BIPROJECTIVITY AND BIFLATNESS OF LAU PRODUCT OF BANACH ALGEBRAS DEFINED BY A BANACH ALGEBRA MORPHISM

F. ABTAHI ${ }^{\boxtimes}$, A. GHAFARPANAH and A. REJALI

(Received 25 April 2014; accepted 28 May 2014; first published online 15 July 2014)

Abstract

Let φ be a homomorphism from a Banach algebra \mathcal{B} to a Banach algebra \mathcal{A}. We define a multiplication on the Cartesian product space $\mathcal{A} \times \mathcal{B}$ and obtain a new Banach algebra $\mathcal{A} \times{ }_{\varphi} \mathcal{B}$. We show that biprojectivity as well as biflatness of $\mathcal{A} \times{ }_{\varphi} \mathcal{B}$ are stable with respect to φ.

2010 Mathematics subject classification: primary 46M10; secondary 46H25, 46M18.
Keywords and phrases: biflatness, biprojectivity, bimodule map, θ-Lau product.

1. Introduction

Let \mathcal{A} and \mathcal{B} be two Banach algebras and let $\varphi \in \operatorname{hom}(\mathcal{B}, \mathcal{A})$, the space consisting of all Banach algebra homomorphisms from \mathcal{B} into \mathcal{A}. Moreover, suppose that $\|\varphi\| \leq 1$. Following [2], the Cartesian product space $\mathcal{A} \times \mathcal{B}$ equipped with the algebra multiplication

$$
\left(a_{1}, b_{1}\right) \cdot\left(a_{2}, b_{2}\right)=\left(a_{1} a_{2}+a_{1} \varphi\left(b_{2}\right)+\varphi\left(b_{1}\right) a_{2}, b_{1} b_{2}\right), \quad\left(a_{1}, a_{2} \in \mathcal{A}, b_{1}, b_{2} \in \mathcal{B}\right)
$$

and the norm

$$
\|(a, b)\|=\|a\|_{\mathcal{A}}+\|b\|_{\mathcal{B}}
$$

is a Banach algebra which is denoted by $\mathcal{A} \times_{\varphi} \mathcal{B}$. Note that our definition of the multiplication \times_{φ}, is presented with a slight difference from that given by Bhatt and Dabhi [2]. In fact they give the definition with the assumption of commutativity of \mathcal{A} and use $a_{1} \varphi\left(b_{2}\right)$ instead of $\varphi\left(b_{2}\right) a_{1}$. However this condition is redundant, and the definition can be provided for an arbitrary Banach algebra \mathcal{A}.

As in [2], when $\varphi=0$, this multiplication is the usual coordinatewise product and so \times_{φ} is in fact the perturbation of the coordinatewise product induced by φ. Furthermore, let \mathcal{A} be unital with the unit element e and let $\theta: \mathcal{B} \rightarrow \mathbb{C}$ be a multiplicative linear

[^0]functional. Define $\varphi_{0}: \mathcal{B} \rightarrow \mathcal{A}$ as $\varphi_{0}(b)=\theta(b) e$, for each $b \in \mathcal{B}$. Then the above product with respect to φ_{0} coincides with the product investigated by Lau [10], for certain classes of Banach algebras. This definition was extended by Sangani Monfared [13], for the general case.

The main motivation for the present work stems from [2], which gives some results related to Arens regularity and some notions of amenability of $\mathcal{A} \times{ }_{\varphi} \mathcal{B}$. In fact, Arens regularity as well as amenability (together with its various avatars) of $\mathcal{A} \times_{\varphi} \mathcal{B}$ are shown to be stable with respect to φ; see [2, Theorem 3.1] and [2, Theorem 4.1].

Homological properties of Banach algebras have been studied by several authors. We refer to [5] as a standard reference in this field. Moreover, we refer to recent work, such as $[1,4,9,12,14]$, closely related to the present work. The main purpose of this paper is to study biprojectivity and biflatness of $\mathcal{A} \times{ }_{\varphi} \mathcal{B}$. We begin with some primary results about $\mathcal{A} \times_{\varphi} \mathcal{B}$. Indeed, we show that $\mathcal{A} \times{ }_{\varphi} \mathcal{B}$ is commutative if and only if \mathcal{A} and \mathcal{B} are commutative. We also prove that $\mathcal{A} \times_{\varphi} \mathcal{B}$ has an (approximate) identity if and only if \mathcal{A} and \mathcal{B} also do. Then we study biprojectivity and biflatness of $\mathcal{A} \times{ }_{\varphi} \mathcal{B}$ and show that these properties are stable with respect to φ. Finally, as an application of these results, we obtain related results about amenability and contractibility of $\mathcal{A} \times{ }_{\varphi} \mathcal{B}$.

2. Preliminaries

Let \mathcal{A} be a Banach algebra. Then the dual space \mathcal{A}^{*} of \mathcal{A} is a Banach \mathcal{A}-bimodule under the module operations

$$
\langle b, f \cdot a\rangle=\langle a b, f\rangle \quad \text { and } \quad\langle b, a \cdot f\rangle=\langle b a, f\rangle,
$$

for all $a, b \in \mathcal{A}$ and $f \in \mathcal{A}^{*}$. We remark that the dual space $\left(\mathcal{A} \times{ }_{\varphi} \mathcal{B}\right)^{*}$ can be identified with $\mathcal{A}^{*} \times \mathcal{B}^{*}$, when we consider $\mathcal{A}^{*} \times \mathcal{B}^{*}$ under the norm

$$
\|(f, g)\|=\|f\|+\|g\| \quad\left(f \in \mathcal{A}^{*}, g \in \mathcal{B}^{*}\right)
$$

In fact, define $\theta: \mathcal{A}^{*} \times \mathcal{B}^{*} \rightarrow\left(\mathcal{A} \times{ }_{\varphi} \mathcal{B}\right)^{*}$ by

$$
\langle(a, b), \theta((f, g))\rangle=\langle a, f\rangle+\langle b, g\rangle
$$

for $a \in \mathcal{A}, f \in \mathcal{A}^{*}, b \in \mathcal{B}$ and $g \in \mathcal{B}^{*}$. Some easy calculations imply that θ is the desired bounded linear map. Moreover, $\left(\mathcal{A} \times{ }_{\varphi} \mathcal{B}\right)^{*}$ can be turned into an $\left(\mathcal{A} \times{ }_{\varphi} \mathcal{B}\right)$-bimodule with the module operations defined by

$$
\begin{aligned}
& (f, g) \cdot(a, b):=\left(f \cdot a+f \cdot \varphi(b), f \circ\left(L_{a} \varphi\right)+g \cdot b\right), \\
& (a, b) \cdot(f, g):=\left(a \cdot f+\varphi(b) \cdot f, f \circ\left(R_{a} \varphi\right)+b \cdot g\right),
\end{aligned}
$$

where $a \in \mathcal{A}, b \in \mathcal{B}, f \in \mathcal{A}^{*}$ and $g \in \mathcal{B}^{*}$. In fact, the module operations defined on $\left(A \times_{\varphi} B\right) *$ are the natural module actions of $A \times_{\varphi} B$ on its dual. In addition, $L_{a} \varphi: \mathcal{B} \rightarrow \mathcal{A}$ and $R_{a} \varphi: \mathcal{B} \rightarrow \mathcal{A}$ are defined as $L_{a} \varphi(y)=a \varphi(y)$ and $R_{a} \varphi(y)=\varphi(y) a$, for each $y \in \mathcal{B}$. Furthermore, $\mathcal{A} \times \varphi \mathcal{B}$ is a Banach \mathcal{A}-bimodule under the module actions

$$
c \cdot(a, b):=(c, 0) \cdot(a, b) \quad \text { and } \quad(a, b) \cdot c:=(a, b) \cdot(c, 0)
$$

for all $a, c \in \mathcal{A}$ and $b \in \mathcal{B}$. Also $\mathcal{A} \times_{\varphi} \mathcal{B}$ can also be made into a Banach \mathcal{B}-bimodule in a similar fashion.

For completeness, we also recall the definitions and basic relationships of the standard homological properties. Following [5], we say that \mathcal{A} is biprojective if there is a bounded \mathcal{A}-bimodule map ξ from \mathcal{A} into the projective tensor product $\mathcal{A} \widehat{\otimes} \mathcal{A}$ such that $\pi_{\mathcal{A}} \circ \xi=\mathrm{id}_{\mathcal{A}}$. Here and in the sequel, $\pi_{\mathcal{A}}$ always denotes the product morphism from $\mathcal{A} \widehat{\otimes} \mathcal{A}$ into \mathcal{A}, specified by $\pi_{\mathcal{A}}(a \otimes b)=a b$. Also \mathcal{A} is biflat if there is a bounded \mathcal{A}-bimodule map $\lambda:(\mathcal{A} \widehat{\otimes} \mathcal{A})^{*} \rightarrow \mathcal{A}^{*}$ such that $\lambda \circ \pi_{\mathcal{A}^{*}}=\mathrm{id}_{\mathcal{A}^{*}}$. We refer to $[3,5,11]$ for the basic properties of biprojectivity and biflatness of Banach algebras.

We also introduce some required mappings similar to the mappings defined in [9], which will be used several times in this paper. Let $p_{\mathcal{A}}: \mathcal{A} \times_{\varphi} \mathcal{B} \rightarrow \mathcal{A}$ and $p_{\mathcal{B}}: \mathcal{A} \times{ }_{\varphi}$ $\mathcal{B} \rightarrow \mathcal{B}$ be the usual projections which are defined by $p_{\mathcal{A}}((a, b))=a$ and $p_{\mathcal{B}}((a, b))=b$, respectively $(a \in \mathcal{A}, b \in \mathcal{B})$. Also $q_{\mathcal{A}}: \mathcal{A} \rightarrow \mathcal{A} \times_{\varphi} \mathcal{B}$ and $q_{\mathcal{B}}: \mathcal{B} \rightarrow \mathcal{A} \times{ }_{\varphi} \mathcal{B}$ are the usual injections, defined by $q_{\mathcal{A}}(a)=(a, 0)$ and $q_{\mathcal{B}}(b)=(0, b)$, respectively. Moreover, we define the mappings $r_{\mathcal{A}}: \mathcal{A} \times_{\varphi} \mathcal{B} \rightarrow \mathcal{A}$ and $s_{\mathcal{B}}: \mathcal{B} \rightarrow \mathcal{A} \times_{\varphi} \mathcal{B}$ by $r_{\mathcal{A}}((a, b)):=$ $a+\varphi(b)$ and $s_{\mathcal{B}}(b):=(-\varphi(b), b)$, for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$. One can easily check that $q_{\mathcal{A}}$, $r_{\mathcal{A}}$ are Banach \mathcal{A}-bimodule maps and $p_{\mathcal{B}}, q_{\mathcal{B}}$ and $s_{\mathcal{B}}$ are Banach \mathcal{B}-bimodule maps.

3. Results on identity and approximate identity

We commence with the following proposition. Recall that \mathcal{A} is said to be faithful if $\{a \in \mathcal{A}: a \mathcal{A}=\mathcal{A} a=\{0\}\}=\{0\}$, where

$$
\mathcal{A} a=\{b a: b \in \mathcal{A}\} \quad \text { and } \quad a \mathcal{A}=\{a b: b \in \mathcal{A}\} .
$$

Proposition 3.1. Let \mathcal{A} and \mathcal{B} be Banach algebras and $\varphi, \psi \in \operatorname{hom}(\mathcal{B}, \mathcal{A})$. Then the following statements hold.
(i) $\mathcal{A} \times{ }_{\varphi} \mathcal{B}$ is commutative if and only if both \mathcal{A} and \mathcal{B} are commutative.
(ii) Suppose that there exist Banach algebra isomorphisms $\Psi: \mathcal{A} \rightarrow \mathcal{A}$ and $\Phi: \mathcal{B} \rightarrow \mathcal{B}$ such that $\Psi \circ \psi=\varphi \circ \Phi$. Then the Banach algebras $\mathcal{A} \times{ }_{\varphi} \mathcal{B}$ and $\mathcal{A} \times \psi$ \mathcal{B} are isomorphic.

Proof. (i) This is easy to prove and is left to the reader.
(ii) Define $F: \mathcal{A} \times_{\psi} \mathcal{B} \rightarrow \mathcal{A} \times_{\varphi} \mathcal{B}$ by

$$
F(a, b)=(\Psi(a), \Phi(b))
$$

Then F is obviously a bounded bijective linear map. Moreover, for all $\left(a_{1}, b_{1}\right)$, $\left(a_{2}, b_{2}\right) \in \mathcal{A} \times \psi \mathcal{B}$, we have

$$
\begin{aligned}
F\left(\left(a_{1}, b_{1}\right) \cdot\left(a_{2}, b_{2}\right)\right) & =F\left(\left(a_{1} a_{2}+a_{1} \psi\left(b_{2}\right)+\psi\left(b_{1}\right) a_{2}, b_{1} b_{2}\right)\right) \\
& =\left(\Psi\left(a_{1}\right) \Psi\left(a_{2}\right)+\Psi\left(a_{1}\right) \Psi\left(\psi\left(b_{2}\right)\right)+\Psi\left(\psi\left(b_{1}\right)\right) \Psi\left(a_{2}\right), \Phi\left(b_{1}\right) \Phi\left(b_{2}\right)\right) \\
& =\left(\Psi\left(a_{1}\right) \Psi\left(a_{2}\right)+\Psi\left(a_{1}\right) \varphi\left(\Phi\left(b_{2}\right)\right)+\varphi\left(\Phi\left(b_{1}\right)\right) \Psi\left(a_{2}\right), \Phi\left(b_{1}\right) \Phi\left(b_{2}\right)\right) \\
& =\left(\Psi\left(a_{1}\right), \Phi\left(b_{1}\right)\right) \cdot\left(\Psi\left(a_{2}\right), \Phi\left(b_{2}\right)\right) \\
& =F\left(\left(a_{1}, b_{1}\right)\right) \cdot F\left(\left(a_{2}, b_{2}\right)\right) .
\end{aligned}
$$

Thus F is a Banach algebra isomorphism.

Proposition 3.2. Let \mathcal{A} and \mathcal{B} be Banach algebras and $\varphi \in \operatorname{hom}(\mathcal{B}, \mathcal{A})$. Then the following statements hold.
(i) $\mathcal{A} \times{ }_{\varphi} \mathcal{B}$ has an identity if and only if \mathcal{A} and \mathcal{B} have identities.
(ii) $\mathcal{A} \times{ }_{\varphi} \mathcal{B}$ has a bounded left (right, or two-sided) approximate identity if and only if \mathcal{A} and \mathcal{B} have bounded left (right, or two-sided) approximate identities.

Proof. (i) Let $\left(a_{0}, b_{0}\right)$ be the identity of $\mathcal{A} \times{ }_{\varphi} \mathcal{B}$. Then, for each $b \in \mathcal{B}$, we have

$$
\begin{aligned}
(0, b) \cdot\left(a_{0}, b_{0}\right) & =\left(\varphi(b) a_{0}, b b_{0}\right) \\
& =(0, b),
\end{aligned}
$$

and so $b b_{0}=b$. Similarly $b_{0} b=b$, for each $b \in \mathcal{B}$. It follows that b_{0} is the identity element of \mathcal{B}. Similarly, for each $a \in \mathcal{A}$, we have

$$
\begin{aligned}
(a, 0)\left(a_{0}, b_{0}\right) & =\left(a a_{0}+a \varphi\left(b_{0}\right), 0\right) \\
& =(a, 0),
\end{aligned}
$$

which implies that $a_{0}+\varphi\left(b_{0}\right)$ is the identity element of \mathcal{A}. Conversely suppose that \mathcal{A} and \mathcal{B} have identities $e_{\mathcal{A}}$ and $e_{\mathcal{B}}$, respectively. Then $\left(e_{\mathcal{A}}-\varphi\left(e_{\mathcal{B}}\right), e_{\mathcal{B}}\right)$ is the identity element of $\mathcal{A} \times{ }_{\varphi} \mathcal{B}$. In fact, for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$, we have

$$
\begin{aligned}
(a, b)\left(e_{\mathcal{A}}-\varphi\left(e_{\mathcal{B}}\right), e_{\mathcal{B}}\right) & =\left(a-a \varphi\left(e_{\mathcal{B}}\right)+a \varphi\left(e_{\mathcal{B}}\right)+\varphi(b) e_{\mathcal{A}}-\varphi(b) \varphi\left(e_{\mathcal{B}}\right), b e_{\mathcal{B}}\right) \\
& =(a+\varphi(b)-\varphi(b), b)=(a, b) .
\end{aligned}
$$

Similarly, $\left(e_{\mathcal{A}}-\varphi\left(e_{\mathcal{B}}\right), e_{\mathcal{B}}\right)(a, b)=(a, b)$. Thus the result is obtained.
(ii) Suppose that $\left(\left(a_{\alpha}, b_{\alpha}\right)\right)_{\alpha \in I}$ is a bounded left approximate identity for $\mathcal{A} \times{ }_{\varphi} \mathcal{B}$. Then, for each $b \in \mathcal{B}$, we have

$$
\left\|(0, b)-\left(a_{\alpha}, b_{\alpha}\right) \cdot(0, b)\right\| \rightarrow 0
$$

and so $\left\|b-b_{\alpha} b\right\|_{\mathcal{B}} \rightarrow 0$. It follows that $\left(b_{\alpha}\right)_{\alpha \in I}$ is a bounded left approximate identity for \mathcal{B}. Also, for each $a \in \mathcal{A}$,

$$
\left\|(a, 0)-\left(a_{\alpha}, b_{\alpha}\right) \cdot(a, 0)\right\|=\left\|(a, 0)-\left(a_{\alpha} a+\varphi\left(b_{\alpha}\right) a, 0\right)\right\| \rightarrow 0
$$

Thus $\left\|a-\left(a_{\alpha}+\varphi\left(b_{\alpha}\right)\right) a\right\|_{\mathcal{A}} \rightarrow 0$, which implies that $\left(a_{\alpha}+\varphi\left(b_{\alpha}\right)\right)_{\alpha \in I}$ is a bounded left approximate identity for \mathcal{A}. For the converse, assume that $\left(a_{\alpha}\right)_{\alpha \in I}$ and $\left(b_{\beta}\right)_{\beta \in J}$ are bounded left approximate identities for \mathcal{A} and \mathcal{B}, respectively. We show that $\left(a_{\alpha}-\varphi\left(b_{\beta}\right), b_{\beta}\right)_{(\alpha, \beta) \in I \times J}$ is a bounded left approximate identity for $\mathcal{A} \times_{\varphi} \mathcal{B}$. Indeed, for each $(a, b) \in \mathcal{A} \times{ }_{\varphi} \mathcal{B}$, we have

$$
\left.\begin{array}{rl}
\lim _{\alpha, \beta}\left\|(a, b)-\left(a_{\alpha}-\varphi\left(b_{\beta}\right), b_{\beta}\right)(a, b)\right\|= & \lim _{\alpha, \beta} \|(a, b)-\left(a_{\alpha} a-\varphi\left(b_{\beta}\right) a+a_{\alpha} \varphi(b)\right. \\
& \left.\quad-\varphi\left(b_{\beta}\right) \varphi(b)+\varphi\left(b_{\beta}\right) a, b_{\beta} b\right) \| \\
= & \lim _{\alpha} \lim _{\beta}\left\|a-\left(a_{\alpha} a+a_{\alpha} \varphi(b)-\varphi\left(b_{\beta}\right) \varphi(b)\right)\right\|_{\mathcal{H}} \\
& +\left\|b-b_{\beta} b\right\|_{\mathcal{B}} \\
\leq & \lim _{\alpha} \lim _{\beta}\left\|a-a_{\alpha} a\right\|_{\mathcal{H}}+\left\|\varphi(b)-a_{\alpha} \varphi(b)\right\|_{\mathcal{F}} \\
\quad+\left\|\varphi\left(b_{\beta} b\right)-\varphi(b)\right\|_{\mathcal{A}}+\left\|b-b_{\beta} b\right\|_{\mathcal{B}}
\end{array}\right]=0, \quad .
$$

where we have used the iterated limit theorem from of [8, page 69]. This completes the proof.

4. Results on biprojectivity

In this section, we investigate biprojectivity of $\mathcal{A} \times{ }_{\varphi} \mathcal{B}$. We use a slightly modified version of the technique used in the main theorem of [9].

Theorem 4.1. Let \mathcal{A} and \mathcal{B} be Banach algebras and let $\varphi \in \operatorname{hom}(\mathcal{B}, \mathcal{A})$, such that $\mathcal{A} \times{ }_{\varphi} \mathcal{B}$ is biprojective. Then \mathcal{A} and \mathcal{B} are biprojective.
Proof. By the hypothesis, there exists a bounded $\left(\mathcal{A} \times{ }_{\varphi} \mathcal{B}\right)$-bimodule map

$$
\eta: \mathcal{A} \times_{\varphi} \mathcal{B} \rightarrow\left(\mathcal{A} \times_{\varphi} \mathcal{B}\right) \hat{\otimes}\left(\mathcal{A} \times_{\varphi} \mathcal{B}\right)
$$

such that $\pi_{\mathcal{A} x_{\varphi} \mathcal{B}} \circ \eta=\operatorname{id}_{\mathcal{A} \times_{\varphi} \mathcal{B}}$. A direct verification shows that the identities

$$
\pi_{\mathcal{A}} \circ\left(r_{\mathcal{A}} \otimes r_{\mathcal{A}}\right)=r_{\mathcal{A}} \circ \pi_{\mathcal{A} x_{\varphi} \mathcal{B}} \quad \text { and } \quad \pi_{\mathcal{B}} \circ\left(p_{\mathcal{B}} \otimes p_{\mathcal{B}}\right)=p_{\mathcal{B}} \circ \pi_{\mathcal{A} x_{\varphi} \mathcal{B}}
$$

hold. Define $\xi: \mathcal{A} \rightarrow \mathcal{A} \hat{\otimes} \mathcal{A}$ and $\rho: \mathcal{B} \rightarrow \mathcal{B} \hat{\otimes} \mathcal{B}$ by

$$
\xi:=\left(r_{\mathcal{A}} \otimes r_{\mathcal{A}}\right) \circ \eta \circ q_{\mathcal{A}} \quad \text { and } \quad \rho:=\left(p_{\mathcal{B}} \otimes p_{\mathcal{B}}\right) \circ \eta \circ q_{\mathcal{B}}
$$

Some easy calculations show that ξ and ρ are \mathcal{A}-bimodule and \mathcal{B}-bimodule maps, respectively. Moreover,

$$
\begin{aligned}
\pi_{\mathcal{A}} \circ \xi & =\pi_{\mathcal{A}} \circ\left(\left(r_{\mathcal{A}} \otimes r_{\mathcal{A}}\right) \circ \eta \circ q_{\mathcal{A}}\right) \\
& =r_{\mathcal{A}} \circ\left(\pi_{\mathcal{A} \times_{\varphi} \mathcal{B}} \circ \eta\right) \circ q_{\mathcal{A}} \\
& =\operatorname{id}_{\mathcal{A}} .
\end{aligned}
$$

Also one can easily obtain that $\pi_{\mathcal{B}} \circ \rho=\mathrm{id}_{\mathcal{B}}$. These observations show that \mathcal{A} and \mathcal{B} are biprojective, as claimed.

The converse of Theorem 4.1 holds in the case where \mathcal{A} is unital. It is provided in the next result.

Theorem 4.2. Let \mathcal{A} be a unital Banach algebra, let \mathcal{B} be a Banach algebra and let $\varphi \in \operatorname{hom}(\mathcal{B}, \mathcal{A})$. If \mathcal{A} and \mathcal{B} are biprojective, then $\mathcal{A} \times{ }_{\varphi} \mathcal{B}$ is biprojective.
Proof. By the hypothesis, there exist an \mathcal{A}-bimodule map $\xi: \mathcal{A} \rightarrow \mathcal{A} \hat{\otimes} \mathcal{A}$ and a \mathcal{B}-bimodule map $\rho: \mathcal{B} \rightarrow \mathcal{B} \hat{\otimes} \mathcal{B}$, such that $\pi_{\mathcal{A}} \circ \xi=\mathrm{id}_{\mathcal{A}}$ and $\pi_{\mathcal{B}} \circ \rho=\mathrm{id}_{\mathcal{B}}$. We immediately have the identities

$$
q_{\mathcal{A}} \circ \pi_{\mathcal{A}}=\pi_{\mathcal{A} x_{\mathscr{\varphi}} \mathcal{B}} \circ\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right) \quad \text { and } \quad s_{\mathcal{B}} \circ \pi_{\mathcal{B}}=\pi_{\mathcal{A} x_{\varphi} \mathcal{B}} \circ\left(s_{\mathcal{B}} \otimes s_{\mathcal{B}}\right) .
$$

Let $e_{\mathcal{A}}$ be the identity of \mathcal{A} and define

$$
\eta: \mathcal{A} \times_{\varphi} \mathcal{B} \rightarrow\left(\mathcal{A} \times_{\varphi} \mathcal{B}\right) \hat{\otimes}\left(\mathcal{A} \times_{\varphi} \mathcal{B}\right)
$$

by

$$
\eta((a, b)):=(a, b) \cdot\left(\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)\left(\xi\left(e_{\mathcal{A}}\right)\right)\right)+\left(\left(s_{\mathcal{B}} \otimes s_{\mathcal{B}}\right) \circ \rho \circ p_{\mathcal{B}}\right)(a, b),
$$

for all $a \in \mathcal{A}$ and $b \in \mathcal{B}$. We first show that η is a bounded ($\left.\mathcal{A} \times{ }_{\varphi} \mathcal{B}\right)$-bimodule map. Clearly η is bounded. For all $(a, b),(c, d) \in \mathcal{A} \times{ }_{\varphi} \mathcal{B}$, we have

$$
\begin{aligned}
\eta((a, b) \cdot(c, d))= & (a, b) \cdot(c, d) \cdot\left(\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right) \circ \xi(e)\right)+\left(\left(s_{\mathcal{B}} \otimes s_{\mathcal{B}}\right) \circ \rho\right)(b d) \\
= & (a, b) \cdot(c, d) \cdot\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)(\xi(e))+\left(s_{\mathcal{B}} \otimes s_{\mathcal{B}}\right)(b \cdot \rho(d)) \\
= & (a, b) \cdot(c, d) \cdot\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)(\xi(e))+(0, b) \cdot\left(s_{\mathcal{B}} \otimes s_{\mathcal{B}}\right)(\rho(d)) \\
= & (a, b) \cdot\left[(c, d) \cdot\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)(\xi(e))+\left(s_{\mathcal{B}} \otimes s_{\mathcal{B}}\right)(\rho(d))\right] \\
& \quad-(a, 0) \cdot\left(s_{\mathcal{B}} \otimes s_{\mathcal{B}}\right)(\rho(d)) \\
= & (a, b) \cdot \eta((c, d))-(a, 0) \cdot\left(s_{\mathcal{B}} \otimes s_{\mathcal{B}}\right)(\rho(d)) .
\end{aligned}
$$

But $(a, 0) \cdot\left(s_{\mathcal{B}} \otimes s_{\mathcal{B}}\right)(\rho(d))=0$. In fact, let $\rho(d)=\sum_{i=1}^{\infty} b_{i} \otimes d_{i}$, for some sequences $\left(b_{i}\right)$ and $\left(d_{i}\right)$ in \mathcal{B} with $\sum_{i=1}^{\infty}\left\|b_{i}\right\|_{\mathcal{B}}\left\|d_{i}\right\|_{\mathcal{B}}<\infty$. Then

$$
\begin{aligned}
(a, 0) \cdot\left(s_{\mathcal{B}} \otimes s_{\mathcal{B}}\right)(\rho(d)) & =(a, 0) \cdot\left(s_{\mathcal{B}} \otimes s_{\mathcal{B}}\right)\left(\sum_{i=1}^{\infty} b_{i} \otimes d_{i}\right) \\
& =(a, 0) \cdot\left(\sum_{i=1}^{\infty} s_{\mathcal{B}}\left(b_{i}\right) \otimes s_{\mathcal{B}}\left(d_{i}\right)\right) \\
& =\sum_{i=1}^{\infty}(a, 0) \cdot\left[\left(-\varphi\left(b_{i}\right), b_{i}\right) \otimes\left(-\varphi\left(d_{i}\right), d_{i}\right)\right]=0 .
\end{aligned}
$$

Thus $\eta((a, b) \cdot(c, d))=(a, b) \cdot \eta((c, d))$, and so η is a left $\left(\mathcal{A} \times{ }_{\varphi} \mathcal{B}\right)$-module map. To see that η is a right $\left(\mathcal{A} \times{ }_{\varphi} \mathcal{B}\right)$-module map, we note that, for all $x, y \in \mathcal{A}$,

$$
(a, b) \cdot\left(\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)(x \otimes y)\right)=\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)((a+\varphi(b)) \cdot(x \otimes y)) .
$$

Similarly, $\left(\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)(x \otimes y)\right) \cdot(a, b)=\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)((x \otimes y) \cdot(a+\varphi(b)))$. Hence

$$
\begin{aligned}
(a, b) \cdot\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)\left(\xi\left(e_{\mathcal{A}}\right)\right) & =\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)\left((a+\varphi(b)) \cdot \xi\left(e_{\mathcal{A}}\right)\right) \\
& =\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)\left(\xi\left(e_{\mathcal{A}}\right) \cdot(a+\varphi(b))\right) \\
& =\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)\left(\xi\left(e_{\mathcal{A}}\right)\right) \cdot(a, b) .
\end{aligned}
$$

It follows that $\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)\left(\xi\left(e_{\mathcal{A}}\right)\right)$ commutes with the elements of $\mathcal{A} \times_{\varphi} \mathcal{B}$. Consequently,

$$
\begin{aligned}
\eta((c, d) \cdot(a, b)) & =(c, d) \cdot(a, b) \cdot\left(\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right) \circ \xi\left(e_{\mathcal{A}}\right)\right)+\left(\left(s_{\mathcal{B}} \otimes s_{\mathcal{B}}\right) \circ \rho\right)(d b) \\
& =\left[(c, d) \cdot\left(\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right) \circ \xi\left(e_{\mathcal{A}}\right)\right)\right] \cdot(a, b)+\left(\left(s_{\mathcal{B}} \otimes s_{\mathcal{B}}\right) \circ \rho(d)\right) \cdot(0, b) \\
& =\eta((c, d)) \cdot(a, b)-\left(\left(s_{\mathcal{B}} \otimes s_{\mathcal{B}}\right) \circ \rho(d)\right) \cdot(a, 0) \\
& =\eta((c, d)) \cdot(a, b),
\end{aligned}
$$

where we have used the fact that $\left(\left(s_{\mathcal{B}} \otimes s_{\mathcal{B}}\right) \circ \rho(d)\right) \cdot(a, 0)=0$. Finally, we show that $\pi_{\mathcal{A} \times_{\varphi} \mathcal{B}} \circ \eta=\operatorname{id}_{\mathcal{A} \times_{\varphi} \mathcal{B}}$. In fact, for each $(a, b) \in \mathcal{A} \times{ }_{\varphi} \mathcal{B}$, we have

$$
\begin{aligned}
\left(\pi_{\mathcal{A} x_{\varphi} \mathcal{B}} \circ \eta\right)((a, b))= & \pi_{\mathcal{A} x_{\varphi} \mathcal{B}}\left((a, b) \cdot\left(\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)\left(\xi\left(e_{\mathcal{A}}\right)\right)\right)\right. \\
& \left.+\left(s_{\mathcal{B}} \otimes s_{\mathcal{B}}\right)(\rho(b))\right) \\
= & (a, b) \cdot\left(\left(\pi_{\mathcal{A} x_{\varphi} \mathcal{B}} \circ\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)\right)\left(\xi\left(e_{\mathcal{A}}\right)\right)\right) \\
& +\left(\pi_{\mathcal{A} x_{\varphi} \mathcal{B}} \circ\left(s_{\mathcal{B}} \otimes s_{\mathcal{B}}\right)\right)(\rho(b)) \\
= & (a, b) \cdot q_{\mathcal{A}} \circ\left(\pi_{\mathcal{A}} \circ \xi\right)\left(e_{\mathcal{A}}\right) \\
& \quad+s_{\mathcal{B}} \circ\left(\pi_{\mathcal{B}} \circ \rho\right)(b) \\
= & (a, b) \cdot q_{\mathcal{A}}\left(e_{\mathcal{A}}\right)+s_{\mathcal{B}}(b) \\
= & (a, b) \cdot\left(e_{\mathcal{A}}, 0\right)+(-\varphi(b), b) \\
= & (a, b) .
\end{aligned}
$$

Therefore $\mathcal{A} \times{ }_{\varphi} \mathcal{B}$ is biprojective, as claimed.

5. Results on biflatness

In this section we provide necessary and sufficient conditions for the biflatness of $\mathcal{A} \times{ }_{\varphi} \mathcal{B}$. We note that our proof is inspired by the proof of the main theorem in [9], with some slight modifications.

Theorem 5.1. Let \mathcal{A} and \mathcal{B} be Banach algebras and let $\varphi \in \operatorname{hom}(\mathcal{B}, \mathcal{A})$. If \mathcal{A} and \mathcal{B} are biflat, then $\mathcal{A} \times_{\varphi} \mathcal{B}$ is biflat.
Proof. By the hypothesis, there exist an \mathcal{A}-bimodule map $\lambda_{\mathcal{A}}:(\mathcal{A} \hat{\otimes} \mathcal{A})^{*} \rightarrow \mathcal{A}^{*}$ and a \mathcal{B}-bimodule map $\lambda_{\mathcal{B}}:(\mathcal{B} \hat{\otimes} \mathcal{B})^{*} \rightarrow \mathcal{B}^{*}$, such that $\lambda_{\mathcal{A}} \circ \pi_{\mathcal{A}}^{*}=\mathrm{id}_{\mathcal{A}^{*}}$ and $\lambda_{\mathcal{B}} \circ \pi_{\mathcal{B}}^{*}=\mathrm{id}_{\mathcal{B}^{*}}$. Consider the identification $\left(\mathcal{A} \times{ }_{\varphi} \mathcal{B}\right)^{*} \simeq \mathcal{A}^{*} \times \mathcal{B}^{*}$ and define $\lambda:\left(\left(\mathcal{A} \times_{\varphi} \mathcal{B}\right) \hat{\otimes}\left(\mathcal{A} \times{ }_{\varphi}\right.\right.$ $\mathcal{B}))^{*} \rightarrow\left(\mathcal{A} \times{ }_{\varphi} \mathcal{B}\right)^{*}$ by

$$
\begin{aligned}
& \lambda(h):=\left(\left(\lambda_{\mathcal{A}} \circ\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)^{*}\right)(h),\left(\lambda_{\mathcal{B}} \circ\left(s_{\mathcal{B}} \otimes s_{\mathcal{B}}\right)^{*}\right)(h)\right. \\
&\left.+\left(\varphi^{*} \circ \lambda_{\mathcal{A}} \circ\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)^{*}\right)(h)\right),
\end{aligned}
$$

for each $h \in\left(\left(\mathcal{A} \times_{\varphi} \mathcal{B}\right) \hat{\otimes}\left(\mathcal{A} \times_{\varphi} \mathcal{B}\right)\right)^{*}$. Since $\lambda_{\mathcal{A}}$ and $\lambda_{\mathcal{B}}$ are bounded, it follows that λ is bounded as well. For each $(a, b) \in \mathcal{A} \times{ }_{\varphi} \mathcal{B}$ and $h \in\left(\left(\mathcal{A} \times{ }_{\varphi} \mathcal{B}\right) \hat{\otimes}\left(\mathcal{A} \times{ }_{\varphi} \mathcal{B}\right)\right)^{*}$ the following identities immediately hold:

$$
\begin{aligned}
\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)^{*}(h \cdot(a, b)) & =\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)^{*}(h) \cdot(a+\varphi(b)), \\
\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)^{*}((a, b) \cdot h) & =(a+\varphi(b)) \cdot\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)^{*}(h), \\
\left(s_{\mathcal{B}} \otimes s_{\mathcal{B}}\right)^{*}(h \cdot(a, b)) & =\left(s_{\mathcal{B}} \otimes s_{\mathcal{B}}\right)^{*}(h) \cdot b, \\
\left(s_{\mathcal{B}} \otimes s_{\mathcal{B}}\right)^{*}((a, b) \cdot h) & =b \cdot\left(s_{\mathcal{B}} \otimes s_{\mathcal{B}}\right)^{*}(h) .
\end{aligned}
$$

Moreover,

$$
\varphi^{*} \circ \lambda_{\mathcal{A}}\left(\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)^{*}(h) \cdot \varphi(b)\right)=\left(\varphi^{*} \circ \lambda_{\mathcal{A}} \circ\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)^{*}(h)\right) \cdot b
$$

and

$$
\varphi^{*} \circ \lambda_{\mathcal{A}}\left(\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)^{*}(h) \cdot a\right)=\left(\lambda_{\mathcal{A}} \circ\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)^{*}(h)\right)\left(L_{a} \varphi\right) .
$$

Using these identities, we show that λ is a $\left(\mathcal{A} \times{ }_{\varphi} \mathcal{B}\right)$-bimodule map. To this end, let $(a, b) \in \mathcal{A} \times{ }_{\varphi} \mathcal{B}$ and $h \in\left(\left(\mathcal{A} \times{ }_{\varphi} \mathcal{B}\right) \otimes\left(\mathcal{A} \times{ }_{\varphi} \mathcal{B}\right)\right)^{*}$. Then

$$
\begin{aligned}
\lambda(h \cdot(a, b))= & \left(\left(\lambda_{\mathcal{A}} \circ\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)^{*}\right)(h \cdot(a, b)),\left(\lambda_{\mathcal{B}} \circ\left(s_{\mathcal{B}} \otimes s_{\mathcal{B}}\right)^{*}\right)(h \cdot(a, b))\right. \\
& \left.+\left(\varphi^{*} \circ \lambda_{\mathcal{A}} \circ\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)^{*}\right)(h \cdot(a, b))\right) \\
= & \left(\lambda_{\mathcal{A}}\left(\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)^{*}\right)(h)\right) \cdot(a+\varphi(b)), \lambda_{\mathcal{B}}\left(\left(s_{\mathcal{B}} \otimes s_{\mathcal{B}}\right)^{*}(h) \cdot b\right) \\
& +\varphi^{*} \circ \lambda_{\mathcal{A}}\left(\left(\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)^{*}\right)(h)\right) \cdot(a+\varphi(b)) \\
= & \left(\left[\left(\lambda_{\mathcal{A}} \circ\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)^{*}\right)(h)\right] \cdot a+\left[\left(\lambda_{\mathcal{A}} \circ\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)^{*}\right)(h)\right] \cdot \varphi(b),\right. \\
& \quad\left[\left(\lambda_{\mathcal{B}} \circ\left(s_{\mathcal{B}} \otimes s_{\mathcal{B}}\right)^{*}\right)(h)\right] \cdot b+\varphi^{*} \circ \lambda_{\mathcal{A}}\left[\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)^{*}(h) \cdot a\right] \\
& \left.+\varphi^{*} \circ \lambda_{\mathcal{A}}\left[\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)^{*}(h) \cdot \varphi(b)\right]\right) \\
= & \left(\left(\lambda_{\mathcal{A}} \circ\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)^{*}(h)\right) \cdot a+\left(\lambda_{\mathcal{A}} \circ\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)^{*}(h)\right) \cdot \varphi(b),\right. \\
& \left(\lambda_{\mathcal{A}} \circ\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)^{*}(h)\right)\left(L_{a} \varphi\right) \\
& \left.+\left[\lambda_{\mathcal{B}} \circ\left(s_{\mathcal{B}} \otimes s_{\mathcal{B}}\right)^{*}(h)+\varphi^{*} \circ \lambda_{\mathcal{A}} \circ\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)^{*}(h)\right] \cdot b\right) \\
= & \lambda(h) \cdot(a, b) .
\end{aligned}
$$

With similar arguments, we obtain that $\lambda((a, b) \cdot h)=(a, b) \cdot \lambda(h)$, and consequently λ is a bounded $\left(\mathcal{A} \times{ }_{\varphi} \mathcal{B}\right)$-bimodule. Finaly, we prove that

$$
\lambda \circ \pi_{\mathcal{A} x_{\varphi} \mathcal{B}}^{*}=\operatorname{id}_{\left(\mathcal{A} x_{\varphi} \mathcal{B}\right)^{*}} .
$$

First, note that by using the identification $\left(\mathcal{A} \times_{\varphi} \mathcal{B}\right) \simeq\left(\mathcal{F}^{*} \times \mathcal{B}^{*}\right)$, one can easily obtain that

$$
\left(s_{\mathcal{B}} \otimes s_{\mathcal{B}}\right)^{*} \circ \pi_{\mathcal{A} x_{\varphi} \mathcal{B}}^{*}=\pi_{\mathcal{B}}^{*} \circ\left(s_{\mathcal{B}}\right)^{*} \quad \text { and } \quad\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)^{*} \circ \pi_{\mathcal{A} \times_{\varphi} \mathcal{B}}^{*}=\pi_{\mathcal{A}}^{*} \circ\left(q_{\mathcal{A}}\right)^{*}
$$

Moreover, for each $(f, g) \in\left(\mathcal{A}^{*} \times \mathcal{B}^{*}\right) \cong\left(\mathcal{A} \times_{\varphi} \mathcal{B}\right)^{*}$ we have $\left(q_{\mathcal{A}}\right)^{*}((f, g))=f$, $\left(s_{\mathcal{B}}\right)^{*}((f, g))=-f \circ \varphi+g$, and $\left(\varphi^{*} \circ\left(q_{\mathcal{A}}\right)^{*}\right)((f, g))=f \circ \varphi$. Now suppose that $(a, b) \in$ $\mathcal{A} \times{ }_{\varphi} \mathcal{B}$ and $(f, g) \in\left(\mathcal{A}^{*} \times \mathcal{B}^{*}\right) \cong\left(\mathcal{A} \times{ }_{\varphi} \mathcal{B}\right)^{*}$. Then

$$
\begin{aligned}
\lambda \circ \pi_{\mathcal{A} x_{\mathscr{P}} \mathcal{B}}^{*}((f, g))= & \left(\left(\lambda_{\mathcal{A}} \circ\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)^{*} \circ \pi_{\mathcal{A} \times_{\varphi} \mathcal{B}}^{*}\right)((f, g)),\right. \\
& \quad\left(\lambda_{\mathcal{B}} \circ\left(s_{\mathcal{B}} \otimes s_{\mathcal{B}}\right)^{*} \circ \pi_{\mathcal{A} \times_{\mathscr{C}} \mathcal{B}}^{*}\right)((f, g)) \\
& \left.\quad+\left(\varphi^{*} \circ \lambda_{\mathcal{A}} \circ\left(q_{\mathcal{A}} \otimes q_{\mathcal{A}}\right)^{*} \circ \pi_{\mathcal{A} x_{\varphi} \mathcal{B}}^{*}\right)((f, g))\right) \\
= & \left(\left(\lambda_{\mathcal{A}} \circ \pi_{\mathcal{A}}^{*} \circ\left(q_{\mathcal{A}}\right)^{*}\right)((f, g)),\right. \\
& \quad\left(\lambda_{\mathcal{B}} \circ \pi_{\mathcal{B}}^{*} \circ\left(s_{\mathcal{B}}\right)^{*}\right)((f, g)) \\
\quad & \left.\quad\left(\varphi^{*} \circ \lambda_{\mathcal{A}} \circ \pi_{\mathcal{A}}^{*} \circ\left(q_{\mathcal{A}}\right)^{*}\right)((f, g))\right) \\
= & \left(\left(\operatorname{id}_{\mathcal{A}^{*}} \circ\left(q_{\mathcal{A}}\right)^{*}\right)((f, g)),\left(\mathrm{id}_{\mathcal{B}^{*}} \circ\left(s_{\mathcal{B}}\right)^{*}\right)((f, g))\right. \\
& \left.\quad+\left(\varphi^{*} \circ \mathrm{id}_{\mathcal{A}^{*}} \circ\left(q_{\mathcal{A}}\right)^{*}\right)((f, g))\right) \\
= & (f,-f \circ \varphi+g+f \circ \varphi) . \\
= & (f, g) .
\end{aligned}
$$

This completes the proof.

The converse of Theorem 5.1 is also valid. It is provided by the next theorem.
Theorem 5.2. Let \mathcal{A} and \mathcal{B} be Banach algebras and let $\varphi \in \operatorname{hom}(\mathcal{B}, \mathcal{A})$. If $\mathcal{A} \times{ }_{\varphi} \mathcal{B}$ is biflat, then \mathcal{A} and \mathcal{B} are also biflat.

Proof. By the hypothesis, there exists a bounded $\left(\mathcal{A} \times{ }_{\varphi} \mathcal{B}\right)$-bimodule map,

$$
\lambda:\left(\left(\mathcal{A} \times_{\varphi} \mathcal{B}\right) \hat{\otimes}\left(\mathcal{A} \times_{\varphi} \mathcal{B}\right)\right)^{*} \rightarrow\left(\mathcal{A} \times_{\varphi} \mathcal{B}\right)^{*}
$$

such that $\lambda \circ \pi_{\mathcal{A} \times_{\varphi} \mathcal{B}}^{*}=\operatorname{id}_{\left(\mathcal{A} \times_{\varphi} \mathcal{B}\right)^{*}}$. The following identities are easily shown:

$$
\begin{aligned}
\left(p_{\mathcal{B}} \otimes p_{\mathcal{B}}\right)^{*} \circ \pi_{\mathcal{B}}^{*} & =\pi_{\mathcal{A} \times_{\varphi} \mathcal{B}}^{*} \circ\left(p_{\mathcal{B}}\right)^{*}, \\
\left(r_{\mathcal{A}} \otimes r_{\mathcal{A}}\right)^{*} \circ \pi_{\mathcal{A}}^{*} & =\pi_{\mathcal{A} \times_{\varphi} \mathcal{B}} \circ\left(r_{\mathcal{A}}\right)^{*} .
\end{aligned}
$$

Now define $\mu:(\mathcal{A} \hat{\otimes} \mathcal{A})^{*} \rightarrow \mathcal{A}^{*}$ and $v:(\mathcal{B} \hat{\otimes} \mathcal{B})^{*} \rightarrow \mathcal{B}^{*}$ by

$$
\mu:=\left(q_{\mathcal{A}}\right)^{*} \circ \lambda \circ\left(r_{\mathcal{A}} \otimes r_{\mathcal{A}}\right)^{*} \quad \text { and } \quad v:=\left(q_{\mathcal{B}}\right)^{*} \circ \lambda \circ\left(p_{\mathcal{B}} \otimes p_{\mathcal{B}}\right)^{*},
$$

respectively. Direct verifications show that μ and v are bounded \mathcal{A}-bimodule and bounded \mathcal{B}-bimodule maps, respectively. Moreover, we have

$$
\begin{aligned}
\mu \circ \pi_{\mathcal{A}}^{*} & =\left(\left(q_{\mathcal{A}}\right)^{*} \circ \lambda \circ\left(r_{\mathcal{A}} \otimes r_{\mathcal{A}}\right)^{*}\right) \circ \pi_{\mathcal{A}}^{*} \\
& =\left(q_{\mathcal{A}}\right)^{*} \circ \lambda \circ\left(\left(r_{\mathcal{A}} \otimes r_{\mathcal{A}}\right)^{*} \circ \pi_{\mathcal{A}}^{*}\right) \\
& =\left(q_{\mathcal{A}}\right)^{*} \circ \lambda \circ\left(\pi_{\mathcal{A} \times_{\varphi} \mathcal{B}}^{*} \circ\left(r_{\mathcal{A}}\right)^{*}\right) \\
& =\left(q_{\mathcal{A}}\right)^{*} \circ\left(r_{\mathcal{A}}\right)^{*} \\
& =\operatorname{id}_{\mathcal{A}^{*}} .
\end{aligned}
$$

Similar arguments show that $v \circ \pi_{\mathcal{B}}^{*}=\operatorname{id}_{\mathcal{B}^{*}}$, and consequently \mathcal{A} and \mathcal{B} are biflat.
We conclude this work with the following remark, which provides some useful applications of our results related to amenability and contractibility of $\mathcal{A} \times \mathcal{B}$. Recall from [7] that a Banach algebra \mathcal{A} is called amenable if it has a bounded approximate diagonal, that is, if there is a bounded net $\left(m_{\lambda}\right)$ in the projective tensor product $\mathcal{A} \widehat{\otimes} \mathcal{A}$ such that $\left\|a m_{\lambda}-m_{\lambda} a\right\|_{\mathcal{A} \widehat{\mathcal{A}}} \rightarrow_{\lambda} 0$ and $\left\|a \pi_{\mathcal{A}}\left(m_{\lambda}\right)-a\right\|_{\mathcal{A}} \rightarrow_{\lambda} 0$, for each $a \in \mathcal{A}$. Similarly, \mathcal{A} is contractible if and only if it has a diagonal, that is, there is an element $m \in \mathcal{A} \widehat{\otimes} \mathcal{A}$ for which $a m=m a$ and $\pi_{\mathcal{A}}(m) a=a$, for all $a \in \mathcal{A}$ (see [6]).

Remark 5.3. Let \mathcal{A} and \mathcal{B} be Banach algebras and $\varphi \in \operatorname{hom}(\mathcal{B}, \mathcal{A})$.
(1) We show that our results imply part (1) of [2, Theorem 4.1] in the general case. Let $\mathcal{A} \times_{\varphi} \mathcal{B}$ be amenable. Then $\mathcal{A} \times_{\varphi} \mathcal{B}$ is biflat and has a bounded approximate identity; see, for example, [11, Section 4, Exercise 4.3.15]. By Proposition 3.2 and Theorem 5.2, we obtain that \mathcal{A} and \mathcal{B} are biflat and have bounded approximate identities. Again [11, Section 4, Exercise 4.3.15] implies that \mathcal{A} and \mathcal{B} are amenable. Conversely, suppose that \mathcal{A} and \mathcal{B} are amenable. Then by [11, Section 4, Exercise 4.3.15] they are biflat and admit bounded approximate identities. Again Proposition 3.2 and Theorem 5.1 yield that $\mathcal{A} \times{ }_{\varphi} \mathcal{B}$ is biflat and has a bounded approximate identity, which is equivalent to the amenability of $\mathcal{A} \times{ }_{\varphi} \mathcal{B}$.
(2) We show that $\mathcal{A} \times_{\varphi} \mathcal{B}$ is contractible if and only if \mathcal{A} and \mathcal{B} are contractible. Let $\mathcal{A} \times_{\varphi} \mathcal{B}$ be contractible. Then $\mathcal{A} \times_{\varphi} \mathcal{B}$ is biprojective and unital; see, for example, [11, Section 4, Exercises 4.1.1, 4.3.1]. By Proposition 3.2 and Theorem 4.1, \mathcal{A} and \mathcal{B} are biprojective and have identities. Thus \mathcal{A} and \mathcal{B} are contractible by [11, Section 4, Exercises 4.1.1, 4.3.1]. For the converse, suppose that \mathcal{A} and \mathcal{B} are contractible. Then, again by [11, Section 4, Exercises 4.1.1, 4.3.1], \mathcal{A} and \mathcal{B} are biprojective and have identities. So by Proposition 3.2 and Theorem 4.2, and the fact that \mathcal{A} is unital, $\mathcal{A} \times{ }_{\varphi} \mathcal{B}$ is biprojective and has an identity. Consequently, $\mathcal{A} \times_{\varphi} \mathcal{B}$ is contractible, again by [11, Section 4, Exercises 4.1.1, 4.3.1].

References

[1] F. Abtahi, 'Generalized biprojectivity and biflatness of abstract Segal algebras', Banach J. Math. Anal. 8 (2014), 107-117.
[2] S. J. Bhatt and P. A. Dabhi, 'Arens regularity and amenability of Lau product of Banach algebras defined by a Banach algebra morphism’, Bull. Aust. Math. Soc. 87 (2013), 195-206.
[3] H. G. Dales, Banach Algebras and Automatic Continuity (Clarendon Press, Oxford, 2000).
[4] F. Ghahramani and Y. Zhang, 'Pseudo-amenable and pseudo-contractible Banach algebras', Math. Proc. Cambridge Philos. Soc. 142 (2007), 111-123.
[5] A. Ya. Helemskii, The Homology of Banach and Topological Algebras, Mathematics and its Applications (Soviet Series), 41 (Kluwer, Dordrecht, 1989), xx+334. Translated from the Russian by Alan West.
[6] A. Ya. Helemskii, Banach and Locally Convex Algebras (Clarendon Press, Oxford, 1993).
[7] B. E. Johnson, 'Approximate diagonals and cohomology of certain annihilator Banach algebras', Amer. J. Math. 94 (1972), 685-698.
[8] J. L. Kelley, General Topology, Graduate Texts in Mathematics, 27 (Springer, New York, 1975), Reprint of the 1955 edition.
[9] A. R. Khoddami and H. R. Ebrahimi Vishki, 'Biflatness and biprojectivity of Lau product of Banach algebras', Bull. Iranian Math. Soc. 39 (2013), 559-568.
[10] A. T.-M. Lau, 'Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups', Fund. Math. 118 (1983), 161-175.
[11] V. Runde, Lectures on Amenability, Lecture Notes in Mathematics, 1774 (Springer, Berlin, 2002).
[12] E. Samei, N. Spronk and R. Stokke, 'Biflatness and pseudo-amenability of Segal algebras', Canad. J. Math. 62 (2010), 845-869.
[13] M. Sangani Monfared, 'On certain products of Banach algebras with applications to harmonic analysis', Studia Math. 178 (2007), 277-294.
[14] Y. Zhang, 'Nilpotent ideals in a class of Banach algebras', Proc. Amer. Math. Soc. 127 (1999), 3237-3242.

F. ABTAHI, Department of Mathematics, University of Isfahan, PO Box 81746-73441, Isfahan, Iran
e-mail: f.abtahi@sci.ui.ac.ir, abtahif2002@yahoo.com

A. GHAFARPANAH, Department of Mathematics, University of Isfahan, PO Box 81746-73441, Isfahan, Iran
e-mail: ghafarpanah@sci.ui.ac.ir, ghafarpanah1393@gmail.com
A. REJALI, Department of Mathematics, University of Isfahan, PO Box 81746-73441, Isfahan, Iran
e-mail: rejali@sci.ui.ac.ir, alirejali12@gmail.com

[^0]: This research was partially supported by the Banach Algebra Center of Excellence for Mathematics, University of Isfahan.
 (C) 2014 Australian Mathematical Publishing Association Inc. 0004-9727/2014 \$16.00

