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Abstract

Self-exciting point processes (SEPPs), or Hawkes processes, have found applications in
a wide range of fields, such as epidemiology, seismology, neuroscience, engineering,
and more recently financial econometrics and social interactions. In the traditional
SEPP models, the baseline intensity is assumed to be a constant. This has restricted the
application of SEPPs to situations where there is clearly a self-exciting phenomenon, but
a constant baseline intensity is inappropriate. In this paper, to model point processes with
varying baseline intensity, we introduce SEPP models with time-varying background
intensities (SEPPVB, for short). We show that SEPPVB models are competitive with
autoregressive conditional SEPP models (Engle and Russell 1998) for modeling ultra-
high frequency data. We also develop asymptotic theory for maximum likelihood
estimation based inference of parametric SEPP models, including SEPPVB. We illustrate
applications to ultra-high frequency financial data analysis, and we compare performance
with the autoregressive conditional duration models.
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1. Introduction

The self-exciting point process (SEPP) is a useful statistical model for point patterns that
have a temporal clustering feature. Since being proposed by Hawkes (1971), the SEPP and its
extensions have found applications in a wide ranges of areas, such as earthquake occurrence
modeling (Ogata 1988) and prediction (Vere-Jones 1995), neuron firing process modeling
(Chornoboy et al. 1988), triggered optical emission modeling (Teich and Saleh 2000), financial
securities trading and quote arrival time modeling (Engle and Lunde 2003), credit rating
transition modeling (Koopman et al. 2008), general ultra-high frequency financial data modeling
(Monteiro 2009), and social network interaction modeling (Crane and Sornette 2008).

An important problem in applications of point processes is estimation of model parameters.
The literature contains results concerning the estimation of SEPPs and associated asymptotic
theory. Ogata (1978) established consistency and asymptotic normality of maximum likelihood
estimators under stationarity and ergodicity conditions. Chornoboy et al. (1988) derived
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consistency and asymptotic normality of maximum likelihood estimators for the multivariate
SEPP under regularity conditions on the excitation components of the intensity processes.
Chornoboy et al. (1988) also proposed an expectation-maximization procedure to calculate
maximum likelihood estimators, and established the convergence of the procedure. Rathbun
(1996) studied asymptotic properties of maximum likelihood estimators (MLEs) for spatial-
temporal SEPPs under stationarity conditions.

All these contributions assume that the baseline intensity of SEPP models is constant in time.
While there are many situations where a SEPP seems an appropriate model for the event times
of interest, a constant baseline event intensity seems unrealistic. For instance, in the modeling
of earthquakes the sequence of aftershocks following a major quake may be modeled by a SEPP,
but it is well known that the background/baseline aftershock rate decays over time (Utsu 1961).
In the modeling of intra-day stock trading, a SEPP appears to be a natural candidate model, but
a constant baseline trading intensity would not be able to account for the phenomenon that the
trading intensity is almost always much higher during market open and market close (Engle and
Russell 1998). In situations such as these, SEPPs with constant background intensities typically
fit poorly to the data, and SEPP models with time-varying background intensities (SEPPVB)
seem to be more appropriate candidates.

In this paper we show that the SEPPVB models are viable alternatives to the autoregressive
conditional duration (ACD) type SEPP models, proposed by Engle and Russell (1998) for
modeling ultra-high frequency (UHF) financial data. Due to the stationarity requirement
of ACD type models, the data has to be detrended or otherwise ‘stationarized’ before ACD
models can be fitted. The focus of ACD model-based inference is on the residual process,
rather than on the original SEPP, and statistical properties of the transformations remain largely
unexplored. This makes inference concerning the systematic or signal part of the SEPP difficult.
In contrast, SEPPVB models do not require stationarity and therefore can be fitted directly to the
original point process data. This, together with the asymptotic theory that we develop, allows
simultaneous inference about the signal and noise components of the point process. Moreover,
in the real-life, ultra-high frequency stock trading example that we treat, the SEPPVB models
fit to the data better than an ACD model with comparable complexity.

Although inference for parametric SEPPVB models, using maximum likelihood, is straight-
forward to implement, results concerning the properties of MLEs in this setting seem not to
be available. Therefore, we provide an asymptotic theory for MLEs of the SEPPVB models,
to facilitate statistical inference based on this approach. Due to the time-varying baseline
intensity, the SEPP models we shall consider are typically nonstationary, and so the more
familiar asymptotic scenario of letting the observation time of the process tend to infinity
(Chornoboy et al. 1988; Ogata 1978) does not seem appropriate. The asymptotics we shall
consider are those where the baseline intensity itself tends to infinity while the observation time
interval remains fixed.

The remainder of the paper is as follows. Section 2 presents the model and the MLE.
Section 3 studies asymptotic properties of the MLE, and we prove that the MLE is consistent
and asymptotically normal. In Section 4 we explain how to assess the goodness of fit of SEPPVB
models. In Section 5 we report the results of numerical studies based on simulated and real-life
data. All proofs are deferred to Section 6. Section 7 concludes with a discussion.

2. The self-exciting point process with varying baseline intensity

Let {ti , i = 1, 2, . . . , } be a simple point process on the fixed interval [0, 1]. That is, 0 < t1 <

t2 < · · · ≤ 1. Let the associated counting process be N(t) = max{i : ti ≤ t}, t ∈ [0, 1]. Let
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(�,A,P) be the underlying probability space upon which all the relevant random elements are
defined. Denote the natural history of N(t) by F = {Ft }t∈[0,1], so that Ft = σ {N(s); s ≤ t}.
The intensity process of N(t), here denoted by λ(t), is an F predictable process such that
M(t) = N(t) − ∫ t

0λ(u) du is a zero mean locally square integrable martingale with respect
to F under P. The self-exciting intensity point process, as in Hawkes (1971), is a counting
process with an intensity process of the following self-exciting form:

λ(t) =ν +
∫

[0,t)
g(t − u) dN(u), (1)

where ν > 0 is a baseline intensity and the function g measures the influence of an event on
the intensity process. It is assumed that g(x) ≥ 0 for x ∈ [0, 1], g(x) = 0 for x < 0, and∫ 1

0 g(t) dt < 1. The time-varying background intensity SEPPN(t)we shall consider has a time
dependent function ν(t) in place of the constant ν in (1). That is, the intensity process of N(t)
is

λ(t) =ν(t)+
∫

[0,t)
g(t − u) dN(u).

The statistical problem in which we are interested concerns determining the two functions ν
and g which determine the distribution of the process N . This paper considers a parametric
problem where ν and g are known up to a finite dimensional parameter θ . That is, the intensity
of N satisfies

λ(t; θ) =ν(t; θ)+
∫

[0,t)
g(t − u; θ) dN(u),

where θ ∈ � ⊂ R
d and d is the dimension of the parameter.

The likelihood function for θ is simply the Radon–Nikodým density of the distribution of
the SEPP relative to a suitably chosen measure on the Skorokhod space D([0, 1]) of right
continuous functions with left limits, defined on [0, 1], such as the distribution of Poisson
process with unit intensity, regarded as a function of θ . Up to a multiplicative constant, with
large π denoting product-integration (Andersen et al.1993, Definition II.6.1), the likelihood is

L(θ) =π
t∈[0,1]

{
λ(t; θ)dN(t)(1 − λ(t; θ) dt)1− dN(t)

}

=
N(1)∏
i=1

λ(ti; θ) exp

{
−

∫ 1

0
λ(t; θ) dt

}
.

The loglikelihood, score function, and observed information for the parameter are respectively,

�(θ) = logL(θ)

=
N(1)∑
i=1

log λ(ti; θ)−
∫ 1

0
λ(t; θ) dt

=
∫ 1

0
log λ(t; θ) dN(t)−

∫ 1

0
λ(t; θ) dt,

S(θ) = ∂θ�(θ) =
∫ 1

0

∂θλ(t; θ)
λ(t; θ) dN(t)−

∫ 1

0
∂θλ(t; θ) dt =

∫ 1

0

∂θλ(t; θ)
λ(t; θ) dMθ(t), (2)

I (θ) = −∂θS(θ)� = −
∫ 1

0

∂⊗2
θ λ(t; θ)
λ(t; θ) dMθ(t)+

∫ 1

0

(∂θλ(t; θ))⊗2

λ(t; θ)2 dN(t),
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where

Mθ(t) = N(t)−
∫ t

0
λ(u; θ) du.

Throughout we use the notation

∂θ = ∂

∂θ
and ∂⊗2

θ = ∂2

∂θ∂θ� .

The MLE θ̂ can be obtained by maximizing �(θ) over �, or by solving the score equation
S(θ) = 0.

3. Consistency and asymptotic normality of the MLE

In this section we consider asymptotic properties of the MLE for θ . For this purpose, we
assume that there is a sequence of self-exciting intensity SEPP models Nn with their baseline
intensity functions proportional to a sequence of positive constantsan ↗ ∞, that is, the intensity
of Nn is

λn(t; θ) = anµ(t; θ)+
∫ t

0
g(t − u; θ) dNn(u),

where µ(t; θ) is a normalized baseline intensity function.
We shall show that under suitable regularity conditions, the MLE θ̂ behaves like the MLE

in a parametric model based on independent and identically distributed (i.i.d.) data, that is, θ̂ is
consistent and asymptotically normally distributed, and the MLE based tests such as the Wald,
score, and likelihood ratio tests are all asymptotically χ2 under the null hypothesis. For ease
of reference we list all the regularity conditions here.

(C1) Both the normalized baseline intensity µ(·; θ) and the excitation function g(·; θ) are
positive and continuous on [0, 1] for all θ ∈ �.

(C2) The parameter space � is compact and its interior is connected and contains a d-dimen-
sional nonempty open ball which, in turn, contains the true parameter.

(C3) For each t ∈ [0, 1], the functionsµ(t; θ) and g(t; θ) are twice continuously differentiable
in θ and their partial derivatives, up to order 2 with respect to θ , are all uniformly
equicontinuous when regarded as families of functions of θ .

(C4) For each θ , ∂θg(t, θ), and ∂⊗2
θ g(t, θ) are continuously differentiable in t .

(C5) The matrix-valued function

I(θ) =
∫ 1

0

{∂θµ(t; θ)+ ∫ t
0 ∂θg(t − u; θ)h(u; θ) du}⊗2

µ(t; θ)+ ∫ t
0 g(t − u; θ)h(u; θ) du

dt (3)

is nonsingular at the true parameter value, where the function h(t; θ) is determined by
the functions µ and g and is given in (5) below.

Under C1, by the cluster Poisson process representation of SEPP (Hawkes and Oakes 1974)
we have E{Nn(1)2} < ∞, and therefore the process

Mn
θ (t) = Nn(t)−

∫ t

0
λn(u, θ) du, t ∈ [0, 1],
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is a square integrable martingale. Moreover, the mean intensity process of Nn(t), ηn(t; θ) =
E{dNn(t)}/dt = E{λn(t; θ)}, satisfies the linear Volterra integral equation

η(t) = anµ(t; θ)+
∫ t

0
g(t − u; θ)η(u) du. (4)

By the theory of integral equations (e.g. Theorem 3.5 of Linz 1985), a unique solution of (4)
on [0, 1] exists and is given by

ηn(t; θ) = an

{
µ(t; θ)+

∫ t

0
R(t − u; θ)µ(u; θ) du

}
≡ anh(t; θ), (5)

where the resolvent kernel R(·; θ) is the unique solution of the integral equation

R(t) = g(t; θ)+
∫ t

0
g(t − u; θ)R(u) du, t ∈ [0, 1]. (6)

While general numerical procedures, such as Laplace transformations and inverse transfor-
mations, might be required to solve the integral equations (4) and (6), for special excitation
functions explicit solutions are available. For instance, if g(t) = γ1e−γ2t then the solution
to (6) is easily obtained by differentiation and solving the resulting differential equation; it is
R(t) = γ1e−(γ2−γ1)t .

We now state our main results concerning the properties of the MLE. Hereafter, we use θ0
to denote the true parameter.

Theorem 1. Under C1-C5, with probability tending to 1, θ̂ exists as a solution to the score

equation S(θ) = 0, and θ̂
P−→ θ0.

The following result states that the MLE is asymptotically normally distributed with a
variance-covariance matrix that can be estimated by inverting the observed information matrix.

Theorem 2. Under C1-C5, we have

a
1/2
n (θ̂ − θ0)

d−→ N(0,I(θ0)
−1), (7)

where I(θ) is as in (3). Moreover, we have a−1
n I (θ̂)

P−→ I(θ0).

Proofs of Theorems 1 and 2 are given in Section 6.

4. Assessing adequacy of the model

In practice, after fitting a model to a data set we normally would like to assess whether
the model provides an adequate fit. If a point pattern {ti} on the interval [0, 1] does follow a
SEPP with a specified conditional intensity λ(t), then the integral transformed point pattern

(ti) should follow a unit intensity Poisson process on [0,
(1)], where 
(t) = ∫ t

0 λ(u) du
is the cumulative intensity process, or the compensator, of the SEPP. Given that a Poisson
process is monitored from time 0 until a specific time T and since the joint distribution of the
ordered event times of the process is equal to that of the order statistics of an equal number of
uniformly distributed times on the interval [0, T ], we can assess the adequacy of a fitted SEPP by
checking the uniformity of the transformed event times 
̂(ti) on the interval [0, 
̂(1)], where 
̂
is obtained by substituting in λ the unknown parameters by their estimates. The uniformity can
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be visually checked through a Quantile-Quantile plot (QQ-plot) or through formal tests, such as
the χ2 test or the Kolmogorov-Smirnov (KS) test. In the following real-life examples we shall
use the KS test since it avoids a somewhat arbitrary choice of bin boundaries when calculating the
χ2 statistic. Large p-values of the test indicate acceptable model fits. Of course, in interpreting
the magnitude of p-values we should bear in mind that the transformation function 
̂ carries
the randomness of the data, and the distribution of the test statistic would be more spread-out
than that calculated from a prespecified
, and, therefore, we should be more tolerant of smaller
p-values. In any case, the p-values should be assessed together with other diagnostic checks,
such as the QQ-plot.

5. Numerical results

5.1. Simulation study

In this section we report the results of a small simulation study. The SEPP model we
simulated has a quadratic baseline intensity function,

ν(t) = eβ1 + {eβ2 + eβ3}2(t − eβ2/(eβ2 + eβ3))2, t ∈ [0, 1],
and an exponential excitation function, g(t) = exp(γ1 − eγ2 t), t ≥ 0. Here the shape of the
baseline intensity was motivated by the stock trading example considered below in Section 5.2,
where the trading intensities seem high at market open and close, and low around middle of
the day. The exponential forms were used to ensure positivity of the intensity. We simulated
100 sample paths of the SEPP, and estimated the γi and βi using MLEs based on each of the
simulated paths.

The results of the simulation are shown in Table 1. The first row gives the true values of
each parameter. The second row gives the average of the 100 estimates. The third row gives
the empirical standard error of each estimator, i.e. the standard deviation of the 100 estimates.
The fourth row gives the average of the 100 standard error estimates obtained by inverting the
observed information. The fifth row gives the normal QQ-plot of the 100 estimates of each
parameter. The sixth and last row gives the p-values of the two-sided Kolmogorov-Smirnov
tests of normality of the 100 estimates for each parameter, where the mean and variance of the
hypothesized normal distribution are chosen to be the emprical mean and variance, respectively,
of the 100 estimates.

From Table 1 we can see that the estimates are all close to their respective true parameter
values, relative to the standard errors. The averages of the estimated standard errors are also
close to the empirical standard errors. From the QQ-plots we can see that the distributions of
the estimators are normal-looking, although the distributions of the estimates of the parameters
involved in the excitation function have heavier than normal tails. The p-values of the KS tests
of normality are all above the usual significance level of 0.05. We therefore conclude that the
MLE works well, as predicted by our asymptotic theory.

5.2. Trade arrival process of an Australian stock

As pointed out by Engle and Russell (1998), financial durations, or equivalently the intensity
of arrival of financial events, measure the speed of a financial market. Therefore, modeling of
financial durations can cast light on the microeconomic structure of the financial market. In
this section we apply the SEPPVB model to an ultra-high frequency financial dataset for the
intraday trading times of a common stock traded on the Australian Stock Exchange, the ANZ
stock. The data contain the times of all trades of theANZ stock that occurred in December 2008,
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Table 1: Results of the simulation study.

γ1 γ2 β1 β2 β3

True 4.3 6.0 7.0 4.0 3.8
Mean Est. 4.190 6.087 7.008 4.015 3.809
Emp. SE 0.802 0.950 0.092 0.056 0.058
Mean ŜE 0.626 0.721 0.109 0.056 0.063
QQ-plot Figure 1(a) Figure 1(b) Figure 1(c) Figure 1(d) Figure 1(e)
p-val. 0.15 0.13 0.09 0.87 0.93

(a)

(e)(d)

(c)(b)
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Figure 1.

Greenwich Mean Time (GMT). In this analysis we consider only the times of the trades that fall
inside normal trading hours, 10:00-16:00 Australian Eastern Standard Time (AEST), except
on 24 and 31 December when the normal trading period is 10:00-14:10. There are a total of
21 trading days in the month. The daily number of trades varies between 2620 and 11900
with a mean of 6633. Due to the finite precision in time recording, there are multiple trades
associated with some trade times. Following convention we consider multiple trades at the
same point in time as a single trade. With this interpretation, the number of trades reduces to
the range [1493, 5821] with a mean of 3399. We fitted the SEPPVB to each of the 21 daily
datasets, where the varying background intensity was assumed to be a B-spline with interior
knots at each of the trading hours (11:00, 12:00, …), and for the excitation function we used
both the exponential decay function g(t; θ) = γ1 exp(−γ2t) and the polynomial decay function
g(t; θ) = γ1/(1+t)1+γ2 . We also assumed that the parameters involved in the baseline intensity
function and in the excitation functions were separated.

The goodness-of-fit (GOF) results are shown in Figures 2–4 and Table 2. For the purpose
of comparison we have also included the GOF results of fitting the Generalized Gamma ACD
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Figure 2: QQ-plots of the transformed event times in the SEPPVB-ED model.
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Figure 3: QQ-plots of the transformed event times in the SEPPVB-PD model.
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Figure 4: QQ-plots of the transformed event times in the GGACD(1,1) model.

Table 2: Goodness-of-fit results in the case of fitting the SEPPVB and GGACD models to the intraday
trade times data of ANZ stock in December 2008.

p-values of the KS tests of uniformity of the Rosenblatt residuals
Date

SEPPVB-ED SEPPVB-PD GGACD(1,1)

12-01 0.14 0.14 0.01
12-02 0.43 0.13 0.0011
12-03 0.22 0.23 0.0005
12-04 0.12 0.16 1.5e-05
12-05 0.013 9.1e-05 0.00022
12-08 0.063 0.062 9.1e-05
12-09 0.014 0.058 1.3e-05
12-10 0.00016 0.00016 0.0039
12-11 5.3e-09 1.1e-06 0.00011
12-12 0.014 0.013 0.012
12-15 0.00028 0.00027 0.013
12-16 0.013 0.013 0.0021
12-17 2.6e-05 4.1e-05 8.1e-09
12-18 0.092 0.074 0.00071
12-19 0.075 0.075 0.0096
12-22 0.016 0.015 0.1
12-23 0.96 0.96 0.012
12-24 0.42 0.37 0.19
12-29 0.42 0.4 0.054
12-30 0.42 0.38 0.25
12-31 0.0041 0.00048 0.47
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(GGACD, cf. Zhang et al. 2001) model with autoregressive order (1,1) to the diurnally adjusted
data in Figures 2–4 and Table 2. The GGACD model is a generalization of the Exponential
and Weibull ACD models of Engle and Russell (1998). It assumes the durations di = ti − ti−1
between successive events of the SEPP have a generalized gamma distribution, given the past
information of the process up to the last event time, and provided that the conditional mean
of the duration, ψi = E[di | Fti−1 ], satisfies an autoregressive relationship of order (m, q).
That is,

di = ψiεi,

ψi = ω +
m∑
j=1

αjdi−j +
q∑
j=1

βjψi−j ,

where the innovation εi is independent of Fti−1 and has a generalized gamma distribution with
density given by

fε(x; a, k) = axka−1e−(x/b)a

bka�(k)
, with b = �(k)

�(k + 1/a)
.

In obtaining the diurnally adjusted data we followed Engle and Russell (1998) and estimated
the expected raw durations as functions of the time of the day using regression splines, and then
divided the raw residuals by the corresponding estimates of expected durations. The knots and
order of the splines were the same as those used in the SEPPVB model. To assess the GOF of
the GGACD model, we used the Rosenblatt (1952) transform method (see also Bauwens et al.
2004). We calculated the residuals ûi = F̂i(di), with F̂i being the estimator of the conditional
distribution function of di given Fti−1 , and obtained from the MLEs â, k̂, ω̂, α̂j , β̂j , and the
fitted conditional durations

ψ̂i = ω̂ +
m∑
j=1

α̂j di−j +
q∑
j=1

β̂jψi−j .

We then calculated p-values of the two-sided KS tests of uniformity of the distribution of the
ûi . Small p-values indicate a poor fit.

From Figures 2–4 and Table 2 we note that, overall, the SEPPVB models provide a consid-
erably better fit than the GGACD(1,1) model. Of the two SEPPVB models, the model with
the exponential decay excitation function (SEPPVB-ED), seems to fit slightly better than the
model with the polynomial decay function (SEPP-PD), although the results are for most days
nearly identical.

The estimated parameters of the excitation function are shown in Table 3, from which we
can see the estimated integral of the excitation function varies in the range 0.10–0.66. This
suggests that between 10% and 66% of the transactions of the ANZ shares are likely to be the
result of noisy trading excited by informative trading.

The estimated time-varying baseline intensity functions are shown in Figures 5 and 6, from
which we note that the background intensities have a number of somewhat consistent features,
such as high intensities near the open and close of the local market. We also note that 11:00
tends to be a time when the background intensity peaks locally. This phenomenon could
be due to the fact that there are other major Asian stock markets opening at 11:00 or in the
hour following, such as the Malaysian and Singaporean stock exchanges (at 11:00 AEST), the
Hong Kong Stock Exchange (11:20 AEST), and the Shanghai and Shenzhen Stock Exchanges
(at 11:30 AEST).
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Figure 5: Estimated background intensities (in trades per second) in the SEPPVB model with
exponentially decaying excitation.
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Figure 6: Estimated background intensities (in trades per second) in the SEPPVB model with
polynomially decaying excitation.
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Table 3: Estimates of the parameters of the excitation functions in the SEPPVB models. In brackets are
the standard errors (SE). An NaN SE value indicates the corresponding inverted Hessian matrix failed to

be positive definite.

SEPPVB-ED SEPPVB-PD
Date

log γ1 log γ2
∫
g ≈ γ1/γ2 log(γ1) log(γ2)

∫
g ≈ γ1/γ2

12-01 11.05(0.087) 12.88(0.087) 0.16(0.0088) 11.05(0.087) 12.88(0.087) 0.16(0.0088)
12-02 9.34(0.059) 10.22(0.072) 0.41(0.015) 9.42(0.062) 10.36(0.078) 0.39(0.015)
12-03 9.23(0.073) 10.25(0.095) 0.36(0.016) 9.23(0.081) 10.25(0.11) 0.36(0.019)
12-04 9.24(0.066) 10.19(0.072) 0.38(0.013) 9.21(0.076) 10.15(0.099) 0.39(0.018)
12-05 11.31(0.073) 13.23(0.072) 0.15(0.0069) 11.32(0.072) 13.25(0.07) 0.15(0.0068)
12-08 9.37(NaN) 10.57(NaN) 0.30(NaN) 9.37(0.08) 10.57(0.11) 0.30(0.015)
12-09 11.43(0.062) 13.09(0.064) 0.19(0.0074) 11.45(0.062) 13.13(0.062) 0.19(0.0073)
12-10 8.25(0.16) 8.67(0.22) 0.66(0.044) 8.25(0.21) 8.67(0.29) 0.66(0.057)
12-11 9.49(0.058) 10.24(0.073) 0.47(0.016) 9.47(0.057) 10.21(0.07) 0.48(0.016)
12-12 11.16(0.081) 13.18(0.078) 0.13(0.0071) 11.16(0.081) 13.18(0.078) 0.13(0.0071)
12-15 11.08(0.09) 13.23(0.092) 0.12(0.0067) 11.08(0.09) 13.23(0.092) 0.12(0.0067)
12-16 9.68(0.056) 10.51(0.065) 0.44(0.014) 9.68(0.056) 10.51(0.064) 0.44(0.014)
12-17 11.47(0.053) 13.25(0.049) 0.17(0.006) 11.47(0.053) 13.25(0.049) 0.17(0.006)
12-18 9.56(0.058) 10.50(0.069) 0.39(0.014) 9.56(0.058) 10.49(0.069) 0.39(0.014)
12-19 7.86(NaN) 8.29(NaN) 0.65(NaN) 7.86(NaN) 8.29(NaN) 0.65(NaN)
12-22 8.81(0.12) 10.15(0.16) 0.26(0.021) 8.75(0.12) 10.04(0.16) 0.28(0.021)
12-23 9.54(0.079) 10.65(0.097) 0.33(0.016) 9.54(0.08) 10.66(0.098) 0.33(0.016)
12-24 8.77(0.098) 9.95(0.11) 0.31(0.019) 8.77(0.097) 9.96(0.11) 0.31(0.019)
12-29 11.04(0.11) 13.37(0.1) 0.10(0.0068) 11.05(0.11) 13.39(0.1) 0.10(0.0068)
12-30 8.90(0.099) 10.17(0.12) 0.28(0.018) 8.91(0.099) 10.18(0.12) 0.28(0.018)
12-31 9.26(0.11) 10.69(0.12) 0.24(0.017) 9.24(0.11) 10.65(0.12) 0.24(0.017)

6. Technical arguments

Proof of Theorem 1. If we can show that θ0 is a suitably separated zero of the uniform
in-probability limit, S(θ), of the normalized score function a−1

n Sn(θ), taking the limit in a
neighborhood of θ0, then, in view of the Z-estimator master theorem (e.g Theorem 5.9 of van
der Vaart 1998), the proof is complete.

We have seen from (5) that the mean of Nn(t) is an
∫ t

0 h(u; θ0) du ≡ anH(t; θ0). So we
expect that

sup
t∈[0,1]

|a−1
n Nn(t)−H(t; θ0)| P−→ 0. (8)

Since the normalized score function can be written as

a−1
n Sn(θ) =

∫ 1

0

∂θµ(t; θ)+ ∫ t
0 ∂θg(t − u; θ) da−1

n Nn(u)

µ(t; θ)+ ∫ t
0 g(t − u; θ) da−1

n Nn(u)
da−1
n Nn(t)

−
∫ 1

0

{
∂θµ(t; θ)+

∫ t

0
∂θg(t − u; θ) da−1

n Nn(u)

}
dt,
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it also seems natural to expect its limit to be

s(θ) =
∫ 1

0

∂θµ(t; θ)+ ∫ t
0 ∂θg(t − u; θ)h(u; θ0) du

µ(t; θ)+ ∫ t
0 g(t − u; θ)h(u; θ0) du

h(t; θ0) dt

−
∫ 1

0

{
∂θµ(t; θ)+

∫ t

0
∂θg(t − u; θ)h(u; θ0) du

}
dt.

Sinceh(t; θ0) satisfies theVolterra equation (4) (with an there dropped), it is clear that s(θ0) = 0.
The derivative matrix of s(θ) is given by

∂θ s(θ)
� =

∫ 1

0

∂⊗2
θ µ(t; θ)+ ∫ t

0 ∂
⊗2
θ g(t − u; θ)h(u; θ0) du

µ(t; θ)+ ∫ t
0 g(t − u; θ)h(u; θ0) du

h(t; θ0) dt

−
∫ 1

0

{∂θµ(t; θ)+ ∫ t
0 ∂θg(t − u; θ)h(u; θ0) du}⊗2

{µ(t; θ)+ ∫ t
0 g(t − u; θ)h(u; θ0) du}2

h(t; θ0) dt

−
∫ 1

0

{
∂⊗2
θ µ(t; θ)+

∫ t

0
∂⊗2
θ g(t − u; θ)h(u; θ0) du

}
dt. (9)

In view of condition C5, the matrix ∂θ s(θ)� is negative semi-definite at θ0 since the first and
last terms on the right-hand side of (9) cancel when θ = θ0. Noting the continuity of µ(·; θ),
g(·; θ), and h(·; θ) in θ , we see that ∂θ s(θ)� is negative definite in a neighborhood U of θ0.
So, θ0 is the unique and well separated zero of s(θ) in U , in the sense that

sup
θ∈U : ‖θ−θ0‖≥ε

‖s(θ)‖ > ‖s(θ0)‖ = 0 for all ε > 0.

Now we only need to establish the uniform in-probability convergence,

sup
θ∈�

‖a−1
n Sn(θ)− s(θ)‖ P−→ 0. (10)

To this end, we first show that a−1
n Sn(θ) − s(θ)

P−→ 0 for each θ ∈ �. With g′(t; θ) denoting
dg(t; θ)/dt , by integration by parts and the assumed conditions on the excitation function g,
we have the following estimates for j = 0, 1 and all t ∈ [0, 1]:∣∣∣∣

∫ t

0
∂
j
θ g(t − u; θ){ da−1

n N(u)− h(u; θ0) du}
∣∣∣∣

=
∣∣∣∣{a−1

n N(t)−H(t; θ0)}∂jθ g(0; θ)+
∫ t

0
{a−1
n N(u)−H(u; θ0)}∂jθ g′(t − u; θ) du

∣∣∣∣
≤

{∣∣∣∂jθ g(0; θ)
∣∣∣ +

∫ 1

0

∣∣∂jθ g′(t; θ)∣∣ dt

}
× sup
t∈[0,1]

|a−1
n N(t)−H(t; θ0)|,

where | · | and ≤ are understood component-wise when applied to a vector. Therefore, using
integration by parts and the continuous mapping theorem (e.g. Kallenberg 2002, Lemma 4.3),
we deduce that a−1

n Sn(θ)− s(θ)
P−→ 0 for each θ , provided we can establish (8).

We now derive (8) using a Poisson representation method (e.g. Kurtz 1983). Although the
law of large numbers result of Kurtz (1983) for SEPPs is not directly applicable, the proof
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below is modeled on that of Kurtz’Theorem 2.1. Let Y be a unit intensity Poisson process, and
Xn a SEPP defined by

Xn(t) = Y (an

∫ t

0
{µ(u; θ0)+

∫
[0,u)

g(u− s; θ0) dXn(s)} du), t ∈ [0, 1].

Since the intensity of Xn is given by anµ(t; θ0) + ∫
[0,t) g(t − u; θ0) dXn(u) and Xn(0) =

Nn(0) = 0, we see that Nn and Xn are equal in distribution. Therefore, we will satisfy (8) if
we can prove it with Nn replaced by Xn, that is,

sup
t∈[0,1]

|a−1
n Xn(t)−H(t; θ0)| P−→ 0.

Recall that h(t; θ0) satisfies the integral equation (4) with the an dropped. So, if we let Ỹ (t) =
Y (t) − t be the compensated Poisson process, then, by Fubini’s theorem and integration by
parts, we can write

a−1
n Xn(t)−H(t; θ0) = a−1

n Ỹ

(
an

∫ t

0

{
µ(u; θ0)+

∫
[0,u)

g(u− s; θ0) da−1
n Xn(s)

}
du

)

+
∫ t

0

∫
[0,u)

g(u− s; θ0) d{a−1
n Xn(s)−H(s; θ0)} du

= a−1
n Ỹ

(
an

∫ t

0
µ(u; θ0)+ a−1

n Xn(u)g(t − u; θ0) du

)

+
∫ t

0
{a−1
n Xn(u)−H(u; θ0)}g(t − u; θ0) du

≡ εn(t)+
∫ t

0
{a−1
n Xn(u)−H(u; θ0)}g(t − u; θ0) du. (11)

If we write µ̄ = supt∈[0,1] µ(t; θ0) and ḡ = supt∈[0,1] g(t; θ0), and define another self-exciting
process Zn by

Zn(t) = Y

[
an

∫ t

0
{µ̄+ ḡa−1

n Zn(u)} du

]
,

then it is clear that supu∈[0,t]Xn(u) = Xn(t) ≤ Zn(t) and by a strong law of large num-
bers of Kurtz for self-exciting counting processes (see e.g. Kurtz 1981, Theorem 8.1), with
probability 1, a−1

n Zn(t) → Z(t) uniformly in t on compact intervals, for Z(t) satisfying

Z(t) =
∫ t

0
µ̄+ ḡZ(u) du,

or explicitly, Z(t) = (µ̄/ḡ){exp(ḡt)− 1}. So, for sufficiently large n,

sup
t∈[0,1]

|εn(t)| = sup
t∈[0,1]

∣∣∣∣a−1
n Ỹ

{
an

∫ t

0
µ(u; θ0)+ a−1

n Xn(u)g(t − u; θ0) du

}∣∣∣∣
≤ sup
s∈[0,an(µ̄+(Z(1)+1)ḡ)]

|a−1
n Ỹ (s)|

P−→ 0,
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where the in-probability convergence is implied by Doob’s inequality (e.g. Revuz andYor 1999,
Theorem II.1.7): since a−1

n Ỹ is a martingale, it follows for all ε, T > 0, that

P

{
sup

s∈[0,anT ]
a−1
n |Ỹ (s)| > ε

}
≤ E{a−2

n Ỹ (anT )
2}/ε2 = a−2

n anT /ε
2 → 0.

Noticing (11) implies |a−1
n Xn(t)−H(t; θ0)| ≤ |εn(t)| +

∫ t
0 |a−1

n Xn(u)−H(u; θ0)|ḡ du, and,
therefore, also

sup
u∈[0,t]

|a−1
n Xn(u)−H(u; θ0)|

≤ sup
u∈[0,1]

|εn(u)| + ḡ

∫ t

0
sup
s∈[0,u]

|a−1
n Xn(s)−H(s; θ0)| du, t ∈ [0, 1],

we have, by Gronwall’s inequality (e.g. Kallenberg 2002, Lemma 21.4),

sup
u∈[0,t]

|a−1
n Xn(u)−H(u; θ0)| ≤ sup

u∈[0,1]
|εn(u)|eḡt P−→ 0, t ∈ [0, 1].

This proves (8) and, therefore, a−1
n Sn(θ)− s(θ)

P−→ 0 for each θ ∈ �.
To complete the proof, it remains to show this convergence is uniform in θ . Now note for

each ε > 0, by the assumed regularity conditions on µ and g, we can find a δ > 0 such that, for
all θ1, θ2 ∈ �, ‖θ1 −θ2‖ < δ implies ‖a−1

n Sn(θ1)−a−1
n Sn(θ2)‖ ≤ ε/3 with probability tending

to 1, and, moreover, ‖s(θ1)− s(θ2)‖ ≤ ε/3. For such a δ, since� is a compact set in R
d , there

exist a finite number of open balls with radius δ whose union covers�. Let ϑ1, . . . , ϑK denote
the centers of these balls, and, for all θ , let ϑi(θ) be the center of a ball that contains θ . Note
that

P

(
sup
θ

‖a−1
n Sn(θ)− s(θ)‖ > ε

)
≤ P

(
sup
θ

‖a−1
n Sn(θ)− a−1

n Sn(ϑi(θ))‖ > ε/3
)

+ P

(
sup
θ

‖a−1
n Sn(ϑi(θ))− s(ϑi(θ))‖ > ε/3

)
+ P

(
sup
θ

‖s(ϑi(θ))− s(θ)‖ > ε/3
)
.

By definition, ‖ϑi(θ)−θ‖ < δ, so the third term on the right equals 0 and the first term converges
to 0 as n → ∞. The second term above also converges to 0 since it is bounded by

K∑
i=1

P(‖a−1
n Sn(ϑi)− s(ϑi)‖ > ε/3) → 0.

This completes the proof of (10), and therefore of the theorem.

Proof of Theorem 2. The proof is based on the mean value theorem and the martingale
central limit theorem (Andersen et al. 1993; Fleming and Harrington 1991). First note that, by
the mean value theorem,

0 = a
−1/2
n Sn(θ̂) = a

−1/2
n Sn(θ0)+ a−1

n ∂θSn(θ)|θ=θ∗a1/2
n (θ̂ − θ0),
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where θ∗ lies on the line segment joining θ0 and θ̂ . So we have, at least formally,

a
1/2
n (θ̂ − θ0) = −{a−1

n ∂θSn(θ)|θ=θ∗}−1a
−1/2
n Sn(θ0).

By Slutsky’s theorem, it suffices to show

a
−1/2
n Sn(θ0)

d−→ N(0,I(θ0)), (12)

and

a−1
n ∂θSn(θ)|θ=θ∗ P−→ −I(θ0). (13)

To show (12), we note from (2) that a−1/2
n Sn(θ0) has the martingale transform structure,

a
−1/2
n Sn(θ0) = ∫ 1

0 Un(t) dMn(t), with

Un(t) = a
−1/2
n

∂θµ(t; θ0)+ ∫ t
0 ∂θg(t − u; θ0) da−1

n Nn(u)

µ(t; θ0)+ ∫ t
0 g(t − u; θ0) da−1

n Nn(u)
,

Mn(t) = Nn(t)−
∫ t

0

{
anµ(u; θ0)+

∫ u

0
g(u− s; θ0) dNn(s)

}
du.

Note that, since Mn(t) is a square-integrable martingale and Un(t) is locally bounded and
predictable, M̃n(t) = ∫ t

0 Un(s) dMn(s), t ∈ [0, 1], is a locally square integrable martingale,
and a−1/2

n Sn(θ0) = M̃n(1). Since the predictable variation process of Nn(t) is equal to its
compensator, that is, 〈Nn〉(t) = ∫ t

0 λn(u; θ0) du, the predictable variation process of M̃(t) is

〈M̃n〉(t) =
∫ t

0
Un(s)

⊗2 d〈M̃n〉(s)

=
∫ t

0

{∂θµ(u; θ0)+ ∫ u
0 ∂θg(u− s; θ0) da−1

n Nn(s)}⊗2

µ(u; θ0)+ ∫ u
0 g(u− s; θ0) da−1

n Nn(s)
du,

which converges to

v(t) ≡
∫ t

0

{∂θµ(u; θ0)+ ∫ u
0 ∂θg(u− s; θ0) dH(s; θ0)}⊗2

µ(u; θ0)+ ∫ u
0 g(u− s; θ0) dH(s; θ0)

du

in probability for t ∈ [0, 1].
Next we look at the large jumps of M̃n(t). Write M̃n,ε(t) = ∫ t

0 Un(s)1{|Un(s)| > ε} dMn(s),
where, as usual, the function 1{| · | > ε} is understood dimension-wise when applied to a
vector. Then M̃n,ε(t) accumulates all the jumps of M̃n, before time t , that exceed ε. Noting
that Un(t) = O

P
(a

−1/2
n ) uniformly in t ∈ [0, 1], and by Lenglart’s inequality (Andersen et al.

1993; Fleming and Harrington 1991; Lenglart 1977), we deduce that sups∈[0,t] |M̃n,ε(s)| P−→ 0
dimension-wise for all t ∈ [0, 1]. By the martingale central limit theorem, we conclude that
M̃(t) converges in distribution to a Gaussian process with covariance function v(t). Therefore,
a

−1/2
n Sn(θ0) = M̃(1) converges in distribution to a zero mean normal random vector with

variance matrix v(1) = I(θ0). This proves (12).

Since we have seen that supt∈[0,1] |a−1
n Nn(t)−H(t; θ0)| P−→ 0 in the proof of Theorem 1, and

using an argument essentially the same as that leading to supθ∈� ‖a−1
n Sn(θ)− s(θ)‖ P−→ 0 in

the proof of Theorem 1, it can be shown that supθ∈� ‖a−1
n ∂θSn(θ)

� − ∂θ s(θ)‖ P−→ 0. Since θ∗
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is sandwiched between θ̂ and θ0, and θ̂
P−→ θ0, it follows that θ∗ P−→ θ0 as well. By the continuity

of ∂θ s(θ)� in θ and the continuous mapping theorem, we also have

∂θ s(θ
∗)� P−→ ∂θ s(θ0)

� = −I(θ0).

Furthermore, (13) follows from the observation that

‖a−1
n ∂θSn(θ

∗)� − ∂θ s(θ0)
�‖

≤ ‖a−1
n ∂θSn(θ

∗)� − ∂θ s(θ
∗)�‖ + ‖∂θ s(θ∗)� − ∂θ s(θ0)

�‖
≤ sup
θ∈�

‖a−1
n ∂θSn(θ)

� − ∂θ s(θ)
�‖ + ‖∂θ s(θ∗)� − ∂θ s(θ0)

�‖,

which proves (7).

Finally we note that the property a−1
n I (θ̂)

P−→ I(θ0) follows along almost the same lines as
the above proof of a−1

n ∂θSn(θ
∗)� P−→ −I(θ0).

7. Discussion

In this paper we proved that maximum likelihood estimators of parametric SEPPs (or
Hawkes processes) with time-varying background intensity (SEPPVBs) are consistent and
asymptotically normal as the normalizing constant in the baseline intensity tends to infinity,
under weak regularity conditions on the model. We also demonstrated that SEPPVBs comprise a
promising and competitive alternative to the more popular ACD type models initially developed
by Engle and Russell (1998) for financial duration modeling.

In establishing consistency we used a Cramér type method (Cramér 1946). It is natural to
wonder whether a Wald type method (Wald 1949) would work as well. The apparent answer
would seem to be ‘no’, since under our model there does not appear to be a function definable
as the limit of the normalized log-likelihood which plays the role of the expectation of the log
density in the i.i.d. data case. However, if suitably ‘hacked’, aWald method still works. The trick
is to note there is a sequence of deterministic functions which have a common global maximizer
at the true parameter value, and are uniformly close (in probability) to the loglikelihood function.
In fact, if we take

mn(θ) =
∫ 1

0
log{anµθ (t)+ an(gθ ∗ hθ0)(t)}anhθ0(t) dt

−
∫ 1

0
{anµθ (t)+ an(gθ ∗ hθ )(t)} dt,

with ∗ denoting convolution, then it can be shown that | logLn(θ)−mn(θ)| = op(an) uniformly
in a neighborhood of θ0, and, moreover, mn(θ0) − mn(θ) ≥ 0 for all n by the elementary
inequality log x ≥ 1 − x−1 for x > 0. A similar hacking of the Cramér method has been used
by Chen (2011) to establish consistency of local polynomial estimators of counting process
intensity functions and their derivatives.

The asymptotic setting in this paper does not allow the excitation function to vary with the
limit index. However, based on the shape of the estimated excitation function in the UHF
financial data example, it seems justifiable to consider the asymptotics in a context where the
shape of the excitation function varies while its integral is held fixed, e.g. via a scaling factor
which is allowed to tend to infinity with the intensity. Asymptotics of this type would make
interesting research problems.

https://doi.org/10.1239/jap/1389370096 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1389370096


Asymptotic inference for a parametric self-exciting point process 1023

In the UHF data example we considered above, we treated multiple trades with the same
time stamp as a single trade. This was only for convenience, and is likely to have led to
underestimated baseline trading intensities. To remedy this, one possibility is to jitter the
tied event times, and average the resulting estimates from multiple jittered data sets. Another
treatment is to consider point process models that allow simultaneous jumps, or marked point
process (MPP) models. Multiplicity of an event time, or the size of a jump on the path of the
MPP, can enter the model as event marks together with other features of the event, such as price
and volume of a trade in the UHF financial data example. Inference for self-exciting MPPs is
another interesting research problem.

As suggested by a referee, the multivariate Hawkes process, or mutually exciting point
process, also has applications in many applied settings, such as finance (Embrechts et al. 2011).
The inference for mutually exciting point processes with time-varying baseline intensities is
also an important problem.
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