Canad. Math. Bull. Vol. **56** (2), 2013 pp. 272–282 http://dx.doi.org/10.4153/CMB-2011-169-3 © Canadian Mathematical Society 2011

On Super Weakly Compact Convex Sets and Representation of the Dual of the Normed Semigroup They Generate

Lixin Cheng, Zhenghua Luo, and Yu Zhou

Abstract. In this note, we first give a characterization of super weakly compact convex sets of a Banach space *X*: a closed bounded convex set $K \subset X$ is super weakly compact if and only if there exists a w^* lower semicontinuous seminorm *p* with $p \ge \sigma_K \equiv \sup_{x \in K} \langle \cdot, x \rangle$ such that p^2 is uniformly Fréchet differentiable on each bounded set of X^* . Then we present a representation theorem for the dual of the semigroup swcc(*X*) consisting of all the nonempty super weakly compact convex sets of the space *X*.

1 Introduction

Let *X* be a Banach space, and let swcc(X) be the normed semigroup of all nonempty super weakly compact convex sets of *X*. The purpose of this paper is to establish a representation theorem of the dual of swcc(X). This is done by giving a generalized renorming characterization and an approximation property of super weakly compact convex sets.

It is well known that super-reflexive or uniformly convexifiable Banach spaces play an important role in Banach space theory, and they form an extremely useful class of reflexive spaces. The Enflo renorming theorem [9] states that every super-reflexive Banach space is uniformly convexifiable and vice versa (see also [13]). Recently, Cheng, Cheng, Wang, and Zhang [6] introduced a notion of super weakly compact set, and gave the Enflo renorming theorem a localized setting. A closed bounded convex set in a Banach space is uniformly convexifiable if and only if it is super weakly compact. Now, we recall some definitions that will be used in the sequel.

Definition 1.1 Suppose that X is a Banach space, $\varepsilon > 0$. For all $n \in \mathbb{N}$, $A_n \subset X$ are defined by

$$A_n = \{x_{\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n} : \varepsilon_i = 1, 2 \text{ and } i = 1, 2, \dots, n\}.$$

(i) The subset A_n is called an (n, ε) -tree for some $n \in \mathbb{N}$ if it satisfies

$$x_{\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_k} = \frac{1}{2} (x_{\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_k,1} + x_{\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_k,2})$$

Received by the editors August 31, 2010; revised March 27, 2011.

Published electronically August 31, 2011.

The first author was supported by the Natural Science Foundation of China, grants 10771175 and 11071201.

AMS subject classification: 20M30, 46B10, 46B20, 46E15, 46J10, 49J50.

Keywords: super weakly compact set, dual of normed semigroup, uniform Fréchet differentiability, representation.

and

$$\|x_{\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_k,1} - x_{\varepsilon_1,\varepsilon_2,\cdots,\varepsilon_k,2}\| \ge \varepsilon$$

for $k = 1, 2, ..., n - 1, \varepsilon_i = 1, 2$ and i = 1, 2, ..., k.

(ii) A bounded closed convex set $A \subset X$ is said to be *super weakly compact* if for every $\varepsilon > 0$, there exists $n \in \mathbb{N}$ such that A does not contain an (n, ε) -tree.

Definition 1.2 Suppose that $C \subset X$ is a nonempty convex set.

- (i) A real-valued convex function f defined on C is said to be *uniformly convex* provided for every $\varepsilon > 0$ there is $\delta > 0$ such that $f(x) + f(y) 2f(\frac{x+y}{2}) \ge \delta$ whenever $x, y \in C$ with $||x y|| \ge \varepsilon$.
- (ii) The set *C* is called uniformly convex provided for every $x_0 \in C$ the function $f := \|\cdot x_0\|^2$ is uniformly convex on *C*.
- (iii) We say the set *C* is *uniformly convexifiable* if there is an equivalent norm $|\cdot|$ on *X* such that *C* is uniformly convex with respect to $|\cdot|$.

Let $swcc(X) = \{K \subset X : K \text{ is nonempty super weakly compact and convex}\}$. Among many other things, the authors, Cheng, et al [6] showed the following property.

Proposition 1.3 For any Banach space X, the set swcc(X) is closed under the two operations of addition and scalar multiplication.

Definition 1.4 Let G be an Abelian semigroup and let $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$.

(i) *G* is said to be a *module* if there are two operations $(x, y) \in G \times G \rightarrow x + y \in G$, and $(\alpha, x) \in (\mathbb{F} \times G) \rightarrow \alpha x \in G$ satisfying

$$(\lambda \mu)g = \lambda(\mu g), \quad \forall \lambda, \mu \in \mathbb{F} \text{ and } g \in G;$$

 $\lambda(g_1 + g_2) = \lambda g_1 + \lambda g_2, \quad \forall \lambda \in \mathbb{F} \text{ and } g_1, g_2 \in G;$

and

$$lg = g$$
 and $0g = 0 \quad \forall g \in G.$

- (ii) A module *G* endowed with a norm is called a *normed semigroup*.
- (iii) A function ϕ on a normed semigroup G is called a *linear functional* if it satisfies

$$\phi(\alpha g_1 + \beta g_2) = \alpha \phi(g_1) + \beta \phi(g_2), \ \forall \alpha, \beta \in \mathbb{R}^+ \text{ and } g_1, g_2 \in G.$$

It is said to be *bounded* provided $\|\phi\| = \sup\{|\phi(g)| : g \in G, \|g\| \le 1\} < \infty$. We denote by G^* the Banach space of all bounded functionals on G and call it the dual of G.

We endow the Hausdorff metric d_H on swcc(X), *i.e.*,

$$d_H(K_1, K_2) = \max\{\sup_{x \in K_1} d(x, K_2), \sup_{y \in K_2} d(K_1, y)\}, \text{ for } K_1, K_2 \in \text{swcc}(X),$$

where $d(K, x) = d(x, K) = \inf_{k \in K} ||k - x||$. This metric induces further a norm $|| \cdot ||_H$ for $K \in \operatorname{swcc}(X)$

$$||K||_{H} = d_{H}(0, K) = \sup\{||k|| : k \in K\}$$

Therefore, combining this with Proposition 1.3, we obtain the following proposition.

Proposition 1.5 swcc(X) is, endowed with the norm, a normed semigroup.

In this paper, the letter X will always be a real Banach space and X^* its dual. B_X (B_{X^*} , resp.) stands for the closed ball of X (X^* , resp.); if there is no possible confusion, we simply write by B (B^* , resp.) for B_X (B_{X^*} , resp.). S_X (S_{X^*} , resp.) represents the unit sphere of X (X^* , resp.). We denote by Ω a compact Hausdorff space, and by $C(\Omega)$ the Banach space of all real-valued continuous functions defined on Ω endowed with the sup-norm. For a subset $A \subset X$, σ_A stands for the support function of A, *i.e.*, $\sigma_A(x^*) = \sup_{x \in A} \langle x^*, x \rangle$, and A^0 for the polar of A, *i.e.*,

$$A^0 = \{x^* \in X^* : \langle x^*, x \rangle \le 1 \text{ for all } x \in A\}.$$

We say that a function f defined on a subset A of a Banach space X is a Δ -support function if there are two closed convex sets $C, D \subset X^*$ such that $f = \sigma_C - \sigma_D$ on A.

This paper is organized as follows. In the next section, we show that a sufficient and necessary condition for a nonempty closed convex set $K \subset X$ to be super weakly compact is that there exists a w^* lower semicontinuous seminorm p on X^* with $p \ge \sigma_K$ such that p^2 is uniformly Fréchet differentiable on B^* . In Section 3 we establish the representation theorem of the dual $\operatorname{swcc}(X)^*$ of the normed semigroup $\operatorname{swcc}(X)$, and this is done by showing that a nonempty closed convex set $K \subset X$ containing the origin is super weakly compact if and only if there exists a sequence $\{q_n\}$ of w^* lower semicontinuous Minkowski functionals whose squares are uniformly Fréchet differentiable on B^* , such that $q_n \to \sigma_K$ uniformly on B^* .

2 A Characterization of Super Weakly Compact Sets

In this section, we show that a sufficient and necessary condition for a nonempty closed convex set $K \subset X$ to be super weakly compact is that there exists a w^* lower semicontinuous seminorm p on X^* with $p \ge \sigma_K$ such that p^2 is uniformly Fréchet differentiable on B^* . To begin, we recall some more notions.

Given $\varepsilon \ge 0$, for a convex function f defined on a Banach space X, its ε - subdifferential mapping $\partial_{\varepsilon} f : X \to 2^{X^*}$ is defined by

$$\partial_{\varepsilon} f(x) = \{ x^* \in X^* : f(x+y) - f(x) + \varepsilon \ge \langle x^*, y \rangle, \ \forall y \in X \}.$$

If $\varepsilon = 0$, then $\partial_{\varepsilon} f$ is called the subdifferential mapping of f, and in this case, we denote it by ∂f instead of $\partial_0 f$. The conjugate function of f, denoted f^* , is defined by

$$f^*(x^*) = \sup\{\langle x^*, x \rangle - f(x), x \in X\}, \ x^* \in X^*.$$

Definition 2.1 Suppose that f is a convex function defined on a Banach space X.

On Super Weakly Compact Convex Sets and Representation of $swcc(X)^*$

(i) We say that f is Gâteaux differentiable at x if there is $x^* \in X^*$ such that

$$\lim_{t\to 0^+}\frac{f(x+ty)-f(x)}{t}-\langle x^*,y\rangle=0, \ \forall \ y\in X.$$

(ii) f is said to be Fréchet differentiable at $x \in X$ provided

$$\lim_{t\to 0^+}\sup_{y\in B_X}\left[\frac{f(x+ty)-f(x)}{t}-\langle x^*,y\rangle\right]=0.$$

In this case, we denote by $x^* = df(x)$ the Fréchet derivative of f at x.

(iii) *f* is called uniformly Fréchet differentiable on a subset $A \subset X$ if

$$\lim_{t\to 0^+}\sup_{y\in B_X,x\in A}\Big[\frac{f(x+ty)-f(x)}{t}-\langle df(x),y\rangle\Big]=0.$$

The following is the Brøndsted–Rockafellar theorem [3](see, also [2, 12]).

Theorem 2.2 (Brøndsted–Rockafellar) Suppose that $f \neq -\infty$ is an extended realvalued lower semicontinuous convex function defined on a Banach space X and $x_0 \in$ dom $(f) \equiv \{x \in X : f(x) < \infty\}$. Suppose that $x_0^* \in \partial_{\varepsilon} f(x_0)$. Then there exist $x_{\varepsilon} \in$ dom $f, x_{\varepsilon}^* \in X^*$ such that

(i)
$$x_{\varepsilon}^* \in \partial f(x_{\varepsilon})$$
, (ii) $||\mathbf{x}_0 - \mathbf{x}_{\varepsilon}|| \le \sqrt{\varepsilon}$, and (iii) $||\mathbf{x}_0^* - \mathbf{x}_{\varepsilon}^*|| \le \sqrt{\varepsilon}$.

The following properties are either classical or easily obtained (see, for instance, [8, 10, 12] for the non-uniform case).

Proposition 2.3 Suppose that p is an extended real-valued lower semicontinuous Minkowski functional defined on a Banach space X, i.e., there exists a closed convex set $C \subset X$ with $0 \in C$ such that $p(x) = \inf\{\alpha > 0 : x \in \lambda C\}$ for all $x \in X$. Let $C^* = \{x^* \in X^* : \langle x^*, x \rangle \leq p(x), \forall x \in X\}$. Then

- (i) $C^* = \partial p(0) = \partial p(X) = C^0$, the polar of *C*;
- (ii) $x^* \in \partial p(x)$ if and only if $x^* \in C^*$ with $\langle x^*, x \rangle = p(x)$.

Proposition 2.4 Suppose that f is a continuous convex function defined on a Banach space X. Then

- (i) the subdifferential mapping $\partial f: X \to 2^{X^*}$ is always nonempty w^* compact convex valued and norm-to- w^* upper semicontinuous at each point of X;
- (ii) *f* is Gâteaux differentiable at $x \in X$ if and only if $\partial f(x)$ is a singleton;
- (iii) f is Fréchet differentiable at $x \in X$ if and only if ∂f is single-valued and norm-tonorm upper semicontinuous at x;
- (iv) f is uniformly Fréchet differentiable on a subset $A \subset X$ if and only if ∂f is singlevalued and uniformly norm-to-norm continuous on A.

Proposition 2.5 Let p be a continuous seminorm on a Banach space $X, S_p = \{x \in X : p(x) \le 1\}$ and let $C^* = \{x^* \in X^* : \langle x^*, x \rangle \le p(x), \forall x \in X\}$. Then p is uniformly Fréchet differentiable on S_p if and only if for every sequence $\{x_n\} \subset X$ with $p(x_n) = 1$ and all sequences $\{x_n^*\}, \{y_n^*\} \subset C^*$ with $x_n^* \in \partial ||x_n||$ for all $n \in \mathbb{N}$, we have $||x_n^* - y_n^*|| \to 0$ whenever $\langle y_n^*, x_n \rangle \to 1$.

https://doi.org/10.4153/CMB-2011-169-3 Published online by Cambridge University Press

Proof Sufficiency. We want to show that ∂p is norm-to-norm uniformly continuous on S_p . Let $\{x_n\}, \{y_n\} \subset S_p$ be two sequences with $||x_n - y_n|| \to 0$. Since p is continuous, C^* is bounded. For any selection ϕ of the subdifferential mapping $\partial || \cdot ||$ of the norm $|| \cdot ||, \{\phi(x_n)\}$ and $\{\phi(y_n)\}$ are bounded, and they satisfy that $\langle \phi(x_n), y_n \rangle \to 1$ and $\langle \phi(y_n), x_n \rangle \to 1$. Therefore, $||\phi(x_n) - \phi(y_n)|| \to 0$.

Necessity. Since *p* is a continuous seminorm and uniformly Fréchet differentiable on S_p , ∂p is single-valued and uniformly norm-to-norm continuous on S_p . Let $\{x_n\} \subset X$ with $p(x_n) = 1$, and let $\{x_n^*\}, \{y_n^*\} \subset C^* \equiv \partial p(0)$ with $x_n^* \in \partial p(x_n)$ for all $n \in \mathbb{N}$, and with $\langle y_n^*, x_n \rangle \to 1$. Therefore, $y_n^* \in \partial_{\varepsilon}(x_n)$ for all sufficiently large $n \in \mathbb{N}$. By the Brøndsted-Rockafellar theorem, for every $\varepsilon > 0$ we obtain that two sequences $\{x_{\varepsilon,n}\} \subset X, \{x_{\varepsilon,n}^*\} \subset X^*$ such that

$$(i) \; x^*_{\varepsilon,n} \in p(x_{\varepsilon,n}), \quad (ii) \; \|y_n - x_{\varepsilon,n}\| \leq \sqrt{\varepsilon} \quad \text{and} \quad (iii) \; \|y^*_n - x^*_{\varepsilon,n}\| \leq \sqrt{\varepsilon}$$

for all sufficiently large $n \in \mathbb{N}$. Note that the continuity of p, $||x_n - x_{\varepsilon,n}|| \le \sqrt{\varepsilon}$, and $p(x_n) = 1$ imply that there exists a constant a > 0 such that $||x_n - y_{\varepsilon,n}|| \le a\sqrt{\varepsilon}$, where $y_{\varepsilon,n} \equiv x_{\varepsilon,n}/p(x_{\varepsilon,n}) \in S_p$. The arbitrariness of ε , the homogeneity of p, and the uniform continuity of ∂p on S_p entail that $x_{\varepsilon,n}^* \in \partial p(y_{\varepsilon,n})$ and

$$||x_n^* - y_n^*|| \le ||x_n^* - x_{\varepsilon,n}^*|| + ||x_{\varepsilon,n}^* - y_n^*|| \to 0.$$

We also need the following notion.

Definition 2.6 Suppose that *X* is a linear space and that $|\cdot|$ and $||\cdot||$ are two norms on *X*.

- (i) We say that the normed space $(X, |\cdot|)$ is relatively uniformly convex with respect to $\|\cdot\|$ provided that for any two sequences $\{x_n\}, \{y_n\} \subset (X, |\cdot|)$, we have $\|x_n y_n\| \to 0$ whenever $2(|x_n|^2 + |y_n|^2) |x_n + y_n|^2 \to 0$; equivalently, for every $\varepsilon > 0$, there exists $\delta > 0$ such that $|x|^2 + |y|^2 \frac{1}{2}|x + y|^2 > \delta$ whenever $\|x y\| \ge \varepsilon$.
- (ii) The normed space $(X, |\cdot|)$ is called uniformly convex if it is relatively uniformly convex with respect to $|\cdot|$.

The following lemma is due to Cheng et al. [6, Theorem 4.8 and Corollary 3.11].

Lemma 2.7 Suppose that K is a super weakly compact convex set of a Banach space $(X, \|\cdot\|)$. Then there exists a reflexive Banach space $(E, |\cdot|)$ such that

- (i) $K \subset B_E \subset X$;
- (ii) $\|\cdot\| \leq \lambda |\cdot|$ on *E* for some $\lambda > 0$;
- (iii) $|\cdot|^2$ is uniformly convex and $||\cdot||$ -uniformly continuous on *K*;
- (iv) $(E, |\cdot|)$ is relatively uniformly convex with respect to $||\cdot||$.

Lemma 2.8 Suppose that K is a bounded closed convex set of a Banach space $(X, \|\cdot\|)$. Suppose that there is a Banach space $(E, |\cdot|)$ satisfying

- (i) $K \subset \lambda B_E \subset X$ for some $\lambda > 0$;
- (ii) $|\cdot|$ is relatively uniformly convex with respect to $||\cdot||$ on *K*.

Then K is super weakly compact in X.

Proof Assume that *K* is not super weakly compact. Then there exists $\varepsilon > 0$ such that, for each $n \in \mathbb{N}$, there is an (n, ε) -tree $A_n \subset K$,

277

$$A_n = \{ x_{\varepsilon_1, \varepsilon_2, \dots, \varepsilon_k}^n : k = 1, 2, \dots, n, \ \varepsilon_i = 1, 2 \text{ and } i = 1, 2, \dots, k \},\$$

where

$$x^n_{\varepsilon_1,\varepsilon_2,...,\varepsilon_k} = \frac{1}{2} (x^n_{\varepsilon_1,\varepsilon_2,...,\varepsilon_k,1} + x^n_{\varepsilon_1,\varepsilon_2,...,\varepsilon_k,2})$$

and

$$\|x_{\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_k,1}^n - x_{\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_k,2}^n\| \geq \varepsilon$$

for $k = 1, 2, ..., n - 1, \varepsilon_i = 1, 2$, and i = 1, 2, ..., k. Let $f = |\cdot|^2$. Note that f is bounded by λ^2 on K. By Definition 2.6, there exists $\delta > 0$ such that

$$0 \leq \inf_{x \in K} f(x) \leq f(x_{\varepsilon_{1}}^{n}) < \frac{1}{2} \left(f(x_{\varepsilon_{1},1}^{n}) + f(x_{\varepsilon_{1},2}^{n}) \right) - \frac{1}{2} \delta$$

$$< \frac{1}{2^{2}} \left(f(x_{\varepsilon_{1},1,1}^{n}) + f(x_{\varepsilon_{1},1,2}^{n}) + f(x_{\varepsilon_{1},2,1}^{n}) + f(x_{\varepsilon_{1},2,2}^{n}) \right) - \delta$$

$$< \frac{1}{2^{n}} \left(f(x_{\varepsilon_{1},1,\dots,1}^{n}) + f(x_{\varepsilon_{1},1,\dots,2}^{n}) + \dots + f(x_{\varepsilon_{1},2,\dots,1}^{n}) + f(x_{\varepsilon_{1},2,\dots,2}^{n}) \right) - 2^{n-1} \delta$$

$$\leq \lambda^{2} - 2^{n-1} \delta \longrightarrow -\infty, \text{ as } n \to \infty.$$

This is a contradiction.

Now, we are ready to prove the main result of this section. We restate it as follows.

Theorem 2.9 Suppose that K is a closed bounded convex set of a Banach space $(X, \|\cdot\|)$. Then K is super weakly compact if and only if there exists a w^* lower semicontinuous seminorm p on X^* with $p \ge \sigma_K$ such that p^2 is uniformly Fréchet differentiable on B_{X^*} .

Proof Sufficiency. Since p is a w^* lower semicontinuous seminorm on X^* , it is necessarily continuous. Let $C^* = \{x^* \in X^* : p(x^*) \le 1\}$, and let $C \subset X$ be a closed convex set such that $C^0 = C^*$. Then C^* is nonempty, convex, and w^* compact. Since $p \ge \sigma_K$ entails that $K \subset C$, it suffices to show that C is super weakly compact. Put $S_p = \{x^* \in X^* : p(x^*) = 1\}$. The uniform Fréchet differentiability of p^2 is equivalent to that p is uniformly Fréchet differentiable on S_p . By [5], C is weakly compact. Since p is w^* lower semicontinuous on X^* , the Fréchet derivative $dp(x^*) \in C$ for every $x^* \in S_p[5]$. Let q be the Minkowski functional generated by C, and let $X_q = \bigcup_{n=1}^{\infty} nC$. Then q is lower semicontinuous on X, and (X_q, q) is a Banach space (see, for instance, the proof of in [15]).

By Lemma 2.8, we need only show that (X_q, q) is relatively uniformly convex with respect to $\|\cdot\|$. Note that *C* is just the closed unit ball of (X_q, q) . We are done if we

can prove that for any two sequences $\{x_n\}, \{y_n\} \subset C$ with $q(x_n) = q(y_n) = 1$ such that $q(x_n + y_n) \rightarrow 2$, we have $||x_n - y_n|| \rightarrow 0$.

Let x_n^* , y_n^* and $z_n^* \in S_p$ such that

$$p(x_n^*) = \langle x_n^*, x_n \rangle = q(x_n) = 1, \quad p(y_n^*) = \langle y_n^*, y_n \rangle = q(y_n) = 1$$

and $p(z_n^*) = \langle z_n^*, z_n \rangle = 1$ for all $n \in \mathbb{N}$, where $z_n = (x_n + y_n)/q(x_n + y_n)$. By Proposition 2.3,

$$dp(x_n^*) = x_n, \ dp(y_n^*) = y_n, \text{ and } dp(z_n^*) = z_n.$$

We have that $q(x_n + y_n) \rightarrow 2$ implies that

$$\langle z_n^*, x_n \rangle \to 1 = \langle x_n^*, x_n \rangle \text{ and } \langle z_n^*, y_n \rangle \to 1 = \langle y_n^*, y_n \rangle.$$

Uniform Fréchet differentiability of p on S_p and Proposition 2.4 entail that

$$||z_n - x_n|| = ||dp(z_n^*) - x_n|| \to 0 \text{ and } ||z_n - y_n|| = ||dp(z_n^*) - y_n|| \to 0$$

and which further imply that $||x_n - y_n|| \to 0$.

Necessity. Let X_K be the closure of span K in X. Since K is also super weakly compact in X_K , by Lemma 2.7, there is a reflexive Banach space $(E, |\cdot|)$ such that $K \subset B_E \subset \lambda B_{X_K}$ for some $\lambda > 0$, and $(E, |\cdot|)$ is relatively uniformly convex with respect to $\|\cdot\|$. Next, we extend $|\cdot|$ from E to X by $|x|_X = |x|$ if $x \in E$ and $|x|_x = +\infty$ otherwise. Then $|\cdot|_X$ is extended real-valued and lower semicontinuous on X, since B_E is closed in X. Let

$$p \equiv \sigma_{B_E} = |\cdot|_X^* = \sqrt{2(\frac{1}{2}|\cdot|_X^2)^*}, \quad S_p = \{x^* \in X^* : p(x^*) = 1\},$$

and note that $col \{(S_p \cup \ker p\} \supset \lambda^{-1}B_{X^*}\}$. We need only show that p is uniformly Fréchet differentiable on S_p . Let $\{x_n^*\}, \{y_n^*\} \subset S_p$ satisfy $p(x_n^* - y_n^*) \to 0$. Since B_E is (super) weakly compact in X, there exist $\{x_n\}, \{y_n\} \subset S_E$ such that $\langle x_n^*, x_n \rangle = 1$ and $\langle y_n^*, y_n \rangle = 1$. Therefore, $\langle x_n^*, y_n \rangle = \langle y_n^*, y_n \rangle - \langle x_n^* - y_n^*, y_n \rangle \to 1$ and $\langle y_n^*, x_n \rangle = \langle x_n^*, x_n \rangle - \langle y_n^* - x_n^*, x_n \rangle \to 1$. These entail $|x_n + y_n| \to 2$. The relative uniform convexity of $|\cdot|$ implies that $||x_n - y_n|| \to 0$. Therefore, p is uniformly Fréchet differentiable on S_p .

3 Representation of $swcc(X)^*$

In this section, we shall give the dual of $\operatorname{swcc}(X)$. To begin with, we present some notions. The concept of Δ -convex function is used in Cepedello–Boiso [4] (see, also [1, p. 94]). Analogously, we call that a function f defined on a convex subset A of a Banach space $X \Delta$ -support function if there are two nonempty (bounded convex) subsets $C, D \subset X^*$ such that $f = \sigma_C - \sigma_D$ on A. In particular, if $0 \in C \cap D$, we say that the function f a Δ -Minkowski functional.

We would like to mention two remarkable results concerning embedding of cc(X) (the normed semigroup of all compact convex sets of a Banach space X and representation of $cc(\mathbb{R}^n)^*$. Radstrom [14] showed that cc(X) is (additivity and nonnegative scalar multiplication preserved) isometric to cone of a real Banach space.

Keimel and Roth [11] proved that $cc(\mathbb{R}^{n^*})^* \simeq C(S_{X^*})^*$, where S_{X^*} denotes the unit sphere of $(\mathbb{R}^n)^*$, and $C(S_{X^*})$ stands for the space of all continuous functions on S_{X^*} equipped with the sup-norm. In Cheng and Zhou [7], it is shown that $cc(X)^* = C_{PH}(B_{X^*})^*$, where $C_{PH}(B_{X^*})$ denotes the Banach space of all w^* continuous positively homogenous functions on X^* restricted to B_{X^*} , while the dual of wcc(X) (the normed semigroup of all nonempty weakly compact convex sets of X) is just the dual of $C_{\Delta SSFD}(B_{X^*})$. (The normed space of all w^* lower semicontinuous positively homogenous functions on X^* restricted to B_{X^*} satisfying that for each element f of the space there exist two weakly compact convex sets C and $D \subset X$ such that $f = \sigma_C - \sigma_D$ and such that σ_C^2 and σ_D^2 are Fréchet differentiable on B_{X^*} .)

Inspired by the preceding results, in this section we show that $\operatorname{swcc}(X)^* = C_{\Delta MSUFD}(B_{X^*})^*$, where $C_{\Delta MSUFD}(B_{X^*})$ denotes the normed space of all w^* lower semicontinuous Δ -Minkowski functionals defined on X^* restricted to B_{X^*} satisfying that for each element f of the space there exist two closed bounded convex sets C and $D \subset X$ with $0 \in C \cap D$ such that $f = \sigma_C - \sigma_D$ and such that σ_C^2 and σ_D^2 are uniformly Fréchet differentiable on B_{X^*} .

For a real Banach space *X*, let

$$P_{swcc(X)} = \{\sigma_K : K \in swcc(X)\};$$

$$M_{swcc(X)} = \{\sigma_{K_1} - \sigma_{K_2} : K_1, K_2 \in swcc(X)\};$$

$$swcc_0(X) = \{K \in swcc(X) \text{ with } 0 \in K\};$$

$$P_{swcc_0(X)} = \{\sigma_K : K \in swcc_0(X)\};$$

$$M_{swcc_0(X)} = \{\sigma_{K_1} - \sigma_{K_2} : K_1, K_2 \in swcc_0(X)\}.$$

Proposition 3.1 Suppose that X is a Banach space. Then $M_{swcc_0(X)} = M_{swcc_0(X)}$.

Proof The one side inclusion $M_{swcc(X)} \supset M_{swcc_0(X)}$ is trivial. To show $M_{swcc(X)} \subset M_{swcc_0(X)}$, let $f = \sigma_{K_1} - \sigma_{K_2}$ for some $K_1, K_2 \in swcc(X)$. Choose any $x_i \in K_i$ for i = 1, 2, and let $K = co\{\pm x_1, \pm x_2\}$. Then K is convex compact (hence, super weakly compact). By Proposition 1.3, $C \equiv K_1 + K$ and $D \equiv K_2 + K$ are super weakly compact and convex. Therefore, $C, D \in P_{swcc_0}(X)$ and

$$f = \sigma_{K_1} - \sigma_{K_2} = (\sigma_{K_1} + \sigma_K) - (\sigma_{K_2} + \sigma_K)$$
$$= \sigma_{K_1+K} - \sigma_{K_2+K} = \sigma_C - \sigma_D \in M_{\text{swcc}_0}(X).$$

Lemma 3.2 Suppose that X is a Banach space. Then $swcc_0(X)$ is order isometric to $P_{swcc_0(X)}$;

Proof For all $\lambda \ge 0$ and for all $K, K_1, K_2 \in \text{swcc}_0(X)$, we have $\sigma_{K_1+K_2} = \sigma_{K_1} + \sigma_{K_2}$, $\sigma_{\lambda K} = \lambda \sigma_K$. Since $d_H(K_1, K_2) = \|\sigma_{K_1} - \sigma_{K_2}\|$, swcc(X) is order isometric to $P_{\text{swcc}_0(X)}$, and the lemma follows.

Recall that an extended real-valued Minkowski functional p on a Banach space X is a nonnegative-valued sublinear function, *i.e.*, $p(x) \in \mathbb{R}^+ \cup \{+\infty\}$ with $p(\lambda x) = \lambda p(x)$ for all $x \in X$, $\lambda \ge 0$ and with $p(x + y) \le p(x) + p(y)$ for all $x, y \in X$.

L. Cheng, Z. Luo, and Y. Zhou

Lemma 3.3 Suppose that X is a Banach space and $p: X \to \mathbb{R}^+ \cup \{+\infty\}$ is an extended real-valued lower semicontinuous Minkowski functional with $p \ge \|\cdot\|$ on X. Let $q_n^2 = p^2 + c_n \|\cdot\|^2$ for all $n \in \mathbb{N}$, where $0 < c_n \to 0$. Then $(q_n^2)^* \to (p^2)^*$ uniformly on B^* .

Proof By definition of conjugate function, it suffices to note that for all $x^* \in X^*$,

$$\frac{1}{\sqrt{1+c_n}} (p^2)^* (x^*) = \{(1+c_n)p^2\}^* \le (q_n^2)^* (x^*)$$
$$= \sup\{\langle x^*, x \rangle - (p^2(x) + c_n ||x||^2) : x \in \operatorname{dom} p\}$$
$$\le (p^2)^* (x^*) \le (||\cdot||^2)^* (x^*).$$

Theorem 3.4 $P_{\text{swcc}_0(X)} = \overline{U}$, the closure of

 $U \equiv \{\sigma_K : K \in \text{swcc}_0(X), {\sigma_K}^2 \text{ is uniformly Frechet differentiable on } B_{X^*} \}.$

Proof We show first that $\overline{U} \subset P_{swcc_0(X)}$. Suppose that $K \subset X$ is a closed convex set with $\sigma_K \in \overline{U}$, then K also contains the origin. We claim that K is super weakly compact. Let $\sigma_n \equiv \sigma_{K_n} \in U$ such that $\sigma_n \to \sigma_K$ in $C(B_{X^*})$. Then, by Theorem **2.9**, K_n are super weakly compact for all $n \in \mathbb{N}$. This entails that for every $\varepsilon > 0$ there exists $n \in \mathbb{N}$ such that $K \subset K_n + \varepsilon B_X$. According to [6, Lemma 4.5], K is super weakly compact. Conversely, let $K \in \text{swcc}_0(X)$, q_K be the (extended real-valued and lower semicontinuous) Minkowski functional generated by K, *i.e.*, $q_K(x) = \inf\{\alpha > 1\}$ $0: x \in \alpha^{-1}K$. Next, let $p = \sigma_K$, and let X_K be the closure of spanK in X. Then we obtain that $p = \sqrt{2(q_K^2/2)^*}$. Since K is also super weakly compact in X_K , by Lemma 2.7, there is a reflexive space $(E, |\cdot|)$ such that $K \subset B_E \subset \lambda B_{X_K}$ for some $\lambda > 0$, and $(E, |\cdot|)$ is relatively uniformly convex with respect to $\|\cdot\|$. Therefore, the Minkowski functional q_K satisfies $q_K \ge |\cdot|$ on $(E, |\cdot|)$, and for all a, b > 0, $f \equiv aq_K^2 + b|\cdot|^2$ is relatively uniformly convex with respect to $\|\cdot\|$, *i.e.*, for any two bounded sequences $\{x_n\}, \{y_n\} \subset (E, |\cdot|)$, we have $||x_n - y_n|| \to 0$ whenever $f(x_n) + f(y_n) - 2f((x_n + y_n)/2) \to 0$. Let $f_m = \frac{1}{2}q_K^2 + 2^{-m}|\cdot|^2$ for all $m \in \mathbb{N}$. According to Lemma 3.2, $f_m^* \to (\frac{1}{2}q_K^2)^* = \frac{1}{2}p^2$ uniformly on each bounded subset of $(E, |\cdot|)^*$. Applying relative uniform convexity of f_m and a similar discussion of the proof of the necessity part of Theorem 2.9, we can see that f_m^* is uniformly Fréchet differentiable on each bounded subset of $(E, |\cdot|)^*$. Note that $|\cdot|$ is stronger than $||\cdot||$ on *E* and that *E* is, with respect to the original norm $\|\cdot\|$, a dense subspace of X_K . Within the natural norm-preserved restriction to *E*, we obtain $X_K^* \subset E^*$ and $B_{X_K^*} \subset$ $\lambda^{-1}B_{E^*}$. These further imply that f_n^* are w^* -lower semicontinuous and uniformly Fréchet differentiable on each bounded subset of $X_K^* = X^*/X_K^0$. Now, we define Minkowski functionals $\{p_n\}_{n\in\mathbb{N}}$ for $x^* \in X^*$ by $p_n(x^*) = \sqrt{2f_n^*(Q(x^*))}$, where $Q: X^* \to X^*/X_K^0$ denotes the quotient mapping. Then it is easy to see that $p_n \to p$ and p_n^2 are uniformly Fréchet differentiable on each bounded subset of X^* .

Corollary 3.5 $M_{\text{swcc}(X)}$ is a dense subspace of $C_{\Delta M \text{SUFD}}(B^*)$.

Proof By Proposition 3.1 and Theorem 3.4,

$$M_{\text{swcc}(X)} = M_{\text{swcc}_0(X)} = P_{\text{swcc}_0(X)} - P_{\text{swcc}_0(X)} = \overline{U} - \overline{U} \subset C_{\Delta \text{MSUFD}}(B^*).$$

According to definition of $C_{\Delta MSUFD}(B^*)$, for every $\varepsilon > 0$ and for every $f \in C_{\Delta MSUFD}(B^*)$, there exists $f_{\varepsilon} = \sigma_{K_1} - \sigma_{K_2}$ for some closed bounded convex sets $K_1, K_2 \in X$ with $0 \in K_1 \cap K_2$ such that both $\sigma_{K_1}^2$ and $\sigma_{K_2}^2$ are uniformly Fréchet differentiable on B_{X^*} satisfying

$$|f(x^*) - f_{\varepsilon}(x^*)| < \varepsilon$$
 uniformly for $x^* \in B_{X^*}$.

By Theorem 3.4 again, we get $K_1, K_2 \in \text{swcc}_0$ and $f_{\varepsilon} \in M_{\text{swcc}(X)}$.

281

The following result is the main theorem of this section.

Theorem 3.6 Suppose that X is a Banach space. Then

$$\operatorname{swcc}(X)^* = C_{\Delta \operatorname{MSUFD}}(B^*)^*.$$

Proof Since $M_{\text{swcc}(X)}$ is a dense subspace of $C_{\Delta \text{MSUFD}}(B^*)$ (Corollary 3.5), we have $M^*_{\text{swcc}(X)} = C_{\Delta \text{MSUFD}}(B^*)^*$. Since swcc(X) is (ordered isometric to) a reproducing cone of $M_{\text{swcc}(X)}$ with nonempty interior, by definition of the dual of a normed semigroup it is easy to show that $\text{swcc}(X)^* = M^*_{\text{swcc}(X)}$.

Acknowledgment The authors would like to thank the referee for his (her) very kind and helpful suggestions and grammatical corrections.

References

- Y. Benyamini and J. Lindenstauss, *Geometric nonlinear functional analysis*. I. Colloq. Publ. 48, American Mathematical Society, 2000.
- [2] J. M. Borwein, A note on ε-subgradients and maximal monotonicity. Pacific J. Math. 103(1982), no. 2, 307–314.
- [3] A. Brøndsted and R. T. Rockafellar, On the subdifferentiability of convex functions. Proc. Amer. Math. Soc. 16(1965), 605–611.
- [4] M. Cepedello-Boiso, Approximation of Lipschitz functions by Δ-convex functions in Banach spaces. Israel J. Math. 106(1998), 269–284. http://dx.doi.org/10.1007/BF02773472
- [5] L. Cheng, Q. Cheng, and Z. Luo, On some new characterizations of weakly compact sets in Banach spaces. Studia Math. 201(2010), no. 2, 155–166. http://dx.doi.org/10.4064/sm201-2-3
- [6] L. Cheng, Q. Cheng, B. Wang, and W. Zhang, On super-weakly compact sets and uniformly convexifiable sets. Studia Math. 199(2010), no. 2, 145–169. http://dx.doi.org/10.4064/sm199-2-2
- [7] L. Cheng and Y. Zhou, On approximation by Δ -convex polyhedron support functions and the dual of cc(X) and wcc(X). J. Convex Anal. **19**(2012), no. 1, [final page numbers not yet available].
- [8] R. Deville, G. Godefroy, and V. Zizler, Smoothness and renormings in Banach spaces. Pitman Monographs and Surveys in Pure and Applied Mathematics, 64, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1993.
- P. Enflo, Banach spaces which can be given an equivalent uniformly convex norm. Israel J. Math. 13(1972), 281–288. http://dx.doi.org/10.1007/BF02762802
- [10] M. Fabian, Gâteaux differentiability of convex functions and topology. weak Asplund spaces. Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1997.
- [11] K. Keimel and W. Roth, Ordered cones and approximation. Lecture Notes in Mathematics, 1517, Springer-Verlag, Berlin, 1992.
- [12] R. R. Phelps, Convex functions, monotone operators and differentiability. Lecture Notes in Mathematics, 1364, Springer-Verlag, Berlin, 1989.

- [13] G. Piser, Martingales with values in uniformly convex spaces. Israel J. Math. 20(1975), no. 3-4,
- 326–350. http://dx.doi.org/10.1007/BF02760337
 [14] H. Rådström, An embedding theorem for spaces of convex sets. Proc. Amer. Math. Soc. 3(1952), 165–169. http://dx.doi.org/10.2307/2032477
 [15] C. X. Wu and L. X. Cheng, A note on differentiability of convex functions. Proc. Amer. Math. Soc.
- **121**(1994), no. 4, 1057–1062.

School of Mathematical Sciences, Xiamen University, Xiamen, 361005, China e-mail: lxcheng@xmu.edu.cn luozhenghua@hotmail.com roczhoufly@126.com