GLASGOW UNIVERSITY RADIOCARBON MEASUREMENTS III

M. S. BAXTER* and A. WALTON

Chemistry Department, The University, Glasgow, W.2

INTRODUCTION

The following list presents results obtained during 1968-69 on a series of samples chosen to investigate temporal variations of C^{14} concentrations in the atmosphere during the past century. Together with data presented previously (Radiocarbon, 1969, v. 11, p. 45-52) they constitute a study of annual variations of C^{14} activities at N temperate latitudes.

Procedures for the analysis of a variety of organic and inorganic materials were previously reported and these have remained virtually unchanged. In some instances C¹⁴ concentrations were revised slightly in view of mass spectrometric analyses for C¹³/C¹² ratios. All δ C¹⁴ and Δ values of recent samples are decay-corrected, although this correction is very small.

ACKNOWLEDGMENTS

One of us (M.S.B.) gratefully acknowledges the financial support of a Science Research Council Studentship, during the tenure of which this work was performed.

I. SPIRIT SAMPLES

The study of atmospheric C^{14} concentrations in past years through analyses of malt whiskies of known age has continued. Results pub. in Radiocarbon, 1969, v. 11, p. 43-52 established the reliability of malt whiskies as indicators of atmospheric C^{14} concentrations during barley growth periods.

Malt whisky, Scotland series

Sample no.	Barley coll. date	Distill. date	δC ¹⁴ %	$\delta C^{130\!/\!\!/o}$	$\Delta \%$
GU-228	1919	1920	-1.6 ± 0.6	-27.1	-1.2 ± 0.6
GU-229	1920	1921	-2.0 ± 0.6	-25.7	-1.8 ± 0.6
GU-230	1925	1926	-3.4 ± 0.6	-27.7	-2.8 ± 0.6
GU-231	1935	1936	-1.7 ± 0.5	-27.6	-1.2 ± 0.5
GU-232	1939	1940	-3.5 ± 0.6	-28.1	-2.9 ± 0.6
GU-233	1947	1948	-5.7 ± 0.5	-27.9	-5.2 ± 0.5
GU-234	1947	1948	-5.9 ± 0.7	-29.1	-5.1 ± 0.8

II. VINTAGE WINE SAMPLES

L'Orange and Zimen (1968) have shown that a good correlation exists between atmospheric C^{14} concentrations and those in vintage wine

* Department of Earth and Space Sciences, State University of New York, Stony Brook, Long Island, New York.

Sample no.	Sample site	Yr	$\delta C^{14}\%$	δC^{130} //00	$\Delta\%$
GU-238	Portugal	1897	-1.7 ± 0.5	-30.2	-0.7 ± 0.5
GU-239	France	1906	-2.8 ± 0.6	-29.2	-2.0 ± 0.6
GU-240	France	1907	-4.7 ± 0.5	-38.3	-2.2 ± 0.5
GU-241	France	1907	-2.7 ± 0.5	-27.8	-2.2 ± 0.5
GU-242	France	1908	-3.3 ± 0.5	-29.9	-2.4 ± 0.5
GU-243	France	1914	-2.4 ± 0.5	-30.5	-1.3 ± 0.5
GU-244	France	1914	-1.0 ± 1.1	-29.4	-0.1 ± 1.1
GU-245	Portugal	1917	-4.0 ± 0.6	-31.6	-2.8 ± 0.6
GU-246	France	1918	$+97.6\pm1.7$	-29.6	$+99.4 \pm 1.8$

samples. To extend our knowledge of past atmospheric C¹⁴ concentrations a number of French and Portuguese wines were analyzed.

Comments: high Δ value indicative of 1963 sample. Since lab contamination of sample to such an extent would seem impossible, discrepancy appears due to mistaken identity of sample. The analysis, however, reveals the possibility of applying C¹⁴ analysis to dating of recent wines even though accuracy of age-assessment may be limited within certain time periods.

Sample no.	Sample site	Yr	$\delta C^{14}\%$	$\delta C^{130\!/\!\!/_{OO}}$	$\Delta\%$
GU-247	France	1920	-1.6 ± 0.5	-30.5	-0.5 ± 0.5
GU-248	France	1926	-3.3 ± 0.6	-28.7	-2.5 ± 0.6
GU-249	Portugal	1927	-4.6 ± 0.5	-31.6	-3.3 ± 0.5
GU-250	France	1928	-3.2 ± 0.6	-32.0	-1.8 ± 0.6
GU-251	France	1928	-2.2 ± 0.5	-28.4	-1.5 ± 0.5
GU-252	France	1929	-2.2 ± 0.5	-31.7	-1.0 ± 0.6
GU-253	France	1929	-2.8 ± 0.5	-31.4	-1.6 ± 0.5
GU-254	Portugal	1929	-2.1 ± 0.6	-29.8	-1.2 ± 0.6

III. TREE SEED SAMPLES

In a study of atmospheric C^{14} concentrations during the period 1959-1968 a number of tree seeds (subm. and id. by U. K. Forestry Comm.) have been analyzed. The seeds, stored in vacuum since collection, represent a variety of species and were coll. from Scotland and Oregon, U.S.A.

		$\delta C^{14}\%$	δC^{13} %00	$\Delta\%$
GU-255.	Scotland	18.7 ± 0.6	-24.9	18.7 ± 0.7

Seeds (*Tsuga mertensiana*) coll. 1960 from SW Scotland (56° 30' N Lat, 3° 30' W Long).

150	11. 5. <i>Du</i>			
		$\delta C^{14}\%$	$\delta C^{_{13}}$ %0	$\Delta\%$
GU-256.	Scotland	21.6 ± 0.6	-28.9	22.5 ± 0.6
Seeds 4° 30′ W I	(Pinus mugo) coll. (Long).	1961 from NW	Scotland (57°	30' N Lat,
GU-257.		29.4 ± 0.7		
Seeds 4° 30′ W I	(Pinus mugo) coll. Long).	1962 from NW	Scotland (57°	30' N Lat,
GU-258.	Scotland	85.4 ± 1.2	-26.8	86.1 ± 1.2
Seeds W Long).	(Pinus sylvestris) coll	l. 1963 from Mc	oray (57° 30' N	I Lat, 3° 30'
GU-259.	Scotland	93.8 ± 1.2	-26.7	94.4 ± 1.3
Seeds W Long).	(Pinus sylvestris) coll	. 1964 from Mc	oray (57° 30' N	1 Lat, 3° 30
GU-53.	Scotland	72.9 ± 1.0	-26.9	73.5 ± 1.0
Seeds W Long).	(Pinus sylvestris) coll	l. 1965 from Mc	oray (57° 30' N	N Lat, 3° 30
GU-260.	Scotland	69.9 ± 0.8	29.4	71.4 ± 0.8
Seeds 3° 30′ W	(Pinus sylvestris) co Long).	ll. 1966 from S	Scotland (55°	9 30' N Lat
GU-261.	Scotland	62.7 ± 0.7	-25.7	62.9 ± 0.7
Seeds W Long).	(Larix decidua) coll.	1967 from Mo	ray (57° 30′ N	I Lat, 3° 30
GU-262.	England	55.7 ± 0.7	-33.0	58.2 ± 0.8
Seeds 1° 57' W I	(Fagus sylvatica) col Long).	1. 1967 from C	irencester (51°	9 40' N Lat
GU-263.	Scotland	59.4 ± 0.7	-29.8	60.9 ± 0.2
Seeds (F W Long).	Picea sitchensis) coll.	1968 from N So	cotland (58° N	I Lat, 4° 30
	Oregon (Pseudotsuga taxifol			
GU-265.	Oregon	18.5 ± 0.5	-30.6	19.8 ± 0.0
	(Abies grandis) coll.			
GU-266.	Oregon	19.9 ± 0.6	-26.5	20.3 ± 0.0
Seeds	(Picea sitchensis) co	ll. 1961 (45° N	Lat, 120° W	Long).
GU-267.	0	28.7 ± 0.8	-25.6	28.8 ± 0.5
Seeds	(Abies nobilis) coll.	1962 (45° N La	at, 120° W Lo	ong).
* Estima	ated, as mass-spectrometr	ric measurements v	vere not availabl	le.

Glasgow University Radiocarbon Measurements III 499

		$\delta C^{14}\%$	δC^{13} %0	$\Delta\%$
	Oregon (Pinus contorta) coll			
	Oregon (Pinus contorta) coll.			
GU-270. Seeds	Oregon (Abies amabilis) coll.		—23.9 Lat, 120° W	
	Oregon (Abies nobilis) coll. 1			
	Oregon (Abies nobilis) coll. 1			

Comment: C¹⁴ activities of N hemispheric tree seeds accurately reflect atmospheric levels during seed growth periods. Rate of equilibration of atmospheric C¹⁴ concentrations since 1963 is approximated by the expression $\Delta_t = 97e^{-0.10t}$ where Δ_t is the tropospheric C¹⁴ concentration (%) at time and yr after 1963. Discrepancies between the 2 seed series (Scotland and Oregon) although in part statistical, may also be due to slightly different growth periods and to minor disequilibrium in atmospheric C¹⁴ distribution in N Lats.

IV. FLAX SEEDS, CEREAL, AND WOOL SAMPLES

A variety of biospheric materials including flax seeds, and cereals coll. near Belfast, N Ireland (54° 35′ N Lat, 5° 50′ W Long) and English wool samples of known age were analyzed to permit estimation of past atmospheric C¹⁴ activities. Samples were provided by the N Ireland Ministry of Agriculture.

		δC ¹⁴ %	δC ¹³ ‰	$\Delta\%$
	Flax seeds (Linum usitatissimu	-3.5 ± 0.6 m) coll. 1934.	-33.2	-1.9 ± 0.6
G U-274. Seeds	Oats (Avena sterilis) coll.	-2.4 ± 0.5 1935.	-30.3	-1.3 ± 0.5
GU-275. Seeds	Barley (Hordeum distichum	-4.0 ± 0.6) coll. 1936.	-30.0	-3.0 ± 0.6
	Flax seeds (Linum usitatissimu	-4.3 ± 0.5 m) coll. 1936.	-29.9	-3.4 ± 0.5
GU-277. Seeds	Flax seeds (Linum usitatissimu	-4.7 ± 0.7 m) coll. 1938.	-32.6	-3.2 ± 0.7

M. S. Baxter and A. Walton

		$\delta C^{14}\%$	$\delta C^{130}\!/\!\!o$	$\Delta\%$
	Flax seeds (Linum usitatissimu	-4.5 ± 0.5 em) coll. 1938.	-30.7	-3.4 ± 0.5
	Flax seeds (Linum usitatissimu	-3.8 ± 0.5 em) coll. 1940.	-30.1	-2.8 ± 0.5
00 2000	Flax seeds (Linum usitatissimu	-3.8 ± 0.6 (<i>m</i>) coll. 1942.	-32.1	-2.5 ± 0.6
GU-281. Straw	Flax (Linum usitatissimi	-4.4 ± 0.5 <i>um</i>) coll. 1943.	-30.7	-3.4 ± 0.6
	Flax seeds (Linum usitatissimu	-5.3 ± 0.6 m) coll. 1944.	-32.6	-3.8 ± 0.6
	Flax seeds (Linum usitatissimu	-5.8 ± 0.5 (<i>m</i>) coll. 1945.	-30.7	-4.7 ± 0.5
	Flax seeds (Linum usitatissimu	-6.1 ± 0.5 (m) coll. 1946.	-32.0	-4.8 ± 0.6
GU-285. Straw	Flax (Linum usitatissimu	-6.0 ± 0.4 ιm) coll. 1947.	-30.7	-4.9 ± 0.4
	Flax seeds (Linum usitatissim)	-6.1 ± 0.6 (<i>m</i>) coll. 1948.	-31.0	-5.0 ± 0.6
	Flax seeds (Linum usitatissim)	-5.1 ± 0.6 (m) coll. 1950.	-29.1	-4.3 ± 0.6
Comn	Wool, 1962 nent: wool sample 1 C ¹⁴ levels.		—30.7 representativ	21.7 ± 0.6 re of 1961 at-
GU-289. Wool	Wool coll. 1851 from NE	-3.0 ± 0.8 England (54° N		-1.7 ± 0.8 Long).
GU-290. Wool	Wool coll. 1851 from NE	-2.3 ± 0.7 England (54° N		110 _ 010
Comment	Wool coll. 1944 from NE results of analyses of biomboric metazial	England (54° N of malt whiskies	s, vintage wir	nes, flax seeds,

Comment: results of analyses of malt whiskies, vintage wines, flax seeds, and other biospheric materials indicate that N hemisphere C¹⁴ activities have fluctuated significantly on an annual basis during the time period 1890-1950. The causes of these variations are to be discussed elsewhere.

500

V. ARCHAEOLOGIC SAMPLES

Mortar series

GU-292. Carlisle Castle mortar

Mortar from "De Ireby's Tower" Carlisle Castle (54° 47′ N Lat, 2° 55′ W Long), from ground floor W room, Garderobe entrance, 9.5 ft from ground level, 2 ft from interior wall face, and 1.5 ft above lower side of stone lintel. Coll. and subm. 1967 by Ministry of Public Bldgs. and Works, Ancient Monuments Branch. *Comment*: true age is 580. Sample prepared from 1st CO₂ fraction during acid hydrolysis and contains less contaminant old carbon than GU-66 (2002 \pm 58) prepared from the total CO₂ yield (Radiocarbon, 1969, v. 11, p. 51).

GU-293. Carlisle Castle mortar

Same mortar sample as GU-292 (above) and GU-66 but prepared from the 2nd CO_2 fraction during hydrolysis. *Comment*: discrepancies between 1st, 2nd, and over-all fractions not due to fractionation since mass spectrometric measurements performed. Presumably non-crystalline carbonate (from atmospheric CO_2) is hydrolyzed preferentially to the carbonate of calcareous sands and/or limestone residues.

GU-294.

738 ± 52 a.d. 1212

Mortar from Projecting Garderobe Bay Hampton Court Palace (51° 25' N Lat, 0° 24' W Long), from top of wall immediately below courtyard paving cobbles. Coll. and subm. 1967 by Ministry of Public Bldgs. and Works, Ancient Monuments Branch. *Comment*: true age is 440. Contamination by old carbon evident.

GU-295. London Tower mortar

$\delta \mathrm{C}^{_{14}}\%$	δC^{13} %	$\Delta\%$
7.09 ± 0.59	-17.09	5.39 ± 0.61

Mortar from Cold Harbour Tower, Tower of London (51° 32' N Lat, 0° 05' W Long), from NW drum of tower immediately above footing offset and present ground level. Repair mortar from 1953. Coll. and subm. 1967 by Ministry of Public Bldgs. and Works, Ancient Monuments Branch. *Comment*: Δ value representative of post-1953 nuclear era with same C¹⁴ content as 1956 atmosphere. Thus mortar "hardening" appears to have reached an advanced stage during the 1st 5 to 10 yr (since significant incorporation of 1963 atmospheric C¹⁴ would have been readily detectable).

GU-296. Orford Castle mortar

7370 ± 87 5420 в.с.

Mortar from W Tower Orford Castle (52° 05' N Lat, 1° 35' W Long), from W wall of tower 35 ft above ground level. Coll. and subm. 1968 by Ministry of Public Bldgs. and Works, Ancient Monuments

501

 1158 ± 57

А.D. 792

2936 ± 72 986 в.с. Branch. Comment: true age is 800. Sample appears contaminated to >50% by inactive carbon.

2012 ± 53 62 в.с.

GU-297. Conway Town Wall mortar

Mortar from Conway Town Walls (53° 17' N Lat, 3° 50' W Long), from steps outside E tower 65 ft from end of tower and from 0.5 ft to 1.5 ft into wall. Coll. and subm. 1968 by Ministry of Public Bldgs. and Works, Ancient Monuments Branch. *Comment*: true age is 680 and thus contamination by old carbon is evident.

370 ± 31 GU-298. Hampton Court mortar A.D. 1580

Mortar from Apt 35, Wolsey Rooms Hampton Court Palace (51° 25' N Lat, 0° 24' W Long), from brickwork on internal wall ground floor. Coll. and subm. by Ministry of Public Bldgs. and Works, Ancient Monuments Branch. *Comment*: true age is ca. 420 and thus contamination by old carbon is not present.

General Comment: this series of data from mortar samples confirms inherent unreliability of this material for dating purposes in the U.K. (Baxter and Walton, 1970). Studies by Stuiver and Smith (1965) and Delibrias and Labeyrie (1965) suggest that conflicting opinions exist on the value of mortar for dating.

2370 ± 40

GU-299. Kilphedir hut circles, Sutherland, Scotland 420 B.C.

Charcoal (birch and hazel) from Hut Circle III, 1 of 5 in locality just below turf at Kilphedir site, Sutherland, Scotland, 3.5 mi from sea at Helmsdale (58° 09' N Lat, 3° 43' W Long), 400 ft. Coll. and subm. 1968 by H. Fairhurst, Archaeol. Dept., Univ. of Glasgow. *Comment*: age (based on assumption of $\delta C^{13} = -28.10\%$, is in reasonable agreement with archaeologic assessment of ca. 300 B.C.

References

Baxter, M. S. and Walton, A., 1970, Radiocarbon dating of mortars: Nature, v. 225, p. 937.

Baxter, M. S., Ergin, M., and Walton, A., 1969, Glasgow University radiocarbon measurements I: Radiocarbon, v. 11, p. 43-52.

Delibrias, G. and Labeyrie, J., 1965, The dating of mortars by the carbon-14 method: 6th internatl. conf. on radiocarbon and tritium dating proc., Pullman, Washington, June 1965, p. 344-347.

L'Orange, R. and Zimen, K., 1968, C-14 Aus kernwassen-explosionen im carbonat und im kollagen men schlicher knochen: Naturwissenschaften, v. 55, p. 492.

Stuiver, M. and Smith, C. S., 1965, Radiocarbon dating of ancient mortar and plaster: 6th internatl. conf. on radiocarbon and tritium dating proc., Pullman, Washington, June 1965, p. 338-343.

502