THEOREM 2.4.Letm, d andr be non-negative integers withd > 2 andr > 1.
Write �i for �i(K ) (2 6 i 6 d). Then wheneverK is a field for which�i < 1

(2 6 i 6 d), one has

v
(m)
d;r (K ) 6 2(r2�d +mr)2d�2

d�1Y
i=2

(�i + 1)2i�2
:

Proof. We begin by applying Lemma 2.3 to obtain

v
(m)
d;r (K ) = V

(m)
d (r;0; : : : ;0;K ) 6 m+ Vd(r;mr; : : : ;m

d�1r; K ): (2.12)

Having eliminated explicit mention of linear subspaces, we next make use of
Lemma 2.2 to deduce that

v
(m)
d;r (K ) 6 m+ r�d + Vd�1(sd�1; : : : ; s1; K ); (2.13)

where

sj =
dX
i=j

(rmd�i)(r�d)
i�j (1 6 j 6 d� 1): (2.14)

Write

 d = r2�d +mr:

Then it follows from (2.14) that when 16 j 6 d� 1,

sj 6 r(m+ r�d)
d�j

6  
d�j
d 6  2d�j�1

d ;

and thus from (2.13) one has

v
(m)
d;r (K ) 6  d + Vd�1( d;  

2
d; : : : ;  

2d�2

d ; K ): (2.15)
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Having prepared the ground by establishing the estimate (2.15), we now initiate
our basic inductive argument. When 26 k < d we define the integers k by
 k = �k + 1, and define further

Ai =

i�1Y
j=0

 2i�j�1

d�j (1 6 i < d): (2.16)

We claim that when 16 k < d one has

v
(m)
d;r (K ) 6 Ak + Vd�k(Ak; A

2
k; : : : ; A

2d�k�1

k ; K ): (2.17)

Note that sinceA1 =  d, this claim follows from (2.15) in the casek = 1. Suppose
next thatK > 1, and that the proposition holds for 16 k < K. Then (2.17) holds
with k = K � 1, and so on writing� = d �K + 1, an application of Lemma 2.2
yields

v
(m)
d;r (K ) 6 AK�1 +AK�1�� + V��1(t��1; : : : ; t1; K ); (2.18)

where

tj =
�X

i=j

A2��i
K�1

�
AK�1��

�i�j
(1 6 j 6 � � 1):

But on recalling (2.16) we have

tj 6 A
2��j
K�1(�� + 1)��j < A2��j

K�1 
2��j�1

� 6 A2��j�1

K (1 6 j < �):

Thus we deduce from (2.18) that (2.17) holds withk = K, and so the induction is
complete.

Finally, on noting that by (2.16) and (2.17) one has

v
(m)
d;r (K ) 6 Ad�1 + V1(Ad�1; K ) = 2Ad�1 = 2

d�2Y
j=0

 2d�j�2

d�j ;

we complete the proof of the theorem.

We note that Theorem 1 follows immediately from Theorem 2.4 on setting
m = 0.

3. Several consequences of the reduction argument

We have now ascended to the point from which we may harvest the crop of
corollaries stemming from the reduction argument manifesting itself in Theorem

comp4055.tex; 11/11/1994; 13:37; v.7; p.10

https://doi.org/10.1023/A:1000298711968 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000298711968


ON THE LOCAL SOLUBILITY OF DIOPHANTINE SYSTEMS 159

2.4. Since these corollaries will be essentially immediate from suitable bounds on
�i(K ) (2 6 i 6 d), our discussions in this section will be brief.

(a) p-adic fields. In order to establish Corollary 1.1 to Theorem 1 we recall
Davenport and Lewis [11, Thm. 1], which shows that for each primep one has
�d(Qp) 6 d

2. On substituting the latter bound into Theorem 1, we obtain

vd;r(Qp) 6 2(rd)2d�1
d�1Y
i=2

(i2 + 1)2i�2
6 2(rd)2d�1

d�1Y
i=2

d2i�1
6 2r2d�1

d2d�1;

whence Corollary 1.1 follows wheneverd > 2. We note that while a number
of refinements on [11, Thm. 1] have been obtained in particular cases (see, for
example, [16, 24]), these do not lead to substantial improvements in the quality of
Corollary 1.1 to Theorem 1.

(b) p-adic fields. LetK be a finite extension ofQp , letd be an integer withd > 2,
and letf = ordpd. Then Skinner [34] has shown that

�d(K) 6 d((d + 1)maxf2f;1g � 1):

It follows in particular that

�d(K) 6 d((d + 1)maxf2 logd= logp;1g
� 1); (3.1)

and hence, by means of an elementary calculation, that�d(K) < exp(C(logd)2),
whereC = log(18)=(log 2)2 < 8. Consequently an application of Theorem 1, in
combination with the latter upper bound, reveals that

vd;r(K) < 2r2d�1
exp

 
8(logd)2

d�2X
i=0

2i
!
< r2d�1

exp
�
2d+2(logd)2

�
;

whence Corollary 1.2 follows wheneverd > 2.
We note that modest improvements may be achieved in the latter bound by

a more precise analysis. Moreover further refinements may be obtained if one is
prepared to accept bounds which depend on the degree of the field extensionK=Q.

(c) Purely imaginary fields. LetL be a finite field extension ofQ, let s > 2d + 1,
and suppose thatb1; : : : ; bs are integers ofL. Then by using Siegel’s version of the
circle method (see [32, 33]), Birch [7, Thm. 3] was able to show that the equationPs

i=1 bix
d
i = 0 has a non-trivial solution inL provided that it has a non-trivial

solution in every real andp-adic completion ofL. Next we observe that ifL is
purely imaginary, then the real completion ofL is simplyC , and thus by employing
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Skinner [34], in the form (3.1) above, we deduce that the latter equation is soluble
overL provided only that

s > max
n

2d; d((d + 1)maxf2 logd= logp;1g
� 1)

o
: (3.2)

The simple bound�d(L) 6 e2d is almost immediate from (3.2), and on substituting
this inequality into Theorem 1 we obtain Corollary 1.3.

We have aimed above for a uniform bound of simple type. Of course one may
sharpen this bound somewhat, and in particular for largerd one may replace the
terme2dd by 2d2d in the statement of Corollary 1.3. Moreover, forthcoming results
of M. Davidson, improving substantially on Birch’s estimate (at least for field
extensions with degree not too large), will lead to sizeable improvements in the
bound recorded in Corollary 1.3.

(d) Systems of cubic forms. It transpires that by exploiting Lemma 2.1 more
carefully than in our proof of Theorem 1, one may obtain bounds forv3;r(Qp)

somewhat smaller than have been obtained hitherto, at least for certain intermediate
ranges ofr. We summarise these new bounds in Lemma 3.1 below.

LEMMA 3.1. Whenr is a positive integer, one has

v3;r(Qp) 6

8><
>:

9
2r

4 + 12r3 + 15
2 r

2 + 3r + 2;

whenp � 2(mod 3); or p = 3;

18r4 + 48r3 + 57
2 r

2 + 9
2r; otherwise:

For comparison, Leep and Schmidt [19] have shown that

v3;r(Qp) 6
1
2(81r4� 108r3 + 63r2� 18r � 8);

and Schmidt, in work spanning a series of papers [27–29], has established that

v3;r(Qp) 6 5300r(3r+ 1)2:

Thus the bound of Lemma 3.1 supersedes those of Leep and Schmidt, and of
Schmidt, whenr 6 10597 in cases wherep � 2(mod 3), and when 56 r 6

2647 in cases wherep � 1(mod 3). We note that in the caser = 2, the bound
v3;r(Qp) 6 320 of Leep and Schmidt is improved by Lemma 3.1 only in cases
wherep � 2(mod 3), where we now obtainv3;2(Qp) 6 206. Meanwhile, when
p � 1(mod 3) the new bounds forv2;r(Qp) obtained by Martin [23], improving on
previous work of Leep [18] and Schmidt [26], yield, through the methods of Leep
and Schmidt [19], the new upper boundv3;2(Qp) 6 308.

Proof. We note merely that on writing� for �3(Qp), the conclusion of Lemma
2.1 implies that whenr3 > 1,

V3(r3; r2; r1;Qp) 6 �+ V3(r3� 1; r2 + �r3; r1 + �r2 +
1
2�(�+ 1)r3):
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On noting the bounds

�3(Qp) =

(
3; whenp � 2(mod 3); or p = 3;

6; otherwise;

(see Lewis [21]), and making use of the bounds

v2;r(Qp) 6

(
2r2; whenr is even;

2r2 + 2; whenr is odd;

(see Martin [23]), the desired conclusions follow by a simple induction.

4. Radical zeros of systems of polynomial equations

In this section we briefly consider some diophantine problems overQrad, the radical
closure ofQ. Although a definitive attack on such problems must surely make use
of the finer Galois-theoretic properties ofQrad, we are nonetheless able to provide
non-trivial bounds onvd;r(Qrad) through the use of Theorem 1.

We start by providing the lower bound forvd;r(Qrad) recorded in Theorem 2,
this being essentially immediate from Lemma 4.1 below.

LEMMA 4.1. Letk be a natural number. Thenv5k(Q
rad) > 2k.

Proof. We begin by observing that the polynomialf(x) = 2x5 � 5x4 + 5 is
irreducible inQ[x], by Eisenstein’s criterion, and has precisely three real roots. It
is therefore a straightforward exercise in Galois Theory (see, for example, Garling
[17]) to show that the equationf(x) = 0 is not soluble by radicals. We write
�(x; y) = y5f(x=y), and note that the equation�(x; y) = 0 has only the trivial
solutionx = y = 0 overQrad.

Next, for each integerk, define the polynomial�k(x) = �k(x1; : : : ; x2k) by
putting�1(x) = �(x1; x2), and whenk > 1 by using the relation

�k+1(x) = �(�k(x1; : : : ; x2k); �k(x2k+1; : : : ; x2k+1)):

Observe that�k(x) is a polynomial with integral coefficients of degree 5k in 2k

variables. In order to complete the proof of the lemma, therefore, it suffices to
show that for eachk the equation�k(x) = 0 has only the solutionx = 0 over
Qrad. We establish this proposition by induction, noting that whenk = 1 the
proposition is immediate from the definition of�. Suppose then thatk > 2, and
that� is a radical 2k-tuple with�k(�) = 0. Write � = �k�1(�1; : : : ; �2k�1) and
� = �k�1(�2k�1+1; : : : ; �2k), and observe that the hypothesis�k(�) = 0 implies
that�(�; �) = 0. However, by their definitions, one has�; � 2 Qrad, whence the
definition of� ensures that� = � = 0. Thus

�k�1(�1; : : : ; �2k�1) = �k�1(�2k�1+1; : : : ; �2k) = 0;
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and so the inductive hypothesis implies that� = 0. Then the inductive hypothesis
holds fork + 1 in place ofk, and the proof of the lemma is complete.

In order to establish the upper bound of Theorem 3, we have merely to observe
that since each equationaxk + byk = 0, with a; b 2 Qrad, is soluble non-trivially
overQrad, then�d(Qrad) = 1 for eachd 2 N. Thus Theorem 1 implies that

vd;r(Q
rad) 6 2r2d�1

d�1Y
i=2

22i�2
6 22d�2

r2d�1
:

5. Systems ofp-adic forms possessing no non-trivial solutions

Following our main assault on upper bounds forvd;r(Qp), in this section we indulge
in a diversionary sortie which provides non-trivial lower bounds onvd;r(Qp). The
sole weapon in our arsenal wielded in the proof of Theorem 3 is a lemma due to
Lewis and Montgomery [22]. Throughout the remainder of this section, whens

andk are positive integers we write

Ss;k(x) =
sX

i=1

xki :

LEMMA 5.1. Letp be a prime number, and defineq = q(p) as in the statement of
Theorem3. LetM be a positive integer, and letM be a set ofK integers in the
interval [M;2M). Suppose thatxi (1 6 i 6 N) are integers, not all divisible byp,
with the property that

SN;qm(x) � 0 (modpqM ) (m 2M):

Then one hasN > pK .
Proof. The lemma is immediate on conjoining the conclusions of [22, Lemmata

2 and 3].
We are now equipped to prove Theorem 3.
The proof of Theorem3. Recall the notation of the statement of Theorem 3.

Let " be a positive number, letd be sufficiently large in terms of", and letr be
sufficiently large in terms of" andd. Write M = [d=3] andN = p[M=2]�2 � 1.
Further, when 36 m < M define the polynomial�m(x) by

�m(x) = SN;(M+m)q(x)SN;(d�M�m)q(x): (5.1)

We note that for eachm the polynomial�m(x) has degreedq, and possessesN
variables. Suppose thatx is a solution of the system of congruences

�m(x) � 0 (mod pqd) (3 6 m < M): (5.2)
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LetM denote the set of natural numbers of the formM+m, with 16 m < M , for
which SN;(M+m)q(x) � 0(modpqM). Then since (5.1) and (5.2) together imply
that for eachmwith 3 6 m < M , at least one ofM+m andd�M�m lies inM,
we deduce that card(M) > 1

2(M �3). ButN < p[M=2]�2, so that an application of
Lemma 5.1 leads to the conclusion thatxi � 0(modp) (1 6 i 6 N). Consequently
the system�m(x) = 0 (3 6 m < M) has only the trivial solution overQp .

We now construct a system ofr forms of degreedq possessing only the trivial
solution overQp . LetR = [r=M ], and consider the system of equations

�m(xi) = 0 (3 6m < M; 1 6 i 6 R); (5.3)

together withr� (M �3)R trivial equations, where we writexi = (xi1; : : : ; xiN ).
The conclusion of the preceding paragraph ensures that the only solution of the
system (5.3) overQp is the trivial one, and moreover the number of variables
occurring in this system exceeds

�
r

M
� 1

��
p[M=2]�2

� 1
�
>

r

M
p(1�")M=2 > rp(1�2")d=6:

The conclusion of Theorem 3 is immediate from the latter inequality.
The proof of Theorem4. We are able to establish Theorem 4 cheaply by merely

observing that whenp > 2, the number of variables in the system (5.3) exceeds
r(dq)2 so long as

�
r

M
� 1

��
p[M=2]�2

� 1
�
> rd2(p� 1)2:

Moreover whend > 30, the latter inequality is satisfied so long asr andp are
sufficiently large in terms ofd. Thus each exponentD = 30(p� 1), for whichp
is a large prime number, has the property that whenr is large,vD;r(Qp) > rD2,
whence a counterexample to Artin’s Conjecture exists for a system of equations of
degreeD overQp . This suffices to complete the proof of the theorem.
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