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Abstract

In this paper, we give multihomogeneous estimates for the group of relations linking multiplicatively
dependent algebraic numbers. In the process, we raise a question in the style of Lehmer's problem,
concerning multidimensional covolumes in the lattice of units. The proofs are based on the Brill-Gordan
duality theorem on orthogonal lattices, and the paper closes with an algebraic version of this theorem,
concerning orthogonal abelian subvarieties of an arbitrarily polarized abelian variety.
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The aim of this article is two-fold. On the one hand, we describe a new approach
to the problem of controlling the set of relations between multiplicatively dependent
elements in a number field. On the other hand, we establish a formula for the degrees
of orthogonal abelian subvarieties in a given polarized abelian variety. The linking
thread is provided by the classical theory of duality for lattices in the euclidean space
K", according to which a pair of rational orthogonal subspaces of complementary
dimensions cut IT along two sublattices of equal covolume.

For the convenience of the reader, we have recalled in the first section of the paper
a proof of this well-known result (cf. [8] for some historical comments, tracing it
back to Brill-Gordan, and [17] for an adelic translation). With an eye to non-principal
polarizations in Section 3, and also because such a generalization provides a proof of
the (equally classical) multihomogeneous version on which Section 2 is based, we do
not assume in this discussion unimodularity of the ambient lattice.

The second section deals with multiplicative dependence relations. Our method is
inspired by [1] (where we computed the covolume of the set of relations in terms of
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[2] Duality on tori and dependence relations 199

the degree of an algebraic subgroup of a split torus (Gm)"), but no algebraic geometry
is needed in the present description. The result itself is close to those obtained by
Matveev in [12], generalizing the multihomogeneous bound of Loxton and van der
Poorten [10] (see also Chen [4]). However, we elaborate on these works firstly
by taking into account the multihomogeneous character of the relation group itself
(actually, this simplifies the proof), and secondly by analysing in more detail the
dependence of the results in the number field under study. In the process, we come
across a natural question on minima of covolumes in the lattice of units, which may
be viewed as an extrapolation between the still open problem of Lehmer on minimal
heights, and known lower bounds for regulators.

In our last section, we state and prove the 'exact formula' alluded to in [11] for
orthogonal subvarieties in a polarized abelian variety. Over C, this boils down to the
study of dual subtori in (IR/Z)2", and it is not surprising that such results as in Section
1 should apply. However, we have here preferred to use a more algebraico-geometric
approach. The resulting proof is not fundamentally different, but has the advantage
of working in any characteristic. Here again, we also deduce from our result its
multihomogeneous version.

The author thanks the Number Theory Research Centre of Macquarie University,
where this paper was initiated.

1. Orthogonal lattices

(a) Notation We begin by recalling standard notation and results on lattices (as
a general reference, see [3]). If M is a lattice, that is, a discrete Z-module of
maximal rank in an E-vector space W of finite dimension, say r, and if b(x, y) is
a non-degenerate symmetric or antisymmetric bilinear form on W, we denote by
Vol(Af) = Voli M the absolute value of the discriminant of b with respect to M. In
terms of a basis ( m h . . . , mr) of M over Z, Vol(M) is given by the square root of the
absolute value of the determinant of the matrix

B(M) :=(&(«, , m , ) ; l < i, j <r).

(When b is a scalar product on W, Vol(Af) is the volume of the torus W/M for the
metric induced by b, or equivalently, the r-dimensional volume of a fundamental
domain for M in W, hence our notation.)

To M and b as above, we associate the set

M* := {x e W, b(x, m) e Z for all m's in M},

which is again a discrete Z-module of rank r in W, called the lattice dual to M (with
respect to b). One easily checks that in terms of the basis (mu • • •, mr) of W over R,
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200 Daniel Bertrand [3]

a basis of M* over Z is given by the columns of the transpose of the matrix B(M)~\
so that Vol(M*)2 = det(fl(M))-\ and

Vol(M) Vol(M*) = 1.

Since (A/*)* contains M, we deduce from this formula that any lattice coincides with
its bidual.

If JV is a lattice containing M, its dual N* lies in M*, and the map

e(b) : M ' x J V ^ C ,

sending an element (m*, n) of M* x N to the root of unity e\p(2inb(m*, n)), induces
an exact pairing between M*/N* and N/M. In other words, these groups are in
Pontryagin duality. That their orders [N : M] — [M* : N*] coincide can also be
deduced from the index formula

Vol(M)/Vol(N) = [N : M].

We finally note that M* contains M if and only if b assumes integral values on M
(by which we henceforth mean : on M x M). Then, M*/M is self-dual, and its order

[M* : M] = Vol(M)/ Vol(AT) = Vol(M)2.

(b) The duality formula Let now L be a lattice in a K-vector space V of finite
dimension, endowed with a non-degenerate symmetric or antisymmetric bilinear form
b. A subgroup M of L can be viewed as a lattice in the K-vector space W it generates
in V. Recall that W is regular (for b) if the restriction blw of b to W x W is again
non-degenerate, that is, if V is the direct sum of W and the orthogonal subspace
W1- = {x € V, b(x, W) = 0} (for instance, all Ws are regular if b is a scalar
product). We may then consider the lattice M* of W, dual to M with respect to b\W;
it contains the intersection with W of the lattice L* of V, dual to L with respect to
b. Suppose furthermore that M is a direct factor in L (this holds if and only if M
coincides with the intersection of L with W, in which case we say that M is a primitive
subgroup of L), and that b assumes integral values on L; then M = W P\ L is contained
inW (~) L*. Under these hypotheses, our general formula can be stated as follows.

PROPOSITION 1. Let b be a non-degenerate symmetric or antisymmetric bilinear
form on a finite-dimensional real vector space V, assuming integral values on a
lattice L in V. Let further M be a primitive subgroup of L, cut out by a regular R-
subspace WofV, and let Mx be the primitive subgroup of L cut out by the orthogonal
complement W1- of W in V. Then:
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[4] Duality on tori and dependence relations 201

(i) the lattices M <-+ WHL* ^ M*ofW, the lattices M± <^ W±f)L <-• (Mx)*
of W1 and the lattices M © Mx *-+ L <-+ L* of V are related by the index
relations

[V : M®M±] = [(M±y : (Mx)].[WnL* : M] = [M* : Af].[WxfU* : Mx];

in particular: Vol(M)/[W n L* : M]1/2 = Vol(Mx)/[Wx D L* : Mx]1/2;
(ii) furthermore, we have [L* : L] = [W D L* : M].[WX n L* : Mx], 50 that

Vol(Mx) = Vol(M) Vol(L)/[W n L* : M].

[When L is unimodular, that is, when Vol(L) = 1, L* coincides with L and the
whole lemma reduces to the classical equality : Vol(M) = Vol(Mx).]

PROOF, (i) Since b{M @ Mx, (Mx)*) and b(L*, Mx) lie in 1, the bilinear map:

e(b) : (L*/M © Mx) x ((MX)7MX) - • C*

sending a pair (x, y) to exp(2inb(x, y)) is well defined. Its right kernel consists of
classes of elements in W n L** = Mx, and is thus trivial. To compute its left kernel, let
p be the orthogonal projection from V to Wx. Sinceb(x, y) = b{p{x), y) for all (x, y)
in V x W1, that kernel consists of all classes of elements in p~l ((Mx)**) = /?"' (Mx),
and is thus equal to ((W © A/x) (1 L*)/M © Mx. But this group is isomorphic to
(W n L*)/M, while (Mx)*/A/X is self-dual. The above pairing therefore yields an
isomorphism:

(VIM © ML)/((W n V)/M) % (MX)7MX.

(An alternative way to prove this isomorphism consists in showing that p(V) coin-
cides with (W1 n L)* = (Mx)*.) In particular :

[V : M © Mx] = [(Mx)* : (MX)].[W n V : Af].

Now, (W, M) and (Wx, Mx) play symmetric roles, because M is primitive. In
particular, (Afx)x := L D (Wx)x = L n W = M. Our first formula is therefore
established. Its corollary then follows from our introductory remarks.

(ii) Since b(L, WL D L) and fc(L*, Mx) lie in 1, the bilinear map:

e(b) : (L*/L) x ((Wx n L*)/ML) ->• C

sending a pair (AT, y) to cxp(2inb(x, y)) is well defined. Its right kernel consists of
classes of elements in Wx D L** = Mx, and is thus trivial. Its left kernel is represented
by the inverse image under the projection p of (WL D L*)*. Let us check that this latter
group coincides with p(L) : it obviously contains p(L); conversely, if an element w
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202 Daniel Bertrand [5]

of W1 satisfies b(w, p(x)) e Z for all *'s in L, then b(w, L) lies in 2 and w belongs
to L*\ therefore, p(L)* is contained in Wx n V; thus, by biduality, (W1- n L*)* lies
in, and so is equal to, p(L).

The left kernel of our pairing may now be written as (L* D p~l(p(L))))/L =
(L* n (L © W))/L, and is thus isomorphic to (L* n W)/(L n W) = (L* n W)/M.
From the induced exact pairing

((L*/L)/(W n L*/M)) x (WL n L*)IML -* C*

we get:
[L* :L] = [WnL*: Af].[Wx n L* : M1],

and this concludes the proof of Lemma 1.

REMARK 1. Although its source and target have the same order, it is not true in
general that the natural map from (W n L*/M) x (W1 n L*/ML) to L*/L induced
by addition in L* is an isomorphism. For a counterexample, consider L = 2.(2, 0) ©
Z.(0, 1) in V = R2, with its standard scalar product, and M = 2.(2, 2).

(c) Complementary minors Suppose now that (V, b) is W, endowed with its
standard scalar product, and that L is the unimodular lattice Z". For any subset J of
the set { 1 , . . . , n], of cardinality, say, r, denote by pj the orthogonal projection of W
to its r-dimensional face RJ. Given a subgroup M of L of rank r, we set:

Voly(M) = \ol(pj(M)) = covolume of pj(M) in RJ if pj(M) has rank r,

Voly(M) = 0 if rk(pj(M)) < r.

Thus, Voly(M)) is in both cases the absolute value of the Jx{\,..., r}-minor of any
(n x r)-matrix expressing a base of M over Z in the canonical basis of R". By
Pythagoras' theorem (also known as Cauchy-Binet in this case), the square of the
volume of an /--dimensional parallelotope in E" is the sum of the squares of the
r-dimensional volumes of its projections to the different /--faces of K", that is,

(Vol(M))2 = £(Vol,(A/))2,
j

where / runs through the Q subsets of cardinality r in {1, . . . , n\. Thus, at least in
this setting, the following classical 'corollary' (see, for example, [2, Lemme 2.iii])
would immediately have implied Proposition 1. But, in preparation for its geometric
analogue in Section 3, we shall now deduce it from Proposition 1, rewritten in the
shape:

Vol(M) = VoKW"1 n L*)). Vol(L)

(reverse the roles of M and ML in Proposition l(ii), and use the index formula).
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[6] Duality on tori and dependence relations 203

COROLLARY. Let M be a primitive subgroup of rank r ofZ", let ML be its orthogonal
complement with respect to the standard scalar product on W, and let J LI J' be a
partition of {I,... ,n} in two subsets of cardinality r,n — r. Then

PROOF. TO any n-tuple of variable positive integers z = {z i , . . . , zn}, we associate
the self-adjoint automorphism §z = diag(zi , . . . , zn) of R", and the twist bz of the
standard scalar product b given by :

bz(x, y) = b(£z(x), y) =

We shall denote by Volz covolumes with respect to bz (and to its restrictions to the
faces of R"), by W the R-subspace generated by M, by Lz the lattice dual to L = ln

with respect to bz and by Wz the orthogonal complement of W with respect to the
scalar product bz. Applying Proposition l(ii) in the above shape to bz, we obtain:

VoL(Af) = Volz(W
z n Lz). Volz(L).

Now, the (standard) orthogonal complement Wx of W is the image under %z of Wz;
similarly, Lz is mapped by £z onto the lattice L* dual to L with respect to b, which
coincides with L (unimodularity of Z"). Therefore, %Z{WZ n Lz) = WL n L = ML.
Since the p/s are still orthogonal projections with respect to bz, Pythagoras' theorem
reads:

(Volz(M))2 = V ( V o l z y ( M ) ) 2 = V ( V o l y (M))2zy,

where zJ = Yliej z

Wz n Lz))2 =

where J' runs through the subsets of { 1 , . . . , n] of cardinality n — r = rk(ML). But

Vol(L)2Zi • • • zn = zJzr. Gathering these different equalities, we get:

]T(Voly(M))V = ^(Voly-(M-L))V.
j j'

Since this formula holds for any choice of positive integer z, we may view it as an
equality of polynomials in n variables, each of whose coefficients must therefore
coincide.

https://doi.org/10.1017/S1446788700000768 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000768


204 Daniel Bertrand [7]

2. Multiplicative dependence relations

Let n and d be two positive integers. In this section, we consider a number field it
of degree d over Q, and for any n-tuple a of non-zero elements ( a i , . . . , an) in &, we
study the covolume of the subgroup

M = M(a) := {(*>,, . . . , *„ )€ Z", a?' . . .a* = 1}

of the lattice L = Z" in the euclidean space W. We refer to [4] and [ 12] for a historical
survey on this 'relation group'. In view of Proposition 1, we may equivalently study
its orthogonal complement Mx in 2", which, for reasons which will soon appear, could
be called the parametrizing group. In a nutshell : we estimate Pliicker coordinates
instead of equations.

(a) Notation We express our result in terms of relative (rather than absolute) logar-
ithmic heights, defined, for an element a in it*, by

hk(a) = E X max(0, Log \av\),

where v runs through the different places of k, and dv, | \v are the local degree of k at v
and the D-adic absolute value on k, normalized by \p\v = p'1 if v lies above a prime
number p, and \2\v — 2 if v is archimedean. (Thus, /iQ(o)(a) = hk(a)/[k : Q(a)] is
the logarithm of the Mahler measure of a.) The cardinality of the set E of archimedean
places of k is denoted by a (with a' complex places), so that the group Uk of units of
k has rank rk{Uk) = a — 1, and d = a + a'.

The height is related to an £'-norm as follows. Let S be a finite set of places of k,
of cardinality s, containing E, and let it£ be the group of S-units in k*. Consider be
the logarithmic 'embedding' ££ oik*s into Ks:

whose kernel //(&*) consists of the roots of unity in k , and whose image is a lattice in
a hyperplane of Rs. For any q in N U {oo}, denote by \\.\\q the £*-norm on Rs. Thus,
for a in k*s, we have

= max(KLog|aU),

and it follows from the product formula h(a) = h(a~l) that

Hli=2M«),
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[8] Duality on tori and dependence relations 205

and that \\Sf(a)\\q < 2]/qhk(a) (cf. [1, 6, 12]). Furthermore, the £2-norm enables
us to speak of the covolume Vol(A) of any discrete subgroup A in the vector space
it generates in Rs. For instance, Vol(j£f (JJk)) is the regulator of the number field k,
times 2"\fa (cf. (3.7) below). More generally, for any integer m with 0 < m <
rk(k*s) = s — 1, we set:

(1.1) Vm{k, S) = min{Vol(^f(f/)); U = a subgroup of fc* of rank m}.
u

By the properties of j£f recalled above, Vm(k, S) is non-zero. Various effective
lower bounds for this quantity will be given in the last part of this section. For
instance, one has

(3.6) Vm(k, S) > (l/8d)3inf(d'm),

independently of S. We point out that Vm(k, S) appears implicitly in [12] (where it is
bounded in terms of ^-norms; cf. [12, Lemma 5], and (3.3) below), and in [4] (where
it is bounded in terms of €2-norms; see also [1, Proposition 2], and (3.4) below).
Finally,

(3.3') Vm(k,S)>s-mhk[ml

where

(1.2) hk[m] = min j Y\ hk{€i); elt.. .,em multipicatively independent in k* J
[i = \,....m J

denotes the product of the first m successive minima of the function hk on k*.

(b) A minor bound Recalling the notation Voly(M) from Section l(c), we have:

THEOREM 2. Let S be a finite set of places ofk containing E, and let a t , . . . , an be
S-units in k*. Denote by r the rank of their relation group M and by JUJ' a partition
of[l,...,n}in two subsets of cardinality r,n — r. Then:

Voly(M) <
ieJ'

[In order to apply this result efficiently, one should take S minimal with respect to
the a, 's . Up to the factor (V2)""r, it then cannot be improved, cf. (3.2') below. In the
opposite direction, one can dispose of S in the statement of Theorem 2 by appealing
to such bounds as (3.6), with m = n — r. As for \n(k*)\, it is equal to 2 if a ^ a',
and is otherwise bounded from above by the largest integer Af such that <p (N) divides
d, cf. [4].]
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206 Daniel Bertrand [9]

PROOF. We first compare M to the primitive subgroup M' given by the intersection
of Z" with the K-subspace W generated by M in IT. For ( /? , , . . . , bn) in M', «{"'••• ab

n"
is a root of unity in k*, so that the exponent of M'/M divides \fx(k*)\. Consequently,
[M' : M], and a fortiori [pj(M') : pj(M)], divide \fi(k*)\r. By the index formula,
we are now reduced to the case where M is primitive.

Under this hypothesis, the group A generated by a l t . . . , an in k*s is torsion-free.
Being finitely generated, it is free, of rank n — rk(M) = n — r, and there exists a basis
Pi,..., /8n_r of A over Z, in terms of which we may 'parametrize' c*i , . . . , « „ . More
precisely, let

C = (Ci,j)\£i£n, \<j<n-r{n TOWS, H - T Columns)

be the n x (n — r) matrix with integral coefficients, such that

(2) a, = Yl ft'' for all i = 1

For any element {bx,..., bn) in the relation group M, we deduce from the multiplicat-
ive independence of the /J/s that 5Z,=i n ^'cu = 0 for all 7 =0,... ,n — r. In other
words, the n — r columns of C belong to the orthogonal complement ML = W1 D Z"
of M in Z". We shall now show that they make up a basis of ML.

Since the a,'s generate A, there exists an n x (n — r) integral matrix B' such that
( f r , . . . , /3n_r) = (a, «„)*', hence: (0,, • • •, A_r) = (/3,,. . . , A_r)'CB', and the
independence of the /3/s implies that 'C.fi' is the (« — r) x (« — r) identity matrix
/„_,.. On the other hand, let c be a « x (n — r) integral matrix expressing a basis of
M-1 in the canonical basis of Z", and let P be the (n — r) x (n — r) integral matrix
such that C = cP. Then, 'C.B' =' P.('cB') = /„_„ so that P belongs to GLn.r(l),
and our claim is proved.

Thus, the absolute value of the J' x { 1 , . . . , « — r} minor of the matrix C coincides
with Volj(ML) = Voly(M), and we deduce from the relations (2) that the subgroup
Ajf of A generated by the a / s for j in J' has rank < n - r if and only if Voly(A/)
vanishes; otherwise, Voly(M) is the index of Aj> in A .

Considering the logarithmic embedding of k*s into K5, and noticing that .if is
injective on the free group A, we now derive from the index formula:

Vol(JS?(A)) Voly(M) = Vol(JSf(Ay.)).

By Hadamard's inequality, this expression is bounded from above by fjiey 11-^ (a<) II2.
hence by Y\leJ, | |i?(a,)lli, and even by (V2)"-r I L ^ **(««•)• S i n c e Vol(JSf(A)) >
Vn_r(^, 5) by definition (cf. (1.1)), Theorem 2 is established.

REMARK 2. Theorem 2 holds even if some of the /i(a,)'s are zero . Indeed, if / '
contains an index with this property, the projection pj(M) will have rank < r, and
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[10] Duality on tori and dependence relations 207

Wolj(M) will also vanish. (If all h(aj)'s are 0, that is, if r — n, our formula is still
valid, since the empty product 0° - jus t as the covolume of {0} in {0} - is equal to 1).
This eventuality can create problems when dealing with only one relation as in [10,
Theorem 3], which in fact holds in full generality only if r = 1.

In [12], Matveev expresses his bounds in terms of the twisted sup norm

\x\a — max (cii\Xi\) for x = (* i , . . . ,xn) in 1",
i = l n

where a — (a,, . . . , an) is any n-tuple of real numbers satisfying at > hk{ai) for
/ = 1 , . . . , n. We now show how to recover his results from Theorem 2 (and the
bounds for Voln_,.(&, S) given in Section 2(c)).

COROLLARY ([12, Theorem 4]). Under the hypotheses of Theorem 2, there exists a
set ofr linearly independent elements b i , . . . , b r of M such that:

\bj\a<(nr)
[/2(V2y-r\v(k*)\rVn_r(k,Srl ["[ a,,

j = l,...,r i=\,...,n

PROOF. Let || ||a2 be the a2-twist of the standard scalar product on W, defined by:

l|x||a2 = J2 a]x] for x = (x , , . . . , xn) in R".
i = \,...,n

Writing Vola2 for the corresponding volumes, we deduce from Theorem 2 and
Pythagoras-Cauchy-Binet that

at.
1 = 1,...,n

We now proceed as in [12]. The || ||a2-volume of the |.|o unit ball is equal to 2". By
Vaaler's cube-slicing, its intersection with the vector-space W generated by M in W
has volume > 2r. Minkowski's theorem then yields a set of r linearly independent
elements b i , . . . , br of M such that:

and the corollary follows from these two inequalities.

Finally, we point out that Chen's approach in [4] is also based on a parametrization
process. But the vector space generated by ^f (A) over Q is used in place of A, and the
resulting denominators which occur in the analogue of the matrix C can be controlled
only with the help of geometry of numbers in _£f (&J). It then becomes difficult to
study each of its minors separately.
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(c) From regulators to Lehmer's problem We now list the lower bounds for
Vn-r(k, S) promised in Section 2(a), whose notation we resume. Since KE ©
( 0 v , s K(v)) is an orthogonal decomposition of Rs with respect to the £2-norm, and
since |JCĵ " = \Nkv/Qp(x)\p for v above a prime p, orthogonal projection on the second
factor gives

(3.1) Vm(k,S)> min I VM(*, E) U hogp,\
I i = l [(m-u)/d\ )

where /?, denotes the i-th prime number. For instance (cf. [12, example following
Theorem 5]):

(3.2) Vm(Q,5)> \ \ Log p,.
i=\ m

More generally, let S = {p{\),..., p{n — 1)} be any set of n — 1 increasing prime
numbers, so that Vn_1(Q, S) = \\i=l n_x Log p(i), and consider the elements otx =
p ( l ) , a2 = p(2)/p(l),..., <*„_, = "p"(n - \)/p{n - 2), an = -l/p(n - 1) of Q*,
for which /JQ(O!,) = Log(p(/)) if / < n. Their relation group M = Z.(2,. . . , 2) has
rank r = 1, and for 7 = {«}, we get the equality:

(3.2') Voly(M) = 2=|/x(Q*)|Vn_1(Q,5)-1 f [ hQ(a,).
i = l n - l

In view of (3.1), we can now restrict to the crucial case S = S, that is, to the study of
subgroups of the unit group Uk. But we prefer to postpone use of this remark to the
final step of our discussion.

As was already suggested, practical lower bounds for Vm(k, S) depend on the
choice of a ^-norm on Us. We recall that the volume of the £«-unit ball in the
standard space W is given by (2F(1 + l/q))"/ P(l + n/q), and we first consider the
case 2 < q < oo. Vaaler's cube-slicing inequality for q = oo (and the layman's
sphere slicing equality for q = 2) have been extended to this full range by Meyer
and Pajor in [13]. Accordingly, the intersection of the £*-unit ball in Rs with any
m -dimensional subspace passing through the origin has volume at least equal to
2 T ( 1 + 1/<?))"• / T(\+m/q). On considering the subspaces generated by the different
groups U in (1.1), we deduce from Minkowski's theorem the existence of a set of m
multiplicatively independent elements 6 j , . . . , em in k*s such that:

)\\q<2mVm(k,S)/(2mr(l-

hence
Vm(k, S) > (P(l + \/q))m/ T(l + m/q))(o(k, q, m).
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where

(o(k,q,m) = min< FT ||Jz?(e,)||9; €\,..., em multiplicatively indepdependent in k*\.

For instance, we recover

(3.3) Vm(k,S)>co(k,oo,m),

(3.4) Vm(k, S) > ̂ /Am)m/2a>{k, 2, m),

corresponding respectively to [12, Theorem 4], and to [4] (or [1, Prop. 2]).
But it seems more natural, in the context of Theorem 2, to express these lower

bounds in terms of heights. From Holder's inequality |[JC ||! < HJCH^.S1"1^ in Rs, we
get ||if(e)||, > 2hk(e)/sl-l/i. Recalling the definition (1.2) of hk[m], we finally
obtain with the latter choices of q:

(3.3') Vm(k, S) > (2/S)
mhk[m],

(3.4') Vm(k, S) >

We now consider the case q = 1, where Holder's inequality becomes an equality.
Unfortunately, octahedra do not slice up as nicely as spheres, but by [13, Theorem
7], the volume X of the intersection of the ^'-unit ball in K5 with any m -dimensional
subspace passing through the origin still satisfies :

which is > 2m.es/sm ifs-m < Log(s). Minkowski's theorem then yields a set of m
multiplicatively independent elements €\,..., em in fcj such that:

)lli <2mVm(k,S)/X

and therefore, in terms of heights :

(3.5) Vm(k, S) > (2/s)meshk[m] if s - m < Log(s).

(This is a slight sharpening on (3.2') in the indicated range for m, which, in the setting
of Theorem 2, would correspond to a relation group of small rank.)

A lazy way to conclude our discussion consists in bounding hk[m] from below by
the mth power of any known bound for the first minimum hk[l] of hk on k*. For
instance, hk[l] is at least (\6d)~2 (see, for example, [4]), and we deduce from (3.1),
and (3.3) that

Vm(k,S)> min \(2/a
0<U«7-l I

I ' = 1 l(m-n)/d]
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hence

(3.6) Vm(k, S) > (&d)-ymndm).

But this may be drastically improved in some situations. As an archimedean
analogue of (3.2) , suppose for example that S = E, and that m is equal to the rank
a - 1 of Uk. Then, Va_\ (k, E) = Vol(j£?(t4)), and the lower bound for the regulator
of k quoted in [6, p. 620] implies:

(3.7) Va-dk, E) > lO-3Vd\v(k*)\ed/5,

which grows exponentially with d. (To relate Vol(_£f (Uk)) to the regulator, take a
basis of JC(Uk), divide the components of the complex embeddings by 2, note that
the regulator is the absolute value of each of the resulting (<r — 1) x (cr — 1) minors,
and apply Cauchy-Binet.)

Rather than to Lehmer's classical 'conjecture' on the existence of a universal lower
bound for hk[l], our approach thereby leads to the following problem. Let us say that
an integer valued function N on the set of positive integers, satisfying JV(CF) < a — 1
for all a, is Lehmer admissible if

inf{inf(Vr
B(*, E*); jV(ok) < n < ak - 1} > 0,

where k runs through all the number fields and T,k denotes the set of {ak) archimedean
places of k. We then ask :

PROBLEM. (i) does there exist a Lehmer admissible function J/ such that
limsup«/K(<r)/o- < 1?

(ii) does there exist a bounded Lehmer admissible function? In particular, does
there exist a number N >2 and a constant c > 0 such that all number fields
k with ak-l>N satisfy: VN(k, £*) > c?

(iii) does there exist a constant c' > 0 such that all number fields k with ak > 2
satisfy: V,(Jt, Lt) >

COMMENTS. (i) In view of (3.7), the function JV(O) = a - 1 is Lehmer
admissible. But^K(a) = 1 is not, since ||^f(e1/d)||2 <K l/Vd.

(ii) The third question lies between the conjectures of Lehmer (on il-norms) and
of Schinzel-Zassenhaus (on £°°-norms).

(iii) In view of Hadamard's inequality VN(k, E) < (y/2)Nhk[N], a positive answer
to the second question would imply the existence of a constant c" > 0 such that
in any field k of sufficiently large degree, at least one amongst N independent
units € of it satisfies: hk{e) > c".

We mention in conclusion that an elliptic analogue of this last statement (concerning
Lang's problem on minimal heights in terms of discriminants) has recently been
proved, with N = 5,by David (cf. [5, Cor. 1.6]).
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3. Orthogonal abelian subvarieties

We go back to the tori of Section l(b), assuming now that b is antisymmetric (in
particular, the dimension of V is an even number n = 2a), and that V has a complex
structure, given by an endomorphism J symplectic with respect to b , such that the
K-bilinear form b(Jx, y) is a scalar product. This ensures that any subspace W of V
stable under J is regular for b . Then, H(x, y) = b(Jx, y) + ib(x, y) is a Riemann
form for the complex torus A = V/L, which is thus an abelian variety, and the complex
subtori B = W/M, BL = W1 /M1- are abelian subvarieties of A. Furthermore, the
covolume of L with respect to b, which can be described alternatively as the Pfaffian
of b = lm(H) on L x L, or as the covolume of L wih respect to the scalar product
Re(//), satisfies:

[L* : L]"2 = Vol(L) = (l/g!)degH(A),

where degw(A) denotes the degree of the image of A in any of the projective em-
beddings attached to the Riemann form H (cf. [2, Proposition 3]). Thus, Proposition
1 translates into a formula (reproduced in Theorem 3 below) between the projective
degrees of orthogonal abelian subvarieties. In this section, we give an algebraic proof
of this formula, which allows to treat abelian varieties in any characteristic. Of ne-
cessity, we replace duals by Cartier duals, which, in our situation, can be computed as
Horn or Ext groups.

(a) The duality formula Let thus A be an abelian variety over some field k, and let
A. be a polarisation on A. For any abelian subvariety B of A, the abelian subvariety S x

of A, orthogonal to B with respect to X, can be described as follows: the polarization
A. gives rise to an isogeny <p between A and its dual abelian variety A", while the
transpose of the injection j from B into A is a surjection j v from A" onto the dual Bv

of B. Then, BL is the connected component of 0 of the subgroup scheme 0"1 (Ker(jv))
of A. As is well known (cf. [14, p. 173]), the natural map o from B x BL to A given
by addition on A is an isogeny, and the orthogonal {BL)L of BL coincides with B.

When very ample, the polarization X also gives rise to an embedding of A in a
projective space, and enables us to speak of the degree Aegk{W) = W.XdimW of the
image in that space of any algebraic subvariety W of A. In fact, this notation makes
sense in all cases. For instance, the degree of A itself is given by the Riemann-Roch
theorem (cf. [14, Section 16]):

degx(A) = dim(A)\\ K (X)\i/2,

where K(X) is the kernel of the isogeny </> attached to A. (we still write |.| for the order
of a finite group scheme, cf. [15, p. 38]). The following formulae, which sharpen
Lemmata 1.3 and 1.4 of [11], show how the degrees of two orthogonal abelian
subvarieties are related.
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THEOREM 3. Let (A, A.) be a polarized abelian variety over afield k, and let B, BL

be a pair of orthogonal abelian subvarieties with respect to A. Denote by b, b',
a = b + V the respective dimensions of B, BL, A. Then :

(i) the degree \B f) BL\ of the isogeny a : B x BL —> A satisfies the formula :

Iflnfl-H.IATMI = (degk(B)/b\)2.\BA-C)K(X)\ = (degx(5
J-)/fe'!)2.|Bn^(X)|;

in particular: degk(B)/(b\.\BnK(k)\^2) = degJl(B-L)/(&'!.|fl-LnJr(A.)|1/2).
(ii) furthermore, A"(X)/(B± D K(X)) is isomorphic to Hom(S n A" (A), Gm);in

particular, \K(X)\ = \B n K{X)\.\BL n K(k)\, so that:

deg^B^) = (b'\/a\b\)deg,(B)degk(A)/\B n K(X)\.

[When A. is a principal polarisation, that is, when the kernel K (A.) of <p is trivial,
Theorem 3 reduces to the easy equality: degk(B)/b\ = degx(B

L)/b'\. For an analysis
of the structure of the groups in that case, cf. [9, p. 368].]

PROOF. Without loss of generality, we assume that k is algebraically closed. We
denote by B' the group scheme:

B' = </>"' (Ker(/)),

whose component of the idendity is B1.
(i) The restriction of A. to B is again a polarisation of B, whose associated isogeny
from B to Bv is given by j v • <f> • j . By Riemann-Roch on B and the definition of B',
we therefore have:

(degx(B)/bl)2 = \BnB'\.

Since the cycle associated to B' is equal to {Ki^/B-1 n A"(A.)| times that of B1, this
last expression is also equal to lSr iB1 ! . |AT(A)|/|fl-LnA:(A.)|, and our first formulae
follow by biorthogonality.
(ii) Since B± is divisible and B'IBL is finite, the exact sequence

0 ^ BL-+ B'^ B'/B± ^0

splits (cf. [14, Lemma 1, p. 223]), and there exists a finite group scheme

AT « B'/B± % K(X)/(BX n A"(A.))

such that B' « B ± x N. In the category of commutative group schemes over k, we
then have, on denoting Carrier duals by":

Hom((fi\ Gm) = Hom(tf, Gm) = N\ Extl(B', Gm) = Ext1(Bx, Gm) = (B1)".
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Consider now the exact sequence: 0 —> B' —»• A —• Bv —>• 0, where the second
arrow is the natural injection, and the third one is given by j " • </>. The long exact
sequence associated to Hom(., Gm) it induces reads:

0 -* Hom(B', Gm) -+ Ext\B\ Gm) -* Ext1 (A, Gm) -* Ext1 (5' , Gm) -* 0

(cf. [14, Section 15], [15, p. 63], or [16, p. 166] if B' is reduced), that is,

0 -> Nv -* Bm -» Av - • (fi-L)" -» 0.

The second arrow of this exact sequence is (jv • <j>Y = 4>" • j ; but once Bvv is identifed
to B, we have 4>v — 0 (cf. [14, pp. 130 and 188]), so that Nv coincides with the kernel
of </> • j , which is B D K(X). In other words, the finite group schemes

K(X)/(B± n K(X)) and B n K(X)

are Cartier duals, and this concludes the proof of Theorem 3.

REMARK 3. B and BL may well intersect along K{X), so that once again (cf.
Remark 1), it is not true in general that the natural map from (Bx D K (A.)) x ( B f l
K(X)) to K(X) induced by the addition a on A would be an isomorphism. For a
counterexample, consider an elliptic curve with complex multiplication by n = -J^2,
with principal polarization (0), and set A = E x E, polarized by A. = p*(0) + Ipffl).
Let B = [x = ny], so that B1 = [x = — ny}. On denoting by E[f] the kernel of an
endomorphism / of E, we see that K(X) = 0 x £[2], which intersects both B and
Bx along 0 x E[n].

Finally, here is another way to state (or prove) Theorem 3, in terms of the ex pairing
of Mumford ([14, Section 20]; over C, and in the notation of the beginning of this
section, ek(x, y) is given by exp(—2i7i(b(x', y')) for*', y' above points x, y in K(X)).
Since ex is non-degenerate on K(X), it is clear that the induced pairing

el : K(X) x (K(X) D B) -+ fi(k*)

is right exact. Its left kernel contains K(X) n B±, and Theorem 3(ii) expresses the fact
that they coincide.

(b) Complementary multidegrees We here suppose that A is the product of n
polarized abelian varieties (Cu Xx),..., (Cn, Xn), and that X = p\Xx + •• • + P*nK,
where p, is the projection from A to C,. Denote by c, the dimension of C,, so that
a = dim A = cx + • • • + cn, and let J = {ru ..., rn] be a set of integers such that
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0 < r, < c, for / = 1 , . . . , n. In particular, b := rx + • • • + rn < a. For any subvariety
W of A, of dimension b, we may then consider the intersection number

degy(w) = w.ip^r.- • • .(P;xny\

When each A.,- is very ample, that is, yields an embedding of C, in a projective space
P(«), degy (W) may be interpreted as the multidegree with respect to J of the image of
W in P( l ) x • • • x P(n). But degj(W) makes sense in all cases, and for simplicity, we
shall assume from now on that all the A., 's, hence X as well, are principal polarizations.

The relation between degk(W) and the different multidegrees of W is given by
Newton's formula:

where J runs through all sets of «-tuples [rx,..., rn] as above, and c(J) is the
binomial coefficient b\/r\\ • • -rn\. The following multihomogeneous version of
Theorem 3, which, reversing the roles of B and BL, we rewrite as degx(B) =
(fe!/fe'!a!)degx(Bx)degx(A)/|Bx D K(X)\, would therefore also imply it. For each
J = [ru ... ,rn], we denote the 'complementary' set of J by J' — {r[ = c{ — ru

• ••,r'n = cn - / - „} , with r[ + ••• + r'n := b' = a - b.

COROLLARY. Let (A,k) = J~[.=1 n(C,-,X,-) be a principally polarized abelian
variety, let B, B1' be a pair of orthogonal abelian subvarieties with respect to X, of
dimension b, b' = a — b, and let J, J' be complementary sets of indices as above.
Then,

deg y ( f i ) / r i ! . . .rn\ = deg'jiB^/rll. ..r'n\

PROOF. TO any n-tuple of variable positive integers z = [z\, • • •, zn), we associate
the polarization

Xz =ZlP*ki -\ \-ZnP*nXn

on A. The corresponding isogeny from A to its dual Av (which we identify with
A thanks to the principal polarization X) is the 'diagonal' map £. = {z\,..., zn) on
C\ x • • • x Cn, whose kernel A[t-Z] has order zfc' • • • z^0"• Applying Theorem 3 (in the
shape above) to the orthogonal complement Bz of B with respect to Xz, together with
Newton's formula, we obtain:

= (b\/b'\a\)

z)zrzrzJ= (b\/b'\) n^ciJ')dcgr(B
z)zrz
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where we have set: zJ = z[' • • • zr
n\ and likewise for zJ'.

Now, B x is the set theoretic image of Bz under t-z, so that the cycles (%z)rB
z and

\BZ n i4Kz]|.Bx coincide. On the other hand, (£.)*(/>*!,) = zfp*k. We therefore

derive from the projection formula ([7, p. 426]) that:

for any subset J' = (ct — ru ..., cn — rn), that is,

|BZ n A&]| d e g , , ^ )

Plugging this into the previous relation, we get:

Since this formula holds for any choice of positive integers z, we may view it as

an equality of polynomials in n variables, each of whose coefficients must therefore

coincide.
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