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Abstract

Consider the classical initial, boundary-value problem for the 2D Euler
equations, which describes the motion of an ideal, incompressible, fluid
in a impermeable vessel. In the early eighties we introduced and studied
a Banach space, denoted C,(f2), which enjoys the following property:
if the curl of the initial velocity belongs to C.(Q2), and the curl of the
external forces is integrable in time with values in the above space C, (),
then all derivatives appearing in the differential equations and in the
boundary conditions are continuous in space-time, up to the boundary
(we call these solutions classical solutions). At that time this conclusion
was know if C, () is replaced by a Hélder space C%*(Q). In the proof
of the above result we appealed to a C?(Q) regularity result for solutions
to the Poisson equation, vanishing on the boundary and with external
forces in C,(9). Actually, at that time, we have proved this regularity
result for solutions to more general second-order linear elliptic boundary-
value problems. However the proof remained unpublished. Recently, we
have published an adaptation of the proof to solutions of the Stokes
system. We recall these results in Section 1.1 below. On the other hand,
attempts to prove the above regularity results for data in functional
spaces properly containing C (2), have also been done. Bellow we prove
some partial results in this direction. This possibly unfinished picture
leads to interesting open problems.

Published in Recent Progress in the Theory of the Euler and Navier-Stokes Equa-

tions, edited by James C. Robinson, José L. Rodrigo, Witold Sadowski, & Alejandro
Vidal-Lépez. (©Cambridge University Press 2016.
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2 H. Beirao da Veiga

1.1 The Euler and Stokes equations with data in C,(Q).

In these notes we want to give an overview on some results, both old
and new. Some are old, but remained unpublished for a long time. The
starting point will be Beirdo da Veiga (1981, 1982, 1984).

We start by introducing some notation. €2 is an open, bounded, con-
nected set in R™, n > 2, locally situated on one side of its boundary T'.
We assume that T is of class C%*(Q), for some positive A\. By C(2) we
denote the Banach space of all real, continuous functions in © with the
norm

1F]l = sup [f(2)].

z€eQ

In the sequel we use the notation

IVall = Y ll0gull, V%l = ) llogull,
i=1

i,j=1
and appeal to the canonical spaces C1(Q2) and C?(Q), with the norms
lulls = llull + [[Vall,  Julla = [lu]l + [Vul|
respectively. Further, for each A € (0, 1], we define the semi-norm

_ [f(x) = f(y)]
[flox = W T (1.1)
and the Holder space CONQ) = {f € C(Q) : [flor < oo}, with the

norm
1 llox = ILFIF+[flo-

In particular, C%'(Q) is the space of Lipschitz continuous functions in €.
By C>°(Q) we denote the set of all restrictions to 2 of infinitely differen-
tiable functions in R™. We will use boldface notation to denote vectors,
vector spaces, and so on. We denote the components of a generic vector
u by u;, and similarly for tensors. Norms in functional spaces whose
elements are vector fields are defined in the usual way, by appealing to
the corresponding norms of the components.

In considering the two-dimensional Euler equations we will introduce
the following well-known simplification. For a scalar function u(x) (iden-
tified here with the third component of a vector field, normal to the
plane of motion) we define the vector field Rotu = (dru, —01u). For a
vector field v = (v1,v2) we define the scalar field rotv = d1va — davg
(the normal component of the curl). One has —A = rotRot. Note that
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Rotu is the rotation of the gradient Vu by 7/2 in the counter-clockwise
direction.

Next we describe the motivation and origin of this research. We follow
Beirao da Veiga (1981, 1982, 1984) which were essentially written dur-
ing a visiting professorship to the Mathematics Research Center and the
Mathematics Department in Wisconsin-Madison, in the semester Octo-
ber 1981-March 1982. In the above references we consider the initial
boundary value problem for the two dimensional Euler equations

v+ (v-Viv=v—-Vr in Q=RxQ,
divv =0 in Q,

vorm=0 on RxT,

v(0) =vy in £

(1.2)

At that time our main interest was to determine minimal conditions on
the data which imply that the global, unique, solutions to the above
problem are classical. This means here that all derivatives appearing
in the equations are continuous, up to the boundary, in the space-time
cylinder. The main result on this problem was stated and proved in the
preprint by Beirao da Veiga (1982), see the theorem 1.9 below. Exactly
the same work was published in Beirdo da Veiga (1984), to which we
will refer in the sequel. To explain, in the simplest way, the main lines
followed in our study, assume for now that no external forces are present,
and that  is simply connected. In Beirdo da Veiga (1984) we started
by considering the Banach space

E(Q) = {v e C(Q) : divv = 0in Q;rotv € C(Q);v-n=0o0nT}, (1.3)
endowed with the norm (in the simply connected case)
llvlll= l[roto, (1.4)

and show the global boundedness, strong-continuous dependence on the
data, and other basic properties with respect to data in the above space
E(Q) (see the theorems 1.1, 1.2, and 1.3, in the above reference). These
preliminary results were obtained by improving techniques already used
by other authors; see for instance Kato (1967), and Schaeffer (1937).
However these results do not imply that solutions are classical under
the given assumption on the initial data, since

rotvg € C(Q)

leads to rotwv(t, -) € C(€), but this last property does not imply Vv(t,-) €
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C(Q). This gap is strictly related to a corresponding gap for solutions
to elliptic equations, namely, the solution v to the system (see equation
(1.3) in Beirao da Veiga, 1982)

rotv = f in
divo =0 in €, (1.5)
v-n=0 on T,

does not necessarily belong to C'(Q2), whenever f € C(Q). On the
other hand, at that time, it was already well known that if f belongs to
a Holder space C%*(€), then v € CHA(Q). This result, together with
a clever use of Lagrangian coordinates, makes it possible to prove that
solutions to the system (1.2) are classical under the hypothesis

rotvg € CO’)\(Q).

This was a well known result at that time, see Bardos (1972), Judovich
(1963), Kato (1967), and Schaeffer (1937).

Having the above picture in mind, it seemed natural to start our ap-
proach to the Euler equations by studying the system (1.5). We wanted
to single out a Banach spaces C,(f2), strictly contained in the Holder
spaces C%*(€2), such that solutions v to the first order system (1.5) are
classical under the assumption f € C,(Q). On the other hand, a classical
argument shows that the solution v to the system (1.5) can be obtained

by setting v = —Rotu, where u solves the problem
—Au=f in Q
’ 1.
{ u=0 on I. (16)

It follows that solutions v to system (1.5) belong to C*(Q) if the solutions
u to the system (1.6) belong to C?(€2). This situation led us to look for
a Banach space C,(Q), for which the following result holds.

Theorem 1.1.1. Let f € C.(Q) and let u be the solution to problem
(1.6). Then u € C?(2), moreover, ||ull2 < col| f]|«-

The above theorem was stated in Beirao da Veiga (1984) as Theorem
4.5. For convenience, the space C,(Q) will be defined at the end of this
section.

Having obtained the above result, we succeeded in proving that the
solutions to the Euler equations (1.2) are classical under the assumption

rotvg € C,(Q).
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This is the main result in Beirao da Veiga (1984). More precisely, we
proved the following statement.

Theorem 1.1.2. Let rotug € C,(Q) and rotv € L'(RT; C,(Q)). Then,
the global solution v to problem (1.2) is continuous in time with values

in C1(Q), that is
v € C(R"; CH(Q)). (1.7)
Furthermore, the estimate

[v®)llcr@) < ce* Bt |lrotwy |

c.@ tlrotvll i e, @t (1.8)
holds for all t € R™, where

By = |[rotvo|| + [[rotv|[ 11 (o .c@))- (1.9)

Moreover, Opv and V7 are continuous in @Q if both terms vy and VF,
in the canonical Helmholtz decomposition v = vy + VF' separately sat-
1sfy this same continuity property. Then all derivatives that appear in
equations (1.2) are continuous in Q, that is, we have a classical solution.

The conclusion of the theorem is false in general for data vy € C(€),
or v € LY(RT; CHQ)).

If © is not simply connected the results still apply, as remarked in
Beirao da Veiga (1984), by appealing to well known devices. See, for
instance, the appendix 1 in the above reference.

Concerning the 2D Euler equations, we also refer the reader to Koch
(2002). In this interesting work the author considers not only the 2D
Euler equations but also many other central problems. However, the
claims and proofs that followed to treat the particular two-dimensional
problem considered in reference Beirao da Veiga (1984) are not very
dissimilar to those previously showed by us in this last reference. Related
results can also be found in reference Vishik (1998).

In Beirao da Veiga (1984) it was remarked that Theorem 1.1.1 could
also be extended to solutions to more general linear elliptic boundary
value problems. In fact, in Beirao da Veiga (1981) we proved the follow-
ing regularity result.

Theorem 1.1.3. For every f € C.(Q) the solution u to the problem

{Eu:f in

Bu=0 on T, (1.10)
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belongs to C%(Q). Moreover, there is a constant co such that the estimate
lullz < collfll+,  Vf € C.(). (1.11)

holds.

In the above theorem L is a second order partial differential elliptic
operator with smooth coefficients, and B is a linear differential operator,
of order less or equal to one, acting on the boundary I'. In Beirao da Veiga
(1981) we assumed that £, B, and Q are such that, for each f € C(Q),
problem (1.10) has a unique solution u € C*(Q), given by

u(z) = / o, 9) f(y) dy, (1.12)

where g is the Green function associated with he above boundary value
problem. Our hypotheses on £, B, and € are given by the following two
requirements:

—For each f € C(9) the solution u of problem (1.10) is unique, belongs
to C1(2), and is is given by (1.12). Furthermore, if f € C°°(Q) then

u € C%(Q).
— The above Green’s function g(z,y) satisfies the estimates
k 2 k
%) < . : (113)
Ol = |z =yt 100z — |z —y|”

where 7,5 =1, ...,n.

The above estimates for Green’s functions have been well known for
a large class of problems for a long time. Classical works are due to, for
instance, Levi (1908, 1909), Hadamard (1914), Lichtenstein (1918), Ei-
dus (1958), Levy (1920), and many other authors. We refer in particular
to (Miranda, 1955, Chap. III, Sections 21, 22, and 23), and references
therein (in particular, to Giraud’s references). For much more general
results on Green functions see Solonnikov (1970, 1971).

It is worth noting that the proof of Theorem 1.1.3 may be extended to
a larger class of problems, like non-homogeneous boundary-value prob-
lems, elliptic systems, and in particular the Stokes system, higher order
problems, etc. The main point is that solutions u are given by expres-
sions like (1.12), where the Green’s functions g satisfy suitable estimates,
which extend that shown in equation (1.13). Recently, we have adapted
the unpublished proof of theorem 1.1.3 to show a similar regularity re-
sult for solutions to the Stokes system (1.10). Actually, in Beirao da
Veiga (2014) we prove the following result.
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Theorem 1.1.4. For every f € C.(Q) the solution (u,p) of the Stokes
system

—Au+Vp=Ff in§l,
V-u=0 inQ, (1.14)
u=0 onl,

belongs to C*(Q) x C*(Q). Moreover, there exists a constant co, depend-
ing only on Q, such that the estimate

lull2 + VPl < coll £ll; Vf € Cu(9), (1.15)

holds.

In the final part of the section we define the Banach space C,(€2).
If f € C(Q) set, for each r > 0,

wi(r) = sup [f(@) = f(y)l, (1.16)

z,yeQ;0<|z—y|<r

and define the semi-norm

s dr
e =1s= [ 0T (117
If 0 < 6 < R, one has
F1es < flon < Fles +2(log 2) 151, (118)

It follows that norms (obtained by the addition of || f||, see (1.20) below),
are equivalent.
In the literature, the condition

/5 dr
wr(r)— < 400
0

r

is called Dini’s continuity condition, see Gilbarg & Trudinger (1977),
equation (4.47). In Gilbarg & Trudinger (1977), problem 4.2, it is re-
marked that if f satisfies Dini’s condition in R™, then its Newtonian
potential is a C? solution of Poisson’s equation Au = f in R”.

Definition 1.1.5.

C.(Q) = {f e C@): [f]. < oo}. (1.19)
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As claimed in Beirao da Veiga (1984), C,(£2) endowed with the norm

£l = [f1 + A1 (1.20)

is a Banach space, compactly embedded in C(€2). Furthermore, C*(2)
is dense in C,(2). We have appealed to these properties in reference
Beirao da Veiga (1984), however the complete proofs were written only
in an unpublished manuscript Beirao da Veiga (1981). For the complete

proofs see the recent publication Beirdo da Veiga (2014).

In Beirao da Veiga (1981) we introduced a functional space B.(€2),
which strictly contains C, (), for which we have proven that the second
order derivatives of the solutions to the system (1.10) are bounded in §2
for all f € B,(Q). However, we did not succeed in proving, or disproving,
the full result, namely, the continuity up to the boundary of the second
order derivatives. This led us to leave unpublished the statements con-
cerning the space B,(f2). In the next sections we show some of these
results and proofs, and related open problems. Some results are proved
below for data in a larger space D, (Q) D B.(Q).

As remarked in Beirdo da Veiga (2014), another significant candidate

could be obtained by replacing in the definition of C,(f2) given in (1.17)
by the quantity wy(z;7) by

Bytas) = suplf@) — 0@ [ @l a2

zeN

1.2 The functional spaces B.(Q2) and D.(2).

In this section we define the spaces B.(Q) and D, (). We start with
B.(9Q). Set

wr(wsr) = sup |f(z) = f(y)l, (1.22)
yeQ(a;r)

and define, for each = € (), the “point-wise” semi-norms

&
pe(f)= [ wsen (1.23)

and also the “global” semi-norm

8
(1 =sup [ws@sn) T = suppa(1). (1.2

z€Q z€Q
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Note that
J dr
1= [ supstosn) (1.25)
Definition 1.2.1.
B.(Q) ={f € C(Q) : (f)« < +o0}. (1.26)

The space B, () endowed with

LA = 1A+ (s (1.27)

is a normed linear space. Clearly (f). < [f].. Further, in Beirdo da
Veiga (1981), we proved that the embedding B, (Q) C C,(Q) is strict,
by constructing an oscillating function which belongs to B, () but not
to C.(Q); for the counterexample we take Q = [0,1]. We show this
construction in Section 1.7 below.

Next we define D, (). Set
S(wir) ={yeQ:|z—yl=r},
and define

pp(z;r) = sup |f(z) = f(y)l, (1.28)
yeS(z;ir)

for each fixed z €  and r > 0. Further, fix a real positive §, and define
the semi-norms

6
o= [ wsanT. (1.29)

for each z € Q. As in (1.18), the particular positive value ¢ is not
significant here. Note that the continuity of f at single point x follows
necessarily from the finiteness of the integral in equation (1.29). To avoid

unnecessary complications, we assume in the sequel that f € C(€Q). Next
define the semi-norm

s

dr

()« :sug/ wy(z;r)— = sup ¢z (f). (1.30)
PISORAL T zeq

It is worth noting that all the semi-norms introduced above enjoy prop-

erty (1.18).
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Definition 1.2.2.

D.(Q)={f €C(Q):(f)« < +o0}. (1.31)

The linear space D, (Q) endowed with

A= LA+ () (1.32)

is a normed linear space. Obviously, B.(Q2) C D.(Q). Finally, note
that (1.18) holds for the above two functional spaces, with the obvious
modifications.

1.3 Results and open problems.

Theorem 1.3.1. Let f € D.(Q), and let u be the solution to problem
(1.10). Then the first order derivatives of the solution u are Lipschitz
continuous in Q. Furthermore, the estimate

IV2ul| poe ) < co IFII* (1.33)
holds.

The proof of this result is an extension of the unpublished proof given

in Beirao da Veiga (1981) for data f € B,(£2). The proof will be shown
in Section 1.4.

It remains an open problem whether the Theorems 1.1.3 and 1.1.4
hold with C, () replaced by B.(Q2) or by D.(Q). Let us discuss this
point. Below we prove the following conditional result.

Theorem 1.3.2. Let u be the solution of problem (1.10) with a given

data f € D.(Q). Assume that there is a sequence of data fn, € D«(Q),

convergent to f in D.(Q), such that the solutions u™ of problem (1.10)
with data f,, belong to C*(Q). Then u € C*(Q), and moreover

V2l < colll £l (1.34)

Theorem 1.3.2 will be proven in Section 1.5. It is worth noting that,

since B, (£2) C D.(€2), the above two theorems hold with D, (2) replaced

by B.(§2), and [|f|[* replaced by [|f]*.
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Corollary 1.3.3. If C*(Q) is dense in B.(Q), then solutions u with
data f € B.(Q), belong to C?(2), moreover

ull2 < coll fII*,  Vf € Bu(). (1.35)

The result holds with B.(Q) replaced by D.(Q), and || f|* replaced by
A

In the above corollary we may replace C>(Q2) by C%*(Q) (or even
by C.(Q), as a consequence of Theorem 1.1.3). However we put here
C*°(Q) functions since there is a well known “two steps” argument used
to prove density of C°°(Q) in larger functional spaces. The first step
consists of constructing a linear continuous map f — ‘]?, from B.(Q) to
B.(Q5), where

Os = {z : dist(z, Q) < 0}, (1.36)

for some d > 0, such that the restriction of fto Q coincides with f. In the
second step, we appeal to the usual mollification technique to prove the
desired density result in compact subsets of Qs, so in Q. The extension
step is necessary, since approximation by mollification may hold only in
compact subsets.

Concerning the first step, we prove the following “extension” result.
For the proof, see the Section 1.6 below.

Proposition 1.3.4. There exists 6 > 0, depending only on ), such that
the following statement holds. There is a linear continuous map f — f,
from B.(Q) to B.(s), such that the restriction of f to Q coincides with

f-

Theorem 1.3.1, together with the ideas introduced by Beirao da Veiga
(1984), provides new regularity results for solutions to the 2D Euler
equations. This point will be considered in a forthcoming paper. For
the time being, we merely state the following result.

Theorem 1.3.5. Letrotvg € B, (), and assume that the external forces
v vanish. Then, the global solution v to problem (1.2) satisfies

Vu € L=(Qr), (1.37)
for all T > 0.
The conclusion of the theorem is false in general for data vo € C*(Q).

It is worth noting that we have no reason to conjecture density of
C>(Q) in B.(Q). In fact, our advise to readers interested in the subject
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is to try to prove the full Theorem 1.3.1 in the framework of the norm
obtained by means of (1.21). In this context, it would be of interest to

show that C,(Q) in strictly contained in the above new space.

1.4 Proof of Theorem 1.3.1.

We start by estimating the differential quotients of the first order deriva-

tives of the solutions wu.

Proposition 1.4.1. Let f € C(Q2), and let u be the solution to problem
(1.10). Assume that for every given zo € Q, there ewists a real 5y > 0

such that

% dr

wal$) = [ nsain) T < oc.

0 T

Then
o;u(x) — O;u(x
@) =000 | < gy (1) + 141,
0

for all x € %‘), andi=1,.. n.

Proof. Let us introduce the auxiliary function v(x) defined by

Lyv=1 in

Bv=0 on TI.
In particular v € C11(Q), by assumption (i). Define
k1 = ||v]

1,1-

(1.38)

(1.39)

(1.40)

(1.41)

Clearly k1 depends only on £, B, and €2, since v is completely determined

by these data. Actually, k1 depends only on some parameters related to

the above elements (like the ellipticity constant of £, for instance).
Define, in €, the functions v°(x) = f(zo)v(z), and w(z) = u(x) —

v9(x). Clearly, for each index i = 1,...,n, we have

Bw(z) = / Big(x.y)f () — flzo)] dy, Va € Q.

Consequently,

B () — Buuw(ao)] < / 109 ) — Dsg(zo, )| F(w) — F(z0)| dy,

for all z € Q.
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Define

Qe(wo;r) = Q= Q205 1),
and set p = |x — xo|. We have
|O;w(x) — Oyw(xo)|

< / 10:9(z. ) — Big(o, »)|F (w) — F(x0)| dy
Q(z0;2p)

+ / Bg(s) — Big(ao, )| F () — Flao)|dy
Q(wo,&o) Q(:Eo,Qp)

t [ gt - digleanylIF ) - flao)ldy
Q (IO'(S(])
=L+ 1L+ (1.42)

where Jg > 2p.
Further, by appealing to the first estimate (1.13), we show that

I S2||f||{ [ sl [ aig<x7y>dy}
Q(z0;2p) Q(zo;2p)

d d
Scf||{/ W +/ Ay 1}. (1.43)
Q(z0;2p) |x0 - y‘n I(x;3p) |"17 - y|n

Hence
I < cpl| f]]-

On the other hand, by appealing to the mean-value theorem and the
second estimate in (1.13), we find that

10ig(x,y) — 0ig(wo,y)| < cplz’ —y|™" < ep2"|zo —y| ™",

for each y € Q.(z0;2p), where the point 2’ belongs to the straight seg-
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ment joining zy to z. Consequently,

dy
I <ep | FW) — flao)l—— (144)
Q(x03;00) —Q2(x0;2p) |x0 - y|
do d
<o [ [ wpleninyas (1.45)
20 T JS(zoir)
% dr
SCpSn/ wp(zo;r)—, (1.46)
25 r

where S, is the area of the surface of the n-dimensional unit sphere. It
follows that

Iy < cpgq,y(f).

Finally, a crude estimate for Is shows that

I < cp /Q ( L i) - Flee)ldy < 265570 51

:Do;(s[)) |"I:0 - y"’l

By appealing to equation (1.42) and to the estimates proved above for
I, I, and I3, we obtain that

|0iw(z) — Ow(zo)| < cplau, (f) + I£1)-
Since
|070° () — 830" (20)| < kupl f(z0)],
it follows that

c|Osu(z) — dyu(xo)| <|0w(x) — w(xo)| + |9;0° () — O;0° (x0)|

<cp(uo (f) +I1F1 + K1l f (o))
So,

|0;u(x) — dju(xo)|
|x — xo]

< C(on(f) + ||f||)7 Vz € Q,x 7& ZLo- (1'47)

This shows (1.39), completing the proof.

]
The proof of Theorem 1.3.1 follows immediately from proposition 1.4.1.
Note that, by appealing to the first equation (1.13), we obtain

Bu(z)] < £ / Big(z,y)|dy < clfll, Vo e
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Hence,

Vull < ¢l £l (1.48)

where u is the solution of problem (1.10).

1.5 Proof of Theorem 1.3.2.

Due to Theorem 1.3.1, it is sufficient to show that the second order classi-
cal derivatives of the solution u(x) exist and are continuous, everywhere
in Q.

Consider the solutions u™ of problems

{Eumfm in Q,

(1.49)
Bu™ =0 on TI.

Clearly u,, — u in C(Q). Further, by assumption, u™ € C?(Q2). By
applying the result stated in Theorem 1.3.1 to the system

{L(um_un):fm_fn in

(1.50)
B(u™—u")=0 on T,

we obtain ||0;;u"™ — 0;;u"|| < col| frmu — fnl|*. This proves that 9;;u™ is

a Cauchy sequence in C(2). Hence, by the completeness of C'(2), there

exists an element v;; € C(Q) such that the sequence 0;;u™ is uniformly

convergent in €2 to v;;. Furthermore, by applying estimate (1.48) to
u™ — u, it follows that

10u™ = djul| < ¢l fm = fl-

Hence 9;u™ converges uniformly in Q to O;u.
The above results guarantee that the second order derivatives 0;;u
exist and are given by v;;, for 4,5 =1,...,n.

1.6 Proof of Proposition 1.3.4.

In this section we prove the Proposition 1.3.4. The density of smooth
functions is a crucial ingredient in proving full regularity. As already
remarked, Proposition 1.3.4 is a typical first step to try to prove that

smooth functions are dense in B,(€2). We start with some preliminary
results. Recall that

Qs = {x : dist(z,Q) < d}.
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It is well known that, for sufficiently small, positive §, we can construct
a suitable system of parallel surfaces I',., where —25 < r < 2§, and
Ty =T. The surface I, is at distance |r| from I". It lies inside or outside
), depending on the negative or positive sign of the parameter r. Fur-
thermore, a one to one correspondence between pairs of points in the
opposite surfaces I',. and I'_,. is defined by imposing that they belong to
the same straight segment, orthogonal to I'. We say that these points,
denoted here by z and T, are obtained from each other, by reflection
(with respect to I').

Note that a positive lower bound for é depends on the upper bound
of the absolute values of the principal curvatures of the boundary T.
We denote such a positive lower bound by J, and use this same value in
definitions (1.23) and (1.24).

Lemma 1.6.1. There exist 6 > 0 and k > 1 (which depend only on the
given set ), such that the following holds. Given f € C(Q), there is an

extension [ : Qss — R,
fl@)=fl@) for zeQ,
such that, for each r € (0,4),

we(xskr), if x€Q,
wi(z;r) < - (1.51)
we(T; kr), if xeQy—0

Proof. We define

wi(z;r) = sup  |f(z) = fy)l, (1.52)
yeEQ(z57m)
and similarly,
wilzsr) = sup  |f(@) = f(y)l- (1.53)
yEQas (a;r)

Obviously, if z € Q, and dist(z,T") > 4, it follows that
wj:(x; r) =wg(z;r).

Hence we assume below that dist(z,I") <.

In the sequel we show the basic ideas that lead to a more formal proof,
whish is left to the interested reader.

We start by considering the particular case xy € I', and by assuming
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that inside the d-neighborhood of z( the boundary I is flat. Under these
assumptions, compare the quantity

wilwoir) = swp|Fzo) — Flw)l
yEl(zo;r)

with that defined by (1.52) for @ = z. In the case of ]77 the points y
describe a full ball, while, in the case of f, the points y describe a half
ball. However, the set of numerical values f(y) into play are, in both
cases, exactly the same. The reader may verify that a similar situation
occurs whenever the sphere I(z;7) intersects T', in the flat case. The
numerical values f(y) into play are still the same, for y € I(x;r) and
y € Q(T; 7). The above remarks show that, in the locally-flat boundary
case, (1.51) holds with k = 1.

In the general, non-flat, case, the geometrical situation is simply a
deformation of the above one. Let us start by assuming that = ¢ €, and
I(x,r) does not intersect I'. Here, contrary to the flat boundary case, the
reflection of I(z,r) is not I(T, r). However, the reflection is contained in
a (possibly large) sphere I(Z, kr) (roughly speaking, k < 1, if T" is locally
convex, and k > 1, if I' is locally concave). Since we assume that € is
regular (in particular, locally situated in one side of the boundary) the
local values obtained for k are uniformly bounded from above.

Finally, if I(x, r) intersects the boundary I', the more general picture is
simply an overlap of the two single situations, already described. Details
are left to the reader.

O

Proof ofl)roposition 1.53.4. By Lemma 1.6.1, we may construct an ex-
tension f : Qa5 — R of the given function f, such that (1.51) holds. It
follows that, for each x € Q,

6 0
d d
[ ertan < [Cwswin T,

and, for each z € Q5 — Q,

0 ) ko
d d d
/0 wilir) T S/O wp (T hr) = = /0 wp (@)~

In particular, it follows (note that extension of formula (1.18) holds)
that

(Fress < (Feks < (Fhus +2(Togh) 1]
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1.7 The embedding B.(Q) C C.(Q) is strict.

Below we construct an oscillating function in the interval [0, 1] which
belongs to B.(Q2) but not to C,(Q).
Proposition 1.7.1. The inclusion C,.(Q) C B.(Q) is proper.
Proof. For each non-negative integer n set
_on

'n =€ 5

and define, in the interval I = [0, 1], the real continuous function

2z — (2" —ry), if 27" —r,<z<277

Tn

fal@) =9 Z2(@ " +r) —x), if 27"<a<27 4y (154)

0, if |x—27"]>r,.

Note that f,, is linear in the intervals [27" —r,,27"] and [27", 27" +1,].
Below we work with § = rg = % in Definition 1.17.
In I, define the function

Note that 0 < f(z) < x. We start by showing that f ¢ C.(Q). For
convenience, we set

w(r) = wg(r).
Clearly, if r,41 <7 <r, then
27 — () < w(r) < w(ry) =277

Hence
d =1
IR o R EED R

This shows that f ¢ C.(9).

Next we prove that f € B,(Q2). We want to show that there exists a
constant ¢y such that, for all z € I,

0
/ oq(ac;r)% < ¢p. (1.55)
0
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We start by considering the points x,, = 27" where the function f(z)
attain local maximum values. Actually, f(27™) = 27". Other points
x € I can be treated by following a similar argument.

Let 2, = 27" be fixed. One has

)

27 it 0<r <rps
wi(Tp;r) < 270 F 0 if o, < <277 (1.56)

27" 4, i 277 < r <.

Note that equality holds in the first row of equation (1.56). Further,
in the second row, the inequality r < 27" should be interpreted as
Ty + 1 < 271 The second and third rows follow from the inequality

w(x,r) <z+r,

which holds for all z € I and r > 0.

Next, in accordance with (1.56), we decompose the integral on the
left hand side of equation (1.55) as the sum of three integrals, and we
estimate each of the integrals by appealing to the related region in (1.56).
After some elementary calculations (left to the reader) it is east to see
that equation (1.55) holds with ¢y = 3, for each point z,,. Finally note
that, for z = 0, equation (1.55) holds with ¢ = 1.

Assume now that

Tpo1 < T < Tp, (1.57)
for some index n. We will follow the argument used above. As before,

27, < <27y
wr(z;r) < (1.58)
27" 4, it 277 <r <.

It remains to consider the case in which 0 < r < r,,. Under this assump-
tion, and by taking into account (1.57), it readily follows that points
y satisfying |y — | < 7, do not reach the supports of f,42 and f,_;.
Hence we may replace here f by f,, + fn41. It follows that

wf (x; T') S w(fn+fn+1) (x; T) S wfn (.T; T) + wfn«i»l (‘r; T)?

for 0 < r < r,. The above considerations lead to (1.55).
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We remark that the above function f is not the limit in the B,(Q)
norm of the sequence of Lipschitz continuous functions

N
Fx(@) =) fal®),

since (f ) > %, for every n. This fact does not exclude the possibility

of approximating f by a sequence of elements belonging to C, ().
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